1
|
Li D, Liu X, Dong F, Li W. Advancements in phasor-based FLIM: multi-component analysis and lifetime probes in biological imaging. J Mater Chem B 2025; 13:472-484. [PMID: 39601095 DOI: 10.1039/d4tb01669f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a reliable method that achieves imaging by detecting fluorescence lifetimes within samples. Owing to its unique temporal characteristic, it can complement fluorescence intensity measurement. Technological and methodological advancements in FLIM have broadened its applications across various domains. The processing of fluorescence lifetime data is crucial for enhancing the speed and accuracy of imaging. Thus, various lifetime fitting algorithms have been developed to improve the imaging speed. The phasor analysis (PA) method is an approach for processing fluorescence lifetime data, capable of directly converting lifetime signals into visual graphics without fitting, which outperforms traditional approaches in speed. Furthermore, lifetime probes with distinct lifetimes are readily implemented for visualization and cluster analysis combined with PA, facilitating the prediction of specific biological states or functions. This review examines various lifetime probes employed in phasor-based FLIM and discusses their roles in the PA method. The methods for multi-component PA within complex biological environments were also described. Additionally, we focused on the advantages of the phasor vector rule and the unmixing of multi-component analysis based on PA. The integration of lifetime probes with phasor-based FLIM facilitates rapid and intuitive detection methods for analyzing complex biological environments.
Collapse
Affiliation(s)
- Dan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Fanli Dong
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Huhehot 010030, P. R. China
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Huhehot 010030, P. R. China
| |
Collapse
|
2
|
Jian Y, Gao W, Qin Y, Guo H, Wu X, Jia Z, Wen H, Li Z, Ma Z, Li X, Tang J, Liu J. Ultrafast Intelligent Sensor for Integrated Biological Fluorescence Imaging and Recognition. ACS Sens 2024; 9:6471-6481. [PMID: 39636957 DOI: 10.1021/acssensors.4c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Fluorescence imaging and recognition are core technologies in targeted medicine, pathological surgery, and biomedicine. However, current imaging and recognition systems are separate, requiring repeated data transfers for imaging and recognition that lead to delays and inefficiency, hindering the capture of rapidly changing physiological processes and biological phenomena. To address these problems, we propose an integrated intelligent sensor for biological fluorescence imaging and ultrafast recognition. This sensor integrates an imaging system based on a photodetector array and a recognition system based on neural networks on a single chip, featuring a highly compact structure, a continuously adjustable optical response, and reconfigurable electrical performance. The unified architecture of the imaging and recognition systems enables ultrafast recognition (19.63 μs) of tumor margins. Additionally, the special organic materials and bulk heterojunction structure endow the photodetector array with strong wavelength dependence, achieving high specific detectivity (3.06 × 1012 Jones) in the narrowband near-infrared range commonly used in biomedical imaging (600-800 nm). After training, the sensor can accurately recognize biological fluorescence edges in real time, even under interference from other colored light noise. Benefiting from its rapidity and high accuracy, we demonstrated a simulated surgical experiment showcasing tumor edge fluorescence imaging, recognition, and cutting. This integrated approach holds the potential to establish a novel paradigm for designing and manufacturing intelligent medical sensors.
Collapse
Affiliation(s)
- Yuqing Jian
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Wei Gao
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Xiaoyu Wu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenyan Jia
- Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Huanfei Wen
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Zhonghao Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Zongmin Ma
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan 030051, China
| |
Collapse
|
3
|
Rojas-Andrade MD, Perinbam K, Nguyen QT, Kim JS, Palomba F, Whiteson K, Digman MA, Siryaporn A, Hochbaum AI. Rapid Antibiotic Susceptibility Determination by Fluorescence Lifetime Tracking of Bacterial Metabolism. ACS Infect Dis 2024; 10:4057-4065. [PMID: 39572010 DOI: 10.1021/acsinfecdis.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
To combat the rise of antibiotic-resistance in bacteria and the resulting effects on healthcare worldwide, new technologies are needed that can perform rapid antibiotic susceptibility testing (AST). Conventional clinical methods for AST rely on growth-based assays, which typically require long incubation times to obtain quantitative results, representing a major bottleneck in the determination of the optimal antibiotic regimen to treat patients. Here, we demonstrate a rapid AST method based on the metabolic activity measured by fluorescence lifetime imaging microscopy (FLIM). Using lab strains and clinical isolates of Escherichia coli with tetracycline-susceptible and resistant phenotypes as models, we demonstrate that changes in metabolic state associated with antibiotic susceptibility can be quantitatively tracked by FLIM. Our results show that the magnitude of metabolic perturbation resulting from antibiotic activity correlates with susceptibility evaluated by conventional metrics. Moreover, susceptible and resistant phenotypes can be differentiated in as short as 10 min after antibiotic exposure. This FLIM-AST (FAST) method can be applied to other antibiotics and provides insights into the nature of metabolic perturbations inside bacterial cells resulting from antibiotic exposure with single cell resolution.
Collapse
Affiliation(s)
- Mauricio D Rojas-Andrade
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Kumar Perinbam
- Department of Physics and Astronomy University of California, Irvine, Irvine, California 92697, United States
| | - Quan Thanh Nguyen
- Department of Physics and Astronomy University of California, Irvine, Irvine, California 92697, United States
| | - Jonathan S Kim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Francesco Palomba
- Department of Biomedical Engineering University of California, Irvine, Irvine, California 92697, United States
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Michelle A Digman
- Department of Biomedical Engineering University of California, Irvine, Irvine, California 92697, United States
| | - Albert Siryaporn
- Department of Physics and Astronomy University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California, 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
4
|
Yu M, Li YJ, Yang YN, Xue CD, Xin GY, Liu B, Qin KR. A microfluidic array enabling generation of identical biochemical stimulating signals to trapped biological cells for single-cell dynamics. Talanta 2024; 267:125172. [PMID: 37699267 DOI: 10.1016/j.talanta.2023.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Microfluidic-based analyses of single-cell dynamics in response to dynamic biochemical signals are emerging as pivotal approaches for investigating the effects of extracellular microenvironmental biochemical factors on cellular structure, function, and behavior. However, current devices often fail to consistently apply identical dynamic biochemical signals to trapped cells. In this study, we introduce a novel radially distributed single-cell trapping microfluidic array, designed to quantitatively and consistently apply identical biochemical stimulating signals to each trapped cell. Numerical simulations were employed to optimize microchannel geometry, enhancing trapping efficiency while minimizing signal distortion. Experimental validation demonstrated the trapping success rate and the single-cell trapping efficiency exceeding 99% and 85%, respectively. The microarray's capability to deliver identical dynamic biochemical stimulating signals, with various waveforms, to each unit was confirmed through fluorescein transport tests. Furthermore, we examined the intracellular calcium dynamics of U-2 OS human osteosarcoma cells in response to dynamic ATP signals, observing both single-peak calcium responses and calcium oscillations, which were modelled by a second-order system with a natural frequency of 1.6 mHz. Overall, our proposed microfluidic array offers a robust and valuable framework for advancing the understanding of single-cell dynamics.
Collapse
Affiliation(s)
- Miao Yu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian, 116024, China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian, 116024, China.
| | - Yu-Nong Yang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian, 116024, China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian, 116024, China
| | - Gui-Yang Xin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian, 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian, 116024, China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd., Dalian, 116024, China.
| |
Collapse
|
5
|
Gottlieb D, Asadipour B, Kostina P, Ung TPL, Stringari C. FLUTE: A Python GUI for interactive phasor analysis of FLIM data. BIOLOGICAL IMAGING 2023; 3:e21. [PMID: 38487690 PMCID: PMC10936343 DOI: 10.1017/s2633903x23000211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/16/2023] [Accepted: 10/25/2023] [Indexed: 03/17/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful technique used to probe the local environment of fluorophores. The fit-free phasor approach to FLIM data is increasingly being used due to its ease of interpretation. To date, no open-source graphical user interface (GUI) for phasor analysis of FLIM data is available in Python, thus limiting the widespread use of phasor analysis in biomedical research. Here, we present Fluorescence Lifetime Ultimate Explorer (FLUTE), a Python GUI that is designed to fill this gap. FLUTE simplifies and automates many aspects of the analysis of FLIM data acquired in the time domain, such as calibrating the FLIM data, performing interactive exploration of the phasor plot, displaying phasor plots and FLIM images with different lifetime contrasts simultaneously, and calculating the distance from known molecular species. After applying desired filters and thresholds, the final edited datasets can be exported for further user-specific analysis. FLUTE has been tested using several FLIM datasets including autofluorescence of zebrafish embryos and in vitro cells. In summary, our user-friendly GUI extends the advantages of phasor plotting by making the data visualization and analysis easy and interactive, allows for analysis of large FLIM datasets, and accelerates FLIM analysis for non-specialized labs.
Collapse
Affiliation(s)
- Dale Gottlieb
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Bahar Asadipour
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Polina Kostina
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Thi Phuong Lien Ung
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Chiara Stringari
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
6
|
Qi X, Ma S, Jiang X, Wu H, Zheng J, Wang S, Han K, Zhang T, Gao J, Li X. Single-cell characterization of deformation and dynamics of mesenchymal stem cells in microfluidic systems: A computational study. Phys Rev E 2023; 108:054402. [PMID: 38115453 DOI: 10.1103/physreve.108.054402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023]
Abstract
Understanding the homing dynamics of individual mesenchymal stem cells (MSCs) in physiologically relevant microenvironments is crucial for improving the efficacy of MSC-based therapies for therapeutic and targeting purposes. This study investigates the passive homing behavior of individual MSCs in micropores that mimic interendothelial clefts through predictive computational simulations informed by previous microfluidic experiments. Initially, we quantified the size-dependent behavior of MSCs in micropores and elucidated the underlying mechanisms. Subsequently, we analyzed the shape deformation and traversal dynamics of each MSC. In addition, we conducted a systematic investigation to understand how the mechanical properties of MSCs impact their traversal process. We considered geometric and mechanical parameters, such as reduced cell volume, cell-to-nucleus diameter ratio, and cytoskeletal prestress states. Furthermore, we quantified the changes in the MSC traversal process and identified the quantitative limits in their response to variations in micropore length. Taken together, the computational results indicate the complex dynamic behavior of individual MSCs in the confined microflow. This finding offers an objective way to evaluate the homing ability of MSCs in an interendothelial-slit-like microenvironment.
Collapse
Affiliation(s)
- Xiaojing Qi
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Shuhao Ma
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xinchi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Juanjuan Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shuo Wang
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Keqin Han
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Lab-on-a-chip systems for cancer biomarker diagnosis. J Pharm Biomed Anal 2023; 226:115266. [PMID: 36706542 DOI: 10.1016/j.jpba.2023.115266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) or micro total analysis system is one of the microfluidic technologies defined as the adaptation, miniaturization, integration, and automation of analytical laboratory procedures into a single instrument or "chip". In this article, we review developments over the past five years in the application of LOC biosensors for the detection of different types of cancer. Microfluidics encompasses chemistry and biotechnology skills and has revolutionized healthcare diagnosis. Superior to traditional cell culture or animal models, microfluidic technology has made it possible to reconstruct functional units of organs on chips to study human diseases such as cancer. LOCs have found numerous biomedical applications over the past five years, including integrated bioassays, cell analysis, metabolomics, drug discovery and delivery systems, tissue and organ physiology and disease modeling, and personalized medicine. This review provides an overview of the latest developments in microfluidic-based cancer research, with pros, cons, and prospects.
Collapse
|
8
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
9
|
Smolen JA, Wooley KL. Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues. PNAS NEXUS 2022; 1:pgac235. [PMID: 36712353 PMCID: PMC9802238 DOI: 10.1093/pnasnexus/pgac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
Convolutional neural networks (CNNs) and other deep-learning models have proven to be transformative tools for the automated analysis of microscopy images, particularly in the domain of cellular and tissue imaging. These computer-vision models have primarily been applied with traditional microscopy imaging modalities (e.g. brightfield and fluorescence), likely due to the availability of large datasets in these regimes. However, more advanced microscopy imaging techniques could, potentially, allow for improved model performance in various computational histopathology tasks. In this work, we demonstrate that CNNs can achieve high accuracy in cell detection and classification without large amounts of data when applied to histology images acquired by fluorescence lifetime imaging microscopy (FLIM). This accuracy is higher than what would be achieved with regular single or dual-channel fluorescence images under the same settings, particularly for CNNs pretrained on publicly available fluorescent cell or general image datasets. Additionally, generated FLIM images could be predicted from just the fluorescence image data by using a dense U-Net CNN model trained on a subset of ground-truth FLIM images. These U-Net CNN generated FLIM images demonstrated high similarity to ground truth and improved accuracy in cell detection and classification over fluorescence alone when used as input to a variety of commonly used CNNs. This improved accuracy was maintained even when the FLIM images were generated by a U-Net CNN trained on only a few example FLIM images.
Collapse
Affiliation(s)
- Justin A Smolen
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
10
|
Rahim MK, Zhao J, Patel HV, Lagouros HA, Kota R, Fernandez I, Gratton E, Haun JB. Phasor Analysis of Fluorescence Lifetime Enables Quantitative Multiplexed Molecular Imaging of Three Probes. Anal Chem 2022; 94:14185-14194. [PMID: 36190014 PMCID: PMC10681155 DOI: 10.1021/acs.analchem.2c02149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excited-state lifetime is an intrinsic property of fluorescent molecules that can be leveraged for multiplexed imaging. An advantage of fluorescence lifetime-based multiplexing is that signals from multiple probes can be gathered simultaneously, whereas traditional spectral fluorescence imaging typically requires multiple images at different excitation and emission wavelengths. Additionally, lifetime and spectra could both be utilized to expand the multiplexing capacity of fluorescence. However, resolving exogenous molecular probes based exclusively on the fluorescence lifetime has been limited by technical challenges in analyzing lifetime data. The phasor approach to lifetime analysis offers a simple, graphical solution that has increasingly been used to assess endogenous cellular autofluorescence to quantify metabolic factors. In this study, we employed the phasor analysis of FLIM to quantitatively resolve three exogenous, antibody-targeted fluorescent probes with similar spectral properties based on lifetime information alone. First, we demonstrated that three biomarkers that were spatially restricted to the cell membrane, cytosol, or nucleus could be accurately distinguished using FLIM and phasor analysis. Next, we successfully resolved and quantified three probes that were all targeted to cell surface biomarkers. Finally, we demonstrated that lifetime-based quantitation accuracy can be improved through intensity matching of various probe-biomarker combinations, which will expand the utility of this technique. Importantly, we reconstructed images for each individual probe, as well as an overlay of all three probes, from a single FLIM image. Our results demonstrate that FLIM and phasor analysis can be leveraged as a powerful tool for simultaneous detection of multiple biomarkers with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Maha K Rahim
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Jinghui Zhao
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Hinesh V Patel
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Hauna A Lagouros
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Rajesh Kota
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Irma Fernandez
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, California 92697, United States
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California 92697, United States
| | - Jered B Haun
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
11
|
Du Z, Li Y, Chen B, Wang L, Hu Y, Wang X, Zhang W, Yang X. Label-free detection and enumeration of rare circulating tumor cells by bright-field image cytometry and multi-frame image correlation analysis. LAB ON A CHIP 2022; 22:3390-3401. [PMID: 35708469 DOI: 10.1039/d2lc00190j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification and enumeration of circulating tumor cells (CTCs) in peripheral blood are proved to correlate with the progress of metastatic cancer and can provide valuable information for diagnosis and monitoring of cancer. Here, we introduce a bright-field image cytometry (BFIC) technique, assisted by a multi-frame image correlation (MFIC) algorithm, as a label-free approach for tumor cell detection in peripheral blood. For this method, images of flowing cells in a wide channel were continuously recorded and cell types were determined simultaneously using a deep neural network of YOLO-V4 with an average precision (AP) of 98.63%, 99.04%, and 98.95% for cancer cell lines HT29, A549, and KYSE30, respectively. The use of the wide microfluidic channel (400 μm width) allowed for a high throughput of 50 000 cells per min without clogging. Then erroneous or missed cell classifications caused by imaging angle differences or accidental misinterpretations in single frames were corrected by the multi-frame correlation analysis. This further improved the AP to 99.40%, 99.52%, and 99.47% for HT29, A549, and KYSE30, respectively. Meanwhile, cell counting was also accomplished in this dynamic process. Moreover, our imaging cytometry method can readily detect as few as 10 tumor cells from 100 000 white blood cells and was unaffected by the EMT process. Furthermore, CTCs from 8 advanced-stage cancer clinical samples were also successfully detected, while none for 6 healthy control subjects. Although this method is implemented for CTCs, it can also be used for the detection of other rare cells.
Collapse
Affiliation(s)
- Ziqiang Du
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lulu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Hu
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xu Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenchang Zhang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
12
|
|
13
|
Electrodeformation of White Blood Cells Enriched with Gold Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The elasticity of white blood cells (WBCs) provides valuable insight into the condition of the cells themselves, the presence of some diseases, as well as immune system activity. In this work, we describe a novel process of refined control of WBCs’ elasticity through a combined use of gold nanoparticles (AuNPs) and the microelectrode array device. The capture and controlled deformation of gold nanoparticles enriched white blood cells in vitro are demonstrated and quantified. Gold nanoparticles enhance the effect of electrically induced deformation and make the DEP-related processes more controllable.
Collapse
|
14
|
Sun A, Li T, Jin T, Li Y, Li K, Song C, Xi L. Acoustic Standing Wave Aided Multiparametric Photoacoustic Imaging Flow Cytometry. Anal Chem 2021; 93:14820-14827. [PMID: 34714062 DOI: 10.1021/acs.analchem.1c03713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic imaging reveals great potential for the study of individual cells due to the rich imaging contrast for both label-free and labeled cells. However, previously reported photoacoustic imaging flow cytometry configuration suffers from inadequate imaging quality and challenge to distinguish multiple cells. In order to solve such issues, we propose a novel acoustic standing wave aided multiparametric photoacoustic imaging flow cytometry (MPAFC) system. The acoustic standing wave is introduced to improve the imaging quality and speed. Multispectral illumination along with cell geometry, photoacoustic amplitude, and acoustic frequency spectrum enables the proposed system to precisely identify multiple types of cells with one scanning. On the basis of the identification, elimination of melanoma cells, and targeted labeled glioma cells have been performed with an elimination efficiency of >95%. Additionally, the MPAFC system is able to image and capture melanoma cells at a lowest concentration of 100 cells mL-1 in pure blood. Current results suggest that the proposed MPAFC may provide a precise and efficient tool for cell detection, manipulation, and elimination in both fundamental and clinical studies.
Collapse
Affiliation(s)
- Aihui Sun
- Harbin Institute of Technology, Harbin 150001, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yaxi Li
- Harbin Institute of Technology, Harbin 150001, P. R. China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
15
|
Dannhauser D, Rossi D, Palatucci AT, Rubino V, Carriero F, Ruggiero G, Ripaldi M, Toriello M, Maisto G, Netti PA, Terrazzano G, Causa F. Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow. LAB ON A CHIP 2021; 21:4144-4154. [PMID: 34515262 DOI: 10.1039/d1lc00651g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural killer (NK) cells are indicated as favorite candidates for innovative therapeutic treatment and are divided into two subclasses: immature regulatory NK CD56bright and mature cytotoxic NK CD56dim. Therefore, the ability to discriminate CD56dim from CD56bright could be very useful because of their higher cytotoxicity. Nowadays, NK cell classification is routinely performed by cytometric analysis based on surface receptor expression. Here, we present an in-flow, label-free and non-invasive biophysical analysis of NK cells through a combination of light scattering and machine learning (ML) for NK cell subclass classification. In this respect, to identify relevant biophysical cell features, we stimulated NK cells with interleukine-15 inducing a subclass transition from CD56bright to CD56dim. We trained our ML algorithm with sorted NK cell subclasses (≥86% accuracy). Next, we applied our NK cell classification algorithm to cells stimulated over time, to investigate the transition of CD56bright to CD56dim and their biophysical feature changes. Finally, we tested our approach on several proband samples, highlighting the potential of our measurement approach. We show a label-free way for the robust identification of NK cell subclasses based on biophysical features, which can be applied in both cell biology and cell therapy.
Collapse
Affiliation(s)
- David Dannhauser
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy.
| | - Domenico Rossi
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Anna Teresa Palatucci
- Dipartimento di Scienze (DiS), Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Valentina Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Flavia Carriero
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Mimmo Ripaldi
- Dipartimento Oncologia AORN Santobono Pausilipon Hospital, Via Posillipo, 226, 80123, Naples, Italy
| | - Mario Toriello
- Dipartimento Oncologia AORN Santobono Pausilipon Hospital, Via Posillipo, 226, 80123, Naples, Italy
| | - Giovanna Maisto
- Dipartimento Oncologia AORN Santobono Pausilipon Hospital, Via Posillipo, 226, 80123, Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy.
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Giuseppe Terrazzano
- Dipartimento di Scienze (DiS), Università della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy.
| |
Collapse
|
16
|
Kim S, Song H, Ahn H, Kim T, Jung J, Cho SK, Shin DM, Choi JR, Hwang YH, Kim K. A Review of Advanced Impedance Biosensors with Microfluidic Chips for Single-Cell Analysis. BIOSENSORS 2021; 11:412. [PMID: 34821628 PMCID: PMC8615569 DOI: 10.3390/bios11110412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 05/25/2023]
Abstract
Electrical impedance biosensors combined with microfluidic devices can be used to analyze fundamental biological processes for high-throughput analysis at the single-cell scale. These specialized analytical tools can determine the effectiveness and toxicity of drugs with high sensitivity and demonstrate biological functions on a single-cell scale. Because the various parameters of the cells can be measured depending on methods of single-cell trapping, technological development ultimately determine the efficiency and performance of the sensors. Identifying the latest trends in single-cell trapping technologies afford opportunities such as new structural design and combination with other technologies. This will lead to more advanced applications towards improving measurement sensitivity to the desired target. In this review, we examined the basic principles of impedance sensors and their applications in various biological fields. In the next step, we introduced the latest trend of microfluidic chip technology for trapping single cells and summarized the important findings on the characteristics of single cells in impedance biosensor systems that successfully trapped single cells. This is expected to be used as a leading technology in cell biology, pathology, and pharmacological fields, promoting the further understanding of complex functions and mechanisms within individual cells with numerous data sampling and accurate analysis capabilities.
Collapse
Affiliation(s)
- Soojung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Hyerin Song
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Heesang Ahn
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Taeyeon Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Jihyun Jung
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
| | - Soo Kyung Cho
- Division of Nano Convergence Technology, Pusan National University (PNU), Miryang 50463, Korea;
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China;
| | - Jong-ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Yoon-Hwae Hwang
- Department of Nano Energy Engineering, Pusan National University (PNU), Busan 46241, Korea
| | - Kyujung Kim
- Departments of Congo-Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.K.); (H.S.); (H.A.); (T.K.); (J.J.)
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
17
|
Shrirao AB, Schloss RS, Fritz Z, Shrirao MV, Rosen R, Yarmush ML. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnol Bioeng 2021; 118:4550-4576. [PMID: 34487351 DOI: 10.1002/bit.27933] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/05/2022]
Abstract
Autofluorescence of blood has been explored as a label free approach for detection of cell types, as well as for diagnosis and detection of infection, cancer, and other diseases. Although blood autofluorescence is used to indicate the presence of several physiological abnormalities with high sensitivity, it often lacks disease specificity due to use of a limited number of fluorophores in the detection of several abnormal conditions. In addition, the measurement of autofluorescence is sensitive to the type of sample, sample preparation, and spectroscopy method used for the measurement. Therefore, while current blood autofluorescence detection approaches may not be suitable for primary clinical diagnosis, it certainly has tremendous potential in developing methods for large scale screening that can identify high risk groups for further diagnosis using highly specific diagnostic tests. This review discusses the source of blood autofluorescence, the role of spectroscopy methods, and various applications that have used autofluorescence of blood, to explore the potential of blood autofluorescence in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Mayur V Shrirao
- Department of pathology, Government Medical College, Nagpur, India
| | - Robert Rosen
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
18
|
Ouyang Y, Liu Y, Wang ZM, Liu Z, Wu M. FLIM as a Promising Tool for Cancer Diagnosis and Treatment Monitoring. NANO-MICRO LETTERS 2021; 13:133. [PMID: 34138374 PMCID: PMC8175610 DOI: 10.1007/s40820-021-00653-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has been rapidly developed over the past 30 years and widely applied in biomedical engineering. Recent progress in fluorophore-dyed probe design has widened the application prospects of fluorescence. Because fluorescence lifetime is sensitive to microenvironments and molecule alterations, FLIM is promising for the detection of pathological conditions. Current cancer-related FLIM applications can be divided into three main categories: (i) FLIM with autofluorescence molecules in or out of a cell, especially with reduced form of nicotinamide adenine dinucleotide, and flavin adenine dinucleotide for cellular metabolism research; (ii) FLIM with Förster resonance energy transfer for monitoring protein interactions; and (iii) FLIM with fluorophore-dyed probes for specific aberration detection. Advancements in nanomaterial production and efficient calculation systems, as well as novel cancer biomarker discoveries, have promoted FLIM optimization, offering more opportunities for medical research and applications to cancer diagnosis and treatment monitoring. This review summarizes cutting-edge researches from 2015 to 2020 on cancer-related FLIM applications and the potential of FLIM for future cancer diagnosis methods and anti-cancer therapy development. We also highlight current challenges and provide perspectives for further investigation.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Nanshan District, Southern District, High-tech Industrial Park, Yuehai Street, Shenzhen, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Wang Z, Gurlo T, Matveyenko AV, Elashoff D, Wang P, Rosenberger M, Junge JA, Stevens RC, White KL, Fraser SE, Butler PC. Live-cell imaging of glucose-induced metabolic coupling of β and α cell metabolism in health and type 2 diabetes. Commun Biol 2021; 4:594. [PMID: 34012065 PMCID: PMC8134470 DOI: 10.1038/s42003-021-02113-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
AbstractType 2 diabetes is characterized by β and α cell dysfunction. We used phasor-FLIM (Fluorescence Lifetime Imaging Microscopy) to monitor oxidative phosphorylation and glycolysis in living islet cells before and after glucose stimulation. In healthy cells, glucose enhanced oxidative phosphorylation in β cells and suppressed oxidative phosphorylation in α cells. In Type 2 diabetes, glucose increased glycolysis in β cells, and only partially suppressed oxidative phosphorylation in α cells. FLIM uncovers key perturbations in glucose induced metabolism in living islet cells and provides a sensitive tool for drug discovery in diabetes.
Collapse
|
20
|
Zhang R, Xu Z, Hao J, Yu J, Liu Z, Liu S, Chen W, Zhou J, Li H, Lin Z, Zheng W. Label-free identification of human coronary atherosclerotic plaque based on a three-dimensional quantitative assessment of multiphoton microscopy images. BIOMEDICAL OPTICS EXPRESS 2021; 12:2979-2995. [PMID: 34168910 PMCID: PMC8194630 DOI: 10.1364/boe.422525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
The rupture of coronary atherosclerotic plaque (CAP) and the resulting intracoronary thrombosis account for most acute coronary syndromes. Thus, the early identification and risk assessment of CAP is crucial for timely medical intervention. In this study, we propose a quantitative and label-free method for human CAP identification using multiphoton microscopy (MPM) and three-dimensional (3D) image analysis techniques. By detecting the intrinsic MPM signals, the microstructures of collagen and elastin fibers within normal and CAP-lesioned human coronary artery walls were imaged. Using a 3D gray level co-occurrence matrix method and 3D weighted vector summation algorithm, quantitative indicators that characterize the spatial texture and orientation features of the fibers were extracted. We demonstrate that these indicators show superior accuracy and repeatability over 2D texture features in CAP discrimination. Furthermore, by combining the 3D microstructural indicators, a support vector machine model that classifies CAP from the normal arterial wall with an accuracy of >97% was established. In conjunction with advances in multiphoton endoscopy, the proposed method shows great potential in providing a quantitative, label-free, and real-time tool for the early identification and risk assessment of CAP in the future.
Collapse
Affiliation(s)
- Rongli Zhang
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhongbiao Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Junhai Hao
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Jia Yu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyi Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shun Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Wanwen Chen
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Jiahui Zhou
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Hui Li
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhanyi Lin
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
21
|
Zhu Z, Wang Y, Peng R, Chen P, Geng Y, He B, Ouyang S, Zheng K, Fan Y, Pan D, Jin N, Rudolf F, Hierlemann A. A microfluidic single-cell array for in situ laminar-flow-based comparative culturing of budding yeast cells. Talanta 2021; 231:122401. [PMID: 33965050 DOI: 10.1016/j.talanta.2021.122401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/09/2023]
Abstract
To facilitate in situ comparative culturing of budding yeast cells in a precisely controlled microenvironment, we developed a microfluidic single-cell array (MiSCA) with 96 traps (16 rows × 6 columns) for single-cell immobilization. Through optimization of the distances between neighboring traps and the applied flow rates by using a hydraulic equivalent circuit of the fluidic network, yeast cells were delivered to each column of the array by laminar focused flows and reliably captured at the traps by hydrodynamic forces with about 90% efficiency of cell immobilization. Immobilized cells in different columns within the same device can then be cultured in parallel while being exposed to different media and compounds delivered by laminar flows. For biological validation of the comparative cell-culturing device, we used budding yeast that can express yellow fluorescent protein upon the addition of β-estradiol in cell-culturing medium. Experimental results show successful induction of fluorescence in cells immobilized in desired columns that have been dosed with β-estradiol. The MiSCA system allows for performing sets of experiments and control experiments in parallel in the same device, or for executing comparative experiments under well-defined laminar-perfusion conditions with different media, as well as in situ monitoring of dynamic cellular responses upon different analytical compounds or reagents for single-cell analysis.
Collapse
Affiliation(s)
- Zhen Zhu
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China; ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland.
| | - Yingying Wang
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Ruobo Peng
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Pan Chen
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Yangye Geng
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Bailiang He
- Southeast University, Key Laboratory of MEMS of Ministry of Education, Sipailou 2, Nanjing, 210096, China
| | - Shuiping Ouyang
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Ke Zheng
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Yimin Fan
- Nanjing Forestry University, College of Chemical Engineering, Longpan Road 159, Nanjing, 210037, China
| | - Dejing Pan
- Soochow University, CAM-SU Genomic Resource Center, Ren-ai Road 199, Suzhou, 215213, China
| | - Nan Jin
- Southeast University, ZhongDa Hospital, Dingjiaqiao 87, Nanjing, 210009, China
| | - Fabian Rudolf
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Andreas Hierlemann
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, Basel, 4058, Switzerland
| |
Collapse
|
22
|
Bitton A, Sambrano J, Valentino S, Houston JP. A Review of New High-Throughput Methods Designed for Fluorescence Lifetime Sensing From Cells and Tissues. FRONTIERS IN PHYSICS 2021; 9:648553. [PMID: 34007839 PMCID: PMC8127321 DOI: 10.3389/fphy.2021.648553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.
Collapse
Affiliation(s)
- Aric Bitton
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jesus Sambrano
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Valentino
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
23
|
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Tho D. K. Nguyen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Stefania Rabasco
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Pieter E. Oomen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
- ParaMedir B.V., 1e Energieweg 13, 9301 LK Roden, The Netherlands
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 41296 Gothenburg, Sweden
| |
Collapse
|
24
|
Zickus V, Wu ML, Morimoto K, Kapitany V, Fatima A, Turpin A, Insall R, Whitelaw J, Machesky L, Bruschini C, Faccio D, Charbon E. Fluorescence lifetime imaging with a megapixel SPAD camera and neural network lifetime estimation. Sci Rep 2020; 10:20986. [PMID: 33268900 PMCID: PMC7710711 DOI: 10.1038/s41598-020-77737-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/06/2020] [Indexed: 01/07/2023] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a relatively large number of photons, hence slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based on a 0.5 MP resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with acquisition rates up to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial neural network with 1000-fold improvement in processing times compared to standard least squares fitting techniques. We utilised our system to image HT1080-human fibrosarcoma cell line as well as Convallaria. The results show promise for real-time FLIM and a viable route towards multi-megapixel fluorescence lifetime images, with a proof-of-principle mosaic image shown with 3.6 MP.
Collapse
Affiliation(s)
- Vytautas Zickus
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ming-Lo Wu
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland
| | - Kazuhiro Morimoto
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland
| | - Valentin Kapitany
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Areeba Fatima
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alex Turpin
- School of Computing Science, University of Glasgow, Glasgow, G12 8LT, UK
| | - Robert Insall
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.,Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Jamie Whitelaw
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.,Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Laura Machesky
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.,Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Claudio Bruschini
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Edoardo Charbon
- Advanced Quantum Architecture Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2002, Neuchâtel, Switzerland.
| |
Collapse
|
25
|
Zhou J, Tu C, Liang Y, Huang B, Fang Y, Liang X, Ye X. The label-free separation and culture of tumor cells in a microfluidic biochip. Analyst 2020; 145:1706-1715. [PMID: 31895371 DOI: 10.1039/c9an02092f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) from liquid biopsy have shown a strong correlation to the clinical outcome of cancer patients. The enumeration and cytological analysis of CTCs have attracted increasing efforts for cancer disease management amid immunotherapy and personalized medicine. However, both enumeration and cytological analysis are challenging due to the rarity of CTCs and the lack of integrated solutions for the minimal risk of cell loss in the course of CTC procurement. We report a simple microfluidic chip permitting a one-stop solution for streamlining the on-chip cell separation, capture, immunofluorescence assay and/or in situ culture of isolated cells devoid of risky manual steps. Our results showed effective trapping of single cells, doublets and cell lumps isolated from blood in the same device. On-chip immunostaining revealed normal cell morphology and the characterization of cell expansion uncovered an altered cell growth curve with a reduced lag phase as compared to the conventional culture despite closely matching cell growth rates. The cells were viable and functional for as long as 11 days inside our chip and cell migration was also readily observed, with lumps showing greater aggressiveness than single cells. With these results, we expect promising applications of our one-stop solution for liquid biopsy via CTCs.
Collapse
Affiliation(s)
- Jian Zhou
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China and Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bobo Huang
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou 310027, China. and Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China and State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Fu Y, Zhang Y, Khoo BL. Liquid biopsy technologies for hematological diseases. Med Res Rev 2020; 41:246-274. [PMID: 32929726 DOI: 10.1002/med.21731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in studying circulating biomarkers from patients' blood have made the diagnosis of nonhematologic cancers less invasive. Technological advances in the detection and analysis of biomarkers provide new opportunities for the characterization of other disease types. When compared with traditional biopsies, liquid biopsy markers, such as exfoliated bladder cancer cells, circulating cell-free DNA (cfDNA), and extracellular vesicles (EV), are considered more convenient than conventional biopsies. Liquid biopsy markers undoubtedly have the potential to influence disease management and treatment dynamics. Our main focuses of this review will be the cell-based, gene-based, and protein-based key liquid biopsy markers (including EV and cfDNA) in disease detection, and discuss the research progress of these biomarkers used in conjunction with liquid biopsy. First, we highlighted the key technologies that have been broadly adopted used in hematological diseases. Second, we introduced the latest technological developments for the specific detection of cardiovascular disease, leukemia, and coronavirus disease. Finally, we concluded with perspectives on these research areas, focusing on the role of microfluidic technology and artificial intelligence in point-of-care medical applications. We believe that the noninvasive capabilities of these technologies have great potential in the development of diagnostics and can influence treatment options, thereby advancing precision disease management.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
27
|
Zhang X, Wei X, Wei Y, Chen M, Wang J. The up-to-date strategies for the isolation and manipulation of single cells. Talanta 2020; 218:121147. [PMID: 32797903 DOI: 10.1016/j.talanta.2020.121147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Due to the large cellular heterogeneity, the strategies for the isolation and manipulation of single cells have been pronounced indispensable in the fields of disease diagnostics, drug delivery, and cancer biology at the single-cell resolution. Herein, an overview of the up-to-date techniques for precise manipulation/separation and analysis of single-cell is accomplished, these include the various approaches for the isolation and detection of individual cells in flow cytometry, microfluidic systems, micromodule systems, and others. In addition, the advanced application of these protocols is discussed. In particular, a few designs are highlighted for visualization, non-invasion, and intelligentization in single cell analysis, i.e., imaging flow cytometry, label-free microfluidic platform, single-cell capillary probe, and other related techniques. At the present, the main barriers in the various schemes for single cell manipulation which limited their practical applications are their cumbersome construction and single-functionality. The future opportunities and outstanding challenges in the isolation/manipulation of single cells are depicted.
Collapse
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yujia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China; Analytical and Testing Center, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
28
|
“Development and application of analytical detection techniques for droplet-based microfluidics”-A review. Anal Chim Acta 2020; 1113:66-84. [DOI: 10.1016/j.aca.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023]
|
29
|
Luan Q, Macaraniag C, Zhou J, Papautsky I. Microfluidic systems for hydrodynamic trapping of cells and clusters. BIOMICROFLUIDICS 2020; 14:031502. [PMID: 34992704 PMCID: PMC8719525 DOI: 10.1063/5.0002866] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 05/07/2023]
Abstract
Microfluidic devices have been widely applied to trapping and isolation of cells and clusters for controllable intercellular environments and high-throughput analysis, triggering numerous advances in disease diagnosis and single-cell analysis. Passive hydrodynamic cell trapping is one of the simple and effective methods that has been gaining attention in recent years. Our aim here is to review the existing passive microfluidic trapping approaches, including microposts, microfiltration, microwells, and trapping chambers, with emphasis on design principles and performance. We summarize the remarkable advances that hydrodynamic trapping methods offer, as well as the existing challenges and prospects for development. Finally, we hope that an improved understanding of hydrodynamic trapping approaches can lead to sophisticated and useful platforms to advance medical and biological research.
Collapse
Affiliation(s)
- Qiyue Luan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Celine Macaraniag
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | - Ian Papautsky
- Author to whom correspondence should be addressed:. Tel.: +1 312 413 3800
| |
Collapse
|
30
|
Wang Y, Feng H, Zhang H, Chen Y, Huang W, Zhang J, Jiang X, Wang M, Jiang H, Wang X. Nanoelectrochemical biosensors for monitoring ROS in cancer cells. Analyst 2020; 145:1294-1301. [PMID: 31909779 DOI: 10.1039/c9an02390a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Compared with normal cells, cancer or tumor cells have a specific microenvironment and apparently possess a relatively large amount of ROS/RNS, and their overexpression is one of the important reasons for tumor development and deterioration. Therefore, monitoring the changes of intracellular ROS/RNS can improve the awareness of the clinical manifestations of the disease, which will be beneficial for the early diagnosis of cancer and improving treatment efficiency. Herein, in this study we have exploited and constructed a novel strategy based on the SiC@C nanowire electrode for intracellular electrochemical analysis to monitor ROS levels in cancer or tumor cells. Firstly, the SiC@C nanowire electrode was utilized to detect the intracellular ROS radical changes involved in the relevant biological processes of cancer cells where fluorescent zinc nanoclusters were biosynthesized in situ in target cancer cells by using the intracellular microenvironment and specificity of these cancer cells. By combining a confocal fluorescence microscopy study simultaneously, our observations illustrate that accompanied by the apparent change of the intracellular ROS, these in situ biosynthesized fluorescent nanoclusters gradually accumulate inside the cytosolic area with the increase of the reaction time. Moreover, it is evident that the size of the SiC@C nanoelectrodes can match the single cell dimensions, and its unique high spatial resolution provides the possibility of relevant intracellular molecular detection. These nanoelectrochemical biosensors can be adopted to quantitatively determine the change of the ROS content in target single cells in the relevant biological microenvironment or during the in situ biosynthesis process, and are also beneficial for understanding the related mechanism of some specific biological processes including the in situ synthesis at the single cell level.
Collapse
Affiliation(s)
- Yihan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rossi D, Dannhauser D, Telesco M, Netti PA, Causa F. CD4+ versus CD8+ T-lymphocyte identification in an integrated microfluidic chip using light scattering and machine learning. LAB ON A CHIP 2019; 19:3888-3898. [PMID: 31641710 DOI: 10.1039/c9lc00695h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T lymphocytes are a group of cells representing the main effectors of human adaptive immunity. Characterization of the most representative T-lymphocyte subclasses, CD4+ and CD8+, is challenging, but has a significant impact on clinical decisions. Up to now, T lymphocytes have been identified by quite complex cytometric assays, which are based on antibody labeling. However, a label-free approach based on pure biophysical evaluation at a single-cell level could enable the ability to distinguish between these subclasses. Here, we report a light-scattering approach, supported by accurate data mining, to evaluate cell biophysical properties on an integrated microfluidic chip. In order to perform single-cell optical analysis in viscoelastic fluids, such a chip is composed of mixing, alignment, readout and collection sections. In particular, we measured the cell dimensions, the refractive index of the cell nucleus, the refractive index of the cytosol, and the nucleus-to-cytosol ratio. Combining measurement of biophysical properties and machine learning allows us to both distinguish and count human CD4+ and CD8+ cells with an accuracy of 79%. An enhanced identification accuracy of 88% can be achieved by stimulating the cells with a selective anti-apoptotic protein, which results in increased biophysical differences between CD4+ and CD8+ cells. This approach has been successfully validated by analysis of samples that recapitulate physiological and pathological scenarios (CD4+/CD8+ ratios). The results are encouraging for the possible application of our approach in hematological clinical routines, as well as in diagnosis and follow-up of specific pathologies, such as human immunodeficiency virus (HIV) progression.
Collapse
Affiliation(s)
- Domenico Rossi
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - David Dannhauser
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Mariarosaria Telesco
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy and Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy.
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy.
| |
Collapse
|
32
|
Yakimov BP, Gogoleva MA, Semenov AN, Rodionov SA, Novoselova MV, Gayer AV, Kovalev AV, Bernakevich AI, Fadeev VV, Armaganov AG, Drachev VP, Gorin DA, Darvin ME, Shcheslavskiy VI, Budylin GS, Priezzhev AV, Shirshin EA. Label-free characterization of white blood cells using fluorescence lifetime imaging and flow-cytometry: molecular heterogeneity and erythrophagocytosis [Invited]. BIOMEDICAL OPTICS EXPRESS 2019; 10:4220-4236. [PMID: 31453006 PMCID: PMC6701549 DOI: 10.1364/boe.10.004220] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/13/2019] [Accepted: 07/13/2019] [Indexed: 05/05/2023]
Abstract
Blood cell analysis is one of the standard clinical tests. Despite the widespread use of exogenous markers for blood cell quantification, label-free optical methods are still of high demand due to their possibility for in vivo application and signal specific to the biochemical state of the cell provided by native fluorophores. Here we report the results of blood cell characterization using label-free fluorescence imaging techniques and flow-cytometry. Autofluorescence parameters of different cell types - white blood cells, red blood cells, erythrophagocytic cells - are assessed and analyzed in terms of molecular heterogeneity and possibilities of differentiation between different cell types in vitro and in vivo.
Collapse
Affiliation(s)
- Boris P. Yakimov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Maria A. Gogoleva
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Alexey N. Semenov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Sergey A. Rodionov
- N.N. Priorov Central Institute for Traumatology and Orthopedics, Priorova str. 10, 127299, Moscow, Russia
| | - Marina V. Novoselova
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st, Building 3, Moscow, 121205, Russia
| | - Alexey V. Gayer
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Alexey V. Kovalev
- N.N. Priorov Central Institute for Traumatology and Orthopedics, Priorova str. 10, 127299, Moscow, Russia
| | - Alexey I. Bernakevich
- N.N. Priorov Central Institute for Traumatology and Orthopedics, Priorova str. 10, 127299, Moscow, Russia
| | - Victor V. Fadeev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Artashes G. Armaganov
- Lomonosov Moscow State University Clinic, Lomonosovsky Prospect 27/10, Moscow, 119991, Russia
| | - Vladimir P. Drachev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st, Building 3, Moscow, 121205, Russia
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Dmitry A. Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st, Building 3, Moscow, 121205, Russia
| | - Maxim E. Darvin
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Gleb S. Budylin
- National Research University Higher School of Economics, Faculty of Physics, 101000 Moscow, Russia
| | - Alexander V. Priezzhev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Evgeny A. Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, 108840, Troitsk, Moscow, Russia
| |
Collapse
|
33
|
Wei L, Tian Y, Yan W, Cheung K, Ho D. Liquid-core waveguide TCSPC sensor for high-accuracy fluorescence lifetime analysis. Anal Bioanal Chem 2019; 411:3641-3652. [PMID: 31037372 DOI: 10.1007/s00216-019-01847-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
Liquid-core waveguide (LCW) has many advantages such as the elimination of optical artifacts typically exhibited in systems employing lenses and filters. However, due to the effect of temporal dispersion, LCWs are typically employed in steady-state fluorescence detection microsystems rather than in fluorescence lifetime measurement (FLM) systems. In this paper, we present a compact liquid-core waveguide time-correlated single-photon counting (LCW-TCSPC) sensor for FLM. The propagation of excitation within the LCW is analyzed both analytically and in simulations, with results in agreement with experimental characterization. Results reveal an optimal region within the LCW for highly accurate FLM. The proposed prototype achieves excellent excitation rejection and low temporal dispersion as a result of optimization of the propagation length of the excitation within the LCW. The prototype achieves a detection limit of 5 nM for Coumarin 6 in dimethyl sulfoxide with < 3% lifetime error. The techniques proposed for analyzing the LCW for TCSPC based FLM and prototype demonstration pave the way for developing high-performance fluorescence lifetime measurement for microfluidics and point-of-care applications. Graphical abstract A compact liquid-core waveguide time-correlated single-photon counting (LCW-TCSPC) sensor for fluorescence lifetime measurement (FLM) is presented. Results reveal an optimal propagation length region within the LCW for highly accurate FLM. The prototype achieves a detection limit of 5 nM for Coumarin 6 in dimethyl sulfoxide with < 3% lifetime error.
Collapse
Affiliation(s)
- Liping Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yi Tian
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Wenrong Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Kawai Cheung
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
34
|
Chen YH, Pulikkathodi AK, Ma YD, Wang YL, Lee GB. A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells. LAB ON A CHIP 2019; 19:618-625. [PMID: 30644487 DOI: 10.1039/c8lc01072b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Circulating tumor cells (CTCs) are one of the promising cancer biomarkers whose concentrations are measured not only in the initial diagnostic stages, but also as treatment progresses. However, the existing methods for CTC detection are relatively time-consuming and labor-intensive. In this study, a new microfluidic platform integrated with field-effect transistors (FETs) and chambers for the trapping of CTCs was developed. This novel design could not only trap CTCs from whole blood samples, but also enumerate them via FET sensing of CTC-specific aptamer-CTC complexes. The FET output signal was experimentally found to increase with the increasing number of captured CTCs. More importantly, the enumeration of spiked CTCs in blood samples could be achieved in accordance with the signals measured on the FET devices. We therefore believe that this automated system could be a useful tool for enumeration of CTCs.
Collapse
Affiliation(s)
- Yi-Hong Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013.
| | | | | | | | | |
Collapse
|
35
|
Ma N, Kamalakshakurup G, Aghaamoo M, Lee AP, Digman MA. Label-Free Metabolic Classification of Single Cells in Droplets Using the Phasor Approach to Fluorescence Lifetime Imaging Microscopy. Cytometry A 2018; 95:93-100. [PMID: 30536717 DOI: 10.1002/cyto.a.23673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
Characterization of single cell metabolism is imperative for understanding subcellular functional and biochemical changes associated with healthy tissue development and the progression of numerous diseases. However, single-cell analysis often requires the use of fluorescent tags and cell lysis followed by genomic profiling to identify the cellular heterogeneity. Identifying individual cells in a noninvasive and label-free manner is crucial for the detection of energy metabolism which will discriminate cell types and most importantly critical for maintaining cell viability for further analysis. Here, we have developed a robust assay using the droplet microfluidic technology together with the phasor approach to fluorescence lifetime imaging microscopy to study cell heterogeneity within and among the leukemia cell lines (K-562 and Jurkat). We have extended these techniques to characterize metabolic differences between proliferating and quiescent cells-a critical step toward label-free single cancer cell dormancy research. The result suggests a droplet-based noninvasive and label-free method to distinguish individual cells based on their metabolic states, which could be used as an upstream phenotypic platform to correlate with genomic statistics. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ning Ma
- Biomedical Engineering Department, University of California, Irvine, California.,Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, California.,The Henry Samueli School of Engineering, Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM), University of California, Irvine, California
| | - Gopakumar Kamalakshakurup
- Biomedical Engineering Department, University of California, Irvine, California.,The Henry Samueli School of Engineering, Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM), University of California, Irvine, California
| | - Mohammad Aghaamoo
- Biomedical Engineering Department, University of California, Irvine, California
| | - Abraham P Lee
- Biomedical Engineering Department, University of California, Irvine, California.,The Henry Samueli School of Engineering, Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM), University of California, Irvine, California.,Mechanical & Aerospace Engineering Department, University of California, Irvine, California
| | - Michelle A Digman
- Biomedical Engineering Department, University of California, Irvine, California.,Department of Biomedical Engineering, Laboratory for Fluorescence Dynamics, University of California, Irvine, California.,The Henry Samueli School of Engineering, Center for Advanced Design & Manufacturing of Integrated Microfluidics (CADMIM), University of California, Irvine, California
| |
Collapse
|
36
|
Affiliation(s)
- Gongchen Sun
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
37
|
Li X, Lee AP. High-throughput microfluidic single-cell trapping arrays for biomolecular and imaging analysis. Methods Cell Biol 2018; 148:35-50. [PMID: 30473073 PMCID: PMC6644722 DOI: 10.1016/bs.mcb.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Single-cell analysis is of critical importance in revealing population heterogeneity, identifying minority sub-populations of interest, as well as discovering unique characteristics of individual cells. Microfluidic platforms work at the scale comparable to cell diameter and is suitable for single-cell manipulation. Here we present a microfluidic trapping array which is able to rapidly and deterministically trap single-cells in highly-packed microwells. This chapter first describes the design and fabrication protocols of the trapping array, and then presents its two representative applications: single-cell mRNA probing when integrated with a dielectrophoretic nanotweezer (DENT), and live-cell real-time imaging when combined with fluorescence lifetime imaging microscopy (FLIM). As the single-cell trapping efficiency is determined by the channel design instead of the flow rate, this trapping array can be coupled with different microfluidic sample processing units with different flow rates for various single-cell analyses.
Collapse
Affiliation(s)
- Xuan Li
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Abraham P Lee
- Department of Biomedical Engineering, University of California, Irvine, CA, United States; Department of Mechanical & Aerospace Engineering, University of California, Irvine, CA, United States.
| |
Collapse
|
38
|
Alturkistany F, Nichani K, Houston KD, Houston JP. Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry. Cytometry A 2018; 95:70-79. [PMID: 30369063 PMCID: PMC6587805 DOI: 10.1002/cyto.a.23606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
Autofluorescence from the intracellular metabolite, NAD(P)H, is a biomarker that is widely used and known to reliably screen and report metabolic activity as well as metabolic fluctuations within cells. As a ubiquitous endogenous fluorophore, NAD(P)H has a unique rate of fluorescence decay that is altered when bound to coenzymes. In this work we measure the shift in the fluorescence decay, or average fluorescence lifetime (1–3 ns), of NAD(P)H and correlate this shift to changes in metabolism that cells undergo during apoptosis. Our measurements are made with a flow cytometer designed specifically for fluorescence lifetime acquisition within the ultraviolet to violet spectrum. Our methods involved culture, treatment, and preparation of cells for cytometry and microscopy measurements. The evaluation we performed included observations and quantification of the changes in endogenous emission owing to the induction of apoptosis as well as changes in the decay kinetics of the emission measured by flow cytometry. Shifts in NAD(P)H fluorescence lifetime were observed as early as 15 min post‐treatment with an apoptosis inducing agent. Results also include a phasor analysis to evaluate free to bound ratios of NAD(P)H at different time points. We defined the free to bound ratios as the ratio of ‘short‐to‐long’ (S/L) fluorescence lifetime, where S/L was found to consistently decrease with an increase in apoptosis. With a quantitative framework such as phasor analysis, the short and long lifetime components of NAD(P)H can be used to map the cycling of free and bound NAD(P)H during the early‐to‐late stages of apoptosis. The combination of lifetime screening and phasor analyses provides the first step in high throughput metabolic profiling of single cells and can be leveraged for screening and sorting for a range of applications in biomedicine. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Kapil Nichani
- Chemical & Materials Engineering, New Mexico State University, Las Cruces, New Mexico
| | - Kevin D Houston
- Chemistry & Biochemistry, New Mexico State University, Las Cruces, New Mexico.,Molecular Biology, New Mexico State University, Las Cruces, New Mexico
| | - Jessica P Houston
- Chemical & Materials Engineering, New Mexico State University, Las Cruces, New Mexico.,Molecular Biology, New Mexico State University, Las Cruces, New Mexico
| |
Collapse
|
39
|
Lee DH, Li X, Jiang A, Lee AP. An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood. BIOMICROFLUIDICS 2018; 12:054104. [PMID: 30271519 PMCID: PMC6145860 DOI: 10.1063/1.5049149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/03/2018] [Indexed: 05/08/2023]
Abstract
Reliable separation and isolation of target single cells from bodily fluids with high purity is of great significance for an accurate and quantitative understanding of the cellular heterogeneity. Here, we describe a fully integrated single-blood-cell analysis platform capable of size-selective cell separation from a population containing a wide distribution of sizes such as diluted blood sample and highly efficient entrapment of single monocytes. The spiked single U937 cells (human monocyte cell line) are separated in sequence by two different-sized microfilters for removing large cell clumps, white blood cells, and red blood cells and then discriminated by dielectrophoretic force and isolated individually by downstream single-cell trapping arrays. When 2% hematocrit blood cells with a final ratio of 1:1000 U937 cells were introduced under the flow rate of 0.2 ml/h, 400 U937 cells were trapped sequentially and deterministically within 40 s with single-cell occupancy of up to 85%. As a proof-of-concept, we also demonstrated single monocyte isolation from diluted blood using the integrated microfluidic device. This size-selective, label-free, and live-cell enrichment microfluidic single blood-cell isolation platform for the processing of cancer and blood cells has a myriad of applications in areas such as single-cell genetic analysis, stem cell biology, point-of-care diagnostics, and cancer diagnostics.
Collapse
Affiliation(s)
| | - Xuan Li
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | - Alan Jiang
- Department of Biomedical Engineering, University of California at Irvine, Irvine, California 92967, USA
| | | |
Collapse
|
40
|
Cheng D, Yu Y, Han C, Cao M, Yang G, Liu J, Chen X, Peng Z. A simple microdevice for single cell capture, array, release, and fast staining using oscillatory method. BIOMICROFLUIDICS 2018; 12:034105. [PMID: 29861808 PMCID: PMC5955720 DOI: 10.1063/1.5025677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Microchips that perform single cell capture, array, and identification have become powerful tools for single cell studies, which can reveal precise underlying mechanisms among bulk cell populations. However, current single cell capture and on-chip immunostaining methods consume more time and reagent than desired. To optimize this technology, we designed a novel trap structure for single cell capture, array, and release, and meanwhile an oscillatory method was used to perform rapid on-chip cell immunostaining. The trap structure array used equal distribution of lateral flow to achieve single cell array in high velocity flows and decrease the risk of clogging. A length of glass capillary with a sealed bubble was inserted into the outlet so that it could act in a manner analogous to that of a capacitor in an RC circuit. By applying one periodic air pressure to the inlet, oscillation motion was generated, which significantly enhanced the on-chip reaction efficiency. In addition, the oscillation performance could be easily regulated by changing the length of the capillary. The trapped cells could maintain their positions during oscillation; hence, they were able to be tracked in real time. Through our trap microchip, 12 μm microbeads were successfully trapped to form a microarray with a capture efficiency of ∼92.7% and 2 μm microbeads were filtered. With an optimized oscillation condition (Ppush = 0.03 MPa, f = 1 Hz, L = 3 cm), fast on-chip immunostaining was achieved with the advantages of less time (5 min) and reagent (2 μl) consumption. The effectiveness of this method was demonstrated through quantitative microbead and qualitative Caco-2 cell experiments. The device is simple, flexible, and efficient, which we believe provides a promising approach to single cell heterogeneity studies, drug screening, and clinical diagnosis.
Collapse
Affiliation(s)
- Dantong Cheng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yang Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mengjia Cao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|