1
|
Mal S, Mahapatra M, Pakeeraiah K, Panda PK, Sahoo J, Roy P, Paidesetty SK. Unraveling the synthetic strategy, structure activity relationship of azetidinones: Insights into their multidrug and toxin extrusion protein (MATE transporter) inhibition facilitating drug development against MDR. Bioorg Chem 2025; 156:108194. [PMID: 39848168 DOI: 10.1016/j.bioorg.2025.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/29/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Heterocyclic chemistry gathered a wide audience due to their presence in potential drug candidates and being attractive synthons initiating several retro-syntheses the organic as well as in medicinal chemistry fields. Among them, azetidinones have been a subject of discussion due to their serendipity, curiosity, versatility by Penicillin and Cephalosporins as β-lactam antibiotics. Despite possessing a large margin of biological activities, azetidinones mainly work as antimicrobial, interfering with bacterial cell-wall synthesis blocking transpeptidase. The structure and synthetic strategy of the azetidinone arouse its research interest in drug discovery pipeline. However, the extensive use of antibiotics in the modern era contributes to drug resistance that could only be counterbalanced involving hybridization approach. To explore the potency of the azetidinones, potent compounds found from literatures, have been screened through molecular docking against MATE transporter, targeting for prevailing multidrug resistance. The present review makes a sincere effort to compile the synthetic information and orientations involving hybridization of azetidinones with biologically active scaffolds emphasizing on antimicrobial and anticancer efficacies along with their MATE inhibition, keeping an eye upon the structure activity relationship in a systematic way. The study could motivate the researchers for developing a wide array of β-lactam derivatives more prominently targeting newer pathways to fight MDR.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Campus-2, Ghatikia, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Campus-2, Ghatikia, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Campus-2, Ghatikia, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Preetesh Kumar Panda
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Campus-2, Ghatikia, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Jyotirmaya Sahoo
- School of Pharmacy, Arka Jain University, Jameshedpur, Jharkand 832108, India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University), Vishakhapatnam 530045, India.
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Campus-2, Ghatikia, Kalinga Nagar, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
2
|
Uppadhayay RK, Kumar A, Teotia J, Singh A. Multifaceted Chemistry of Tetrazole. Synthesis, Uses, and Pharmaceutical Applications. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Marques CS, Carreiro EP, Teixeira APS. Multicomponent Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Thomaidi M, Vagiaki LE, Tripolitsiotis NP, Angeli GK, Zarganes-Tzitzikas T, Sidiropoulou K, Neochoritis C. Local anesthetics via multicomponent reactions. ChemMedChem 2022; 17:e202200246. [PMID: 35642621 DOI: 10.1002/cmdc.202200246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Indexed: 11/10/2022]
Abstract
Local anesthetics occupy a prime position in clinical medicine as they temporarily relieve the pain by blocking the voltage-gated sodium channels. However, limited structural diversity, problems with the efficiency of syntheses and increasing toxicity, mean that alternative scaffolds with improved chemical syntheses are urgently needed. Here, we demonstrate an MCR-based approach both towards the synthesis of commercial local anesthetics and towards novel derivatives as potential anesthesia candidates via scaffold hopping. The reactions are efficient and scalable and several single-crystal structures have been obtained. In addition, our methodology has been applied to the synthesis of the antianginal drug ranolazine, via an Ugi three-component reaction. Representative derivatives from our libraries were evaluated as neuronal activity inhibitors using local field potential recordings (LFPs) in mouse hippocampal brain slices and showed very promising results. This study highlights new opportunities in drug discovery targeting local anesthetics.
Collapse
Affiliation(s)
- Maria Thomaidi
- University of Crete: Panepistemio Kretes, Chemistry, GREECE
| | | | | | | | | | | | | |
Collapse
|
5
|
Celis S, Hobor F, James T, Bartlett GJ, Ibarra AA, Shoemark DK, Hegedüs Z, Hetherington K, Woolfson DN, Sessions RB, Edwards TA, Andrews DM, Nelson A, Wilson AJ. Query-guided protein-protein interaction inhibitor discovery. Chem Sci 2021; 12:4753-4762. [PMID: 34163731 PMCID: PMC8179539 DOI: 10.1039/d1sc00023c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/19/2021] [Indexed: 12/04/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to biological mechanisms, and can serve as compelling targets for drug discovery. Yet, the discovery of small molecule inhibitors of PPIs remains challenging given the large and typically shallow topography of the interacting protein surfaces. Here, we describe a general approach to the discovery of orthosteric PPI inhibitors that mimic specific secondary protein structures. Initially, hot residues at protein-protein interfaces are identified in silico or from experimental data, and incorporated into secondary structure-based queries. Virtual libraries of small molecules are then shape-matched against the queries, and promising ligands docked to target proteins. The approach is exemplified experimentally using two unrelated PPIs that are mediated by an α-helix (p53/hDM2) and a β-strand (GKAP/SHANK1-PDZ). In each case, selective PPI inhibitors are discovered with low μM activity as determined by a combination of fluorescence anisotropy and 1H-15N HSQC experiments. In addition, hit expansion yields a series of PPI inhibitors with defined structure-activity relationships. It is envisaged that the generality of the approach will enable discovery of inhibitors of a wide range of unrelated secondary structure-mediated PPIs.
Collapse
Affiliation(s)
- Sergio Celis
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Fruzsina Hobor
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas James
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Gail J Bartlett
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Amaurys A Ibarra
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Zsófia Hegedüs
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Kristina Hetherington
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisSynBio, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| | - Thomas A Edwards
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Molecular and Cellular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - David M Andrews
- Early Oncology, AstraZeneca Hodgkin Building, Chesterford Research Campus, Saffron Walden Cambridge CB10 1XL UK
| | - Adam Nelson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
6
|
Kunig VBK, Potowski M, Akbarzadeh M, Klika Škopić M, dos Santos Smith D, Arendt L, Dormuth I, Adihou H, Andlovic B, Karatas H, Shaabani S, Zarganes‐Tzitzikas T, Neochoritis CG, Zhang R, Groves M, Guéret SM, Ottmann C, Rahnenführer J, Fried R, Dömling A, Brunschweiger A. TEAD-YAP Interaction Inhibitors and MDM2 Binders from DNA-Encoded Indole-Focused Ugi Peptidomimetics. Angew Chem Int Ed Engl 2020; 59:20338-20342. [PMID: 32537835 PMCID: PMC7689693 DOI: 10.1002/anie.202006280] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Indexed: 01/12/2023]
Abstract
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or "hot spot", regions of protein-protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide "hexT", encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- TU Dortmund UniversityFaculty of Chemistry and Chemical BiologyOtto-Hahn-Strasse 644227DortmundGermany
| | - Marco Potowski
- TU Dortmund UniversityFaculty of Chemistry and Chemical BiologyOtto-Hahn-Strasse 644227DortmundGermany
| | - Mohammad Akbarzadeh
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Mateja Klika Škopić
- TU Dortmund UniversityFaculty of Chemistry and Chemical BiologyOtto-Hahn-Strasse 644227DortmundGermany
| | - Denise dos Santos Smith
- TU Dortmund UniversityFaculty of Chemistry and Chemical BiologyOtto-Hahn-Strasse 644227DortmundGermany
| | - Lukas Arendt
- TU Dortmund UniversityFaculty of StatisticsVogelpothsweg 8744227DortmundGermany
| | - Ina Dormuth
- TU Dortmund UniversityFaculty of StatisticsVogelpothsweg 8744227DortmundGermany
| | - Hélène Adihou
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZeneca43150GothenburgSweden
- AstraZeneca-Max Planck Institute Satellite UnitMax-Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Blaž Andlovic
- Lead Discovery Center GmbH (Germany)Otto-Hahn-Strasse 1544227DortmundGermany
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Hacer Karatas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Shabnam Shaabani
- University of GroningenDrug DesignDeusinglaan 17313AVGroningenThe Netherlands
| | | | - Constantinos G. Neochoritis
- University of GroningenDrug DesignDeusinglaan 17313AVGroningenThe Netherlands
- University of CreteDepartment of Chemistry70013HeraklionGreece
| | - Ran Zhang
- University of GroningenDrug DesignDeusinglaan 17313AVGroningenThe Netherlands
| | - Matthew Groves
- University of GroningenDrug DesignDeusinglaan 17313AVGroningenThe Netherlands
| | - Stéphanie M. Guéret
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZeneca43150GothenburgSweden
- AstraZeneca-Max Planck Institute Satellite UnitMax-Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
| | - Christian Ottmann
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Jörg Rahnenführer
- TU Dortmund UniversityFaculty of StatisticsVogelpothsweg 8744227DortmundGermany
| | - Roland Fried
- TU Dortmund UniversityFaculty of StatisticsVogelpothsweg 8744227DortmundGermany
| | - Alexander Dömling
- University of GroningenDrug DesignDeusinglaan 17313AVGroningenThe Netherlands
| | - Andreas Brunschweiger
- TU Dortmund UniversityFaculty of Chemistry and Chemical BiologyOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
7
|
Abstract
AbstractLactams are very important heterocycles as a result of their presence in a wide range of bioactive molecules, natural products and drugs, and also due their utility as versatile synthetic intermediates. Due to these reasons, numerous efforts have focused on the development of effective and efficient methods for their synthesis. Compared to conventional two-component reactions, multicomponent reactions (MCRs), particularly isocyanide-based MCRs, are widely used for the synthesis of a range of small heterocycles including lactam analogues. Despite their numerous applications in almost every field of chemistry, as yet there is no dedicated review on isocyanide-based multicomponent reactions (IMCRs) concerning the synthesis of lactams. Therefore, this review presents strategies towards the synthesis of α-, β-, γ-, δ- and ε-lactams using IMCRs or IMCRs/post-transformation reactions reported in the literature between 2000 and 2020.1 Introduction2 Developments in Lactam Synthesis2.1 α-Lactams2.2 β-Lactams2.3 γ-Lactams2.3.1 General γ-Lactams2.3.2 Benzo-Fused γ-Lactams2.3.3 Spiro γ-Lactams2.3.4 α,β-Unsaturated γ-Lactams2.3.5 Polycyclic Fused γ-Lactams2.4 δ-Lactams2.5 ε-Lactams3 Conclusions
Collapse
|
8
|
Kunig VBK, Potowski M, Akbarzadeh M, Klika Škopić M, Santos Smith D, Arendt L, Dormuth I, Adihou H, Andlovic B, Karatas H, Shaabani S, Zarganes‐Tzitzikas T, Neochoritis CG, Zhang R, Groves M, Guéret SM, Ottmann C, Rahnenführer J, Fried R, Dömling A, Brunschweiger A. TEAD–YAP Interaction Inhibitors and MDM2 Binders from DNA‐Encoded Indole‐Focused Ugi Peptidomimetics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Verena B. K. Kunig
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Marco Potowski
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Mohammad Akbarzadeh
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Mateja Klika Škopić
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Denise Santos Smith
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Lukas Arendt
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Ina Dormuth
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Hélène Adihou
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D AstraZeneca 43150 Gothenburg Sweden
- AstraZeneca-Max Planck Institute Satellite Unit Max-Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Blaž Andlovic
- Lead Discovery Center GmbH (Germany) Otto-Hahn-Strasse 15 44227 Dortmund Germany
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Hacer Karatas
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Shabnam Shaabani
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | | | - Constantinos G. Neochoritis
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
- University of Crete Department of Chemistry 70013 Heraklion Greece
| | - Ran Zhang
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | - Matthew Groves
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | - Stéphanie M. Guéret
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM) BioPharmaceuticals R&D AstraZeneca 43150 Gothenburg Sweden
- AstraZeneca-Max Planck Institute Satellite Unit Max-Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology Department of Biomedical Engineering and Institute for Complex Molecular Systems Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Jörg Rahnenführer
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Roland Fried
- TU Dortmund University Faculty of Statistics Vogelpothsweg 87 44227 Dortmund Germany
| | - Alexander Dömling
- University of Groningen Drug Design Deusinglaan 1 7313 AV Groningen The Netherlands
| | - Andreas Brunschweiger
- TU Dortmund University Faculty of Chemistry and Chemical Biology Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
9
|
Boltjes A, Dömling A. The Groebke-Blackburn-Bienaymé Reaction. EUROPEAN JOURNAL OF CHEMISTRY (PRINT) 2019; 2019:7007-7049. [PMID: 34012704 PMCID: PMC8130801 DOI: 10.1002/ejoc.201901124] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Imidazo[1,2-a]pyridine is a well-known scaffold in many marketed drugs, such as Zolpidem, Minodronic acid, Miroprofen and DS-1 and it also serves as a broadly applied pharmacophore in drug discovery. The scaffold revoked a wave of interest when Groebke, Blackburn and Bienaymé reported independently a new three component reaction resulting in compounds with the imidazo[1,2-a]-heterocycles as a core structure. During the course of two decades the Groebke Blackburn Bienaymé (GBB-3CR) reaction has emerged as a very important multicomponent reaction (MCR), resulting in over a hundred patents and a great number of publications in various fields of interest. Now two compounds derived from GBB-3CR chemistry received FDA approval. To celebrate the first 20 years of GBB-chemistry, we present an overview of the chemistry of the GBB-3CR, including an analysis of each of the three starting material classes, solvents and catalysts. Additionally, a list of patents and their applications and a more in-depth summary of the biological targets that were addressed, including structural biology analysis, is given.
Collapse
Affiliation(s)
- André Boltjes
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| |
Collapse
|
10
|
Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. Eur J Med Chem 2019; 182:111588. [PMID: 31421630 DOI: 10.1016/j.ejmech.2019.111588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 01/17/2023]
Abstract
Intrinsically disordered proteins are an emerging class of proteins without a folded structure and currently disorder-based drug targeting remains a challenge. p53 is the principal regulator of cell division and growth whereas MDM2 consists its main negative regulator. The MDM2-p53 recognition is a dynamic and multistage process that amongst other, employs the dissociation of a transient α-helical N-terminal ''lid'' segment of MDM2 from the proximity of the p53-complementary interface. Several small molecule inhibitors have been reported to inhibit the formation of the p53-MDM2 complex with the vast majority mimicking the p53 residues Phe19, Trp23 and Leu26. Recently, we have described the transit from the 3-point to 4-point pharmacophore model stabilizing this intrinsically disordered N-terminus by increasing the binding affinity by a factor of 3. Therefore, we performed a thorough SAR analysis, including chiral separation of key compound which was evaluated by FP and 2D NMR. Finally, p53-specific anti-cancer activity towards p53-wild-type cancer cells was observed for several representative compounds.
Collapse
|
11
|
Cheibas C, Cordier M, Li Y, El Kaïm L. A Ugi Straightforward Access to Bis-β-lactam Derivatives. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cristina Cheibas
- Laboratoire de Synthèse Organique (LSO); CNRS, Ecole Polytechnique, ENSTA ParisTech-UMR 7652; Institut Polytechnique de Paris; 828 Bd des Maréchaux 91128 Palaiseau France
| | - Marie Cordier
- Laboratoire de Chimie Moléculaire, UMR 9168, CNRS, Ecole Polytechnique; Institut Polytechnique de Paris; 91128 Palaiseau Cedex France
| | - Yanyan Li
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM); Muséum national d'Histoire naturelle, CNRS, CP 54; 57 rue Cuvier 75005 Paris France
| | - Laurent El Kaïm
- Laboratoire de Synthèse Organique (LSO); CNRS, Ecole Polytechnique, ENSTA ParisTech-UMR 7652; Institut Polytechnique de Paris; 828 Bd des Maréchaux 91128 Palaiseau France
| |
Collapse
|
12
|
Neochoritis CG, Kazemi Miraki M, Abdelraheem EMM, Surmiak E, Zarganes-Tzitzikas T, Łabuzek B, Holak TA, Dömling A. Design of indole- and MCR-based macrocycles as p53-MDM2 antagonists. Beilstein J Org Chem 2019; 15:513-520. [PMID: 30873235 PMCID: PMC6404402 DOI: 10.3762/bjoc.15.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
Macrocycles were designed to antagonize the protein–protein interaction p53-MDM2 based on the three-finger pharmacophore F19W23L25. The synthesis was accomplished by a rapid, one-pot synthesis of indole-based macrocycles based on Ugi macrocyclization. The reaction of 12 different α,ω-amino acids and different indole-3-carboxaldehyde derivatives afforded a unique library of macrocycles otherwise difficult to access. Screening of the library for p53-MDM2 inhibition by fluorescence polarization and 1H,15N HSQC NMR measurements confirm MDM2 binding.
Collapse
Affiliation(s)
- Constantinos G Neochoritis
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Maryam Kazemi Miraki
- Chemistry Department, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Eman M M Abdelraheem
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Ewa Surmiak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tryfon Zarganes-Tzitzikas
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Beata Łabuzek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
13
|
Skalniak L, Twarda-Clapa A, Neochoritis CG, Surmiak E, Machula M, Wisniewska A, Labuzek B, Ali AM, Krzanik S, Dubin G, Groves M, Dömling A, Holak TA. A fluorinated indole-based MDM2 antagonist selectively inhibits the growth of p53 wt osteosarcoma cells. FEBS J 2019; 286:1360-1374. [PMID: 30715803 DOI: 10.1111/febs.14774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/15/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022]
Abstract
The p53 protein is engaged in the repair of DNA mutations and elimination of heavily damaged cells, providing anticancer protection. Dysregulation of p53 activity is a crucial step in carcinogenesis. This dysregulation is often caused by the overexpression of negative regulators of p53, among which MDM2 is the most prominent one. Antagonizing MDM2 with small molecules restores the activity of p53 in p53 wild-type (p53wt ) cells and thus provides positive outcomes in the treatment of p53wt cancers. Previously, we have reported the discovery of a panel of fluoro-substituted indole-based antagonists of MDM2. Here, we demonstrate the biological activity and stereoselectivity of the most active compound from this series. Both enantiomers of the esterified form of the compound, as well as its corresponding carboxylic acids, were found active in fluorescence polarization (FP) assay, nuclear magnetic resonance (NMR) and microscale thermophoresis (MST) assay, with Ki and KD values around 1 μm. From these four compounds, the esterified enantiomer (R)-5a was active in cells, which was evidenced by the increase of p53 levels, the induced expression of p53-target genes (CDKN1A and MDM2), the selective induction of cell cycle arrest, and selective growth inhibition of p53wt U-2 OS and SJSA-1 compared to p53del SAOS-2 cells. The analysis of the crystal structure of human MDM2 in complex with the compound (R)-6a (carboxylic acid of the active (R)-5a compound) revealed the classical three-finger binding mode. Altogether, our data demonstrate the activity of the compound and provide the structural basis for further structure optimization.
Collapse
Affiliation(s)
- Lukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | | | - Ewa Surmiak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Monika Machula
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Beata Labuzek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ameena M Ali
- Department of Drug Design, University of Groningen, The Netherlands
| | - Sylwia Krzanik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Matthew Groves
- Department of Drug Design, University of Groningen, The Netherlands
| | | | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Abstract
Tetrazole derivatives are a prime class of heterocycles, very important to medicinal chemistry and drug design due to not only their bioisosterism to carboxylic acid and amide moieties but also to their metabolic stability and other beneficial physicochemical properties. Although more than 20 FDA-approved drugs contain 1 H- or 2 H-tetrazole substituents, their exact binding mode, structural biology, 3D conformations, and in general their chemical behavior is not fully understood. Importantly, multicomponent reaction (MCR) chemistry offers convergent access to multiple tetrazole scaffolds providing the three important elements of novelty, diversity, and complexity, yet MCR pathways to tetrazoles are far from completely explored. Here, we review the use of multicomponent reactions for the preparation of substituted tetrazole derivatives. We highlight specific applications and general trends holding therein and discuss synthetic approaches and their value by analyzing scope and limitations, and also enlighten their receptor binding mode. Finally, we estimated the prospects of further research in this field.
Collapse
Affiliation(s)
- Constantinos G. Neochoritis
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Ting Zhao
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Alexander Dömling
- Drug Design Group, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| |
Collapse
|
15
|
Amino-β-lactams in Ugi reaction: An efficient method for preparation of functionalized peptidomimetics. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Abdelraheem EMM, Shaabani S, Dömling A. Macrocycles: MCR synthesis and applications in drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 29:11-17. [PMID: 30471668 DOI: 10.1016/j.ddtec.2018.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 05/03/2023]
Abstract
Macrocycles are an emerging and largely underexploited part of chemical space where potential drugs for difficult genomic targets can be discovered. Macrocycles can have advantages over their natural twins such as better control over synthesis, physicochemical properties and target binding. Fast and convergent synthesis pathways are underdeveloped. Multicomponent reaction (MCR) chemistry is very well suited for the synthesis of a diverse range of macrocycles and is also able to generate great levels of molecular diversity and complexity at low synthetic costs.
Collapse
Affiliation(s)
- Eman M M Abdelraheem
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Shabnam Shaabani
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
17
|
Abstract
Artificial macrocycles recently became popular as a novel research field in drug discovery. As opposed to their natural twins, artificial macrocycles promise to have better control on synthesizability and control over their physicochemical properties resulting in druglike properties. Very few synthetic methods allow for the convergent, fast but diverse access to large macrocycles chemical space. One synthetic technology to access artificial macrocycles with potential biological activity, multicomponent reactions, is reviewed here, with a focus on our own work. We believe that synthetic chemists have to acquaint themselves more with structure and activity to leverage the design aspect of their daily work.
Collapse
Affiliation(s)
- Eman M M Abdelraheem
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Shabnam Shaabani
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands,
| |
Collapse
|
18
|
Koes DR, Dömling A, Camacho CJ. AnchorQuery: Rapid online virtual screening for small-molecule protein-protein interaction inhibitors. Protein Sci 2017; 27:229-232. [PMID: 28921842 DOI: 10.1002/pro.3303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 11/08/2022]
Abstract
AnchorQuery (http://anchorquery.csb.pitt.edu) is a web application for rational structure-based design of protein-protein interaction (PPI) inhibitors. A specialized variant of pharmacophore search is used to rapidly screen libraries consisting of more than 31 million synthesizable compounds biased by design to preferentially target PPIs. Every library compound is accessible through one-step multi-component reaction (MCR) chemistry and contains an anchor motif that is bioisosteric to an amino acid residue. The inclusion of this anchor not only biases the compounds to interact with proteins, it also enables a rapid, sublinear time pharmacophore search algorithm. AnchorQuery provides all the tools necessary for users to perform online interactive virtual screens of millions of compounds, including pharmacophore elucidation and search, and enrichment analysis. Accessibility: AnchorQuery is freely accessible at http://anchorquery.csb.pitt.edu.
Collapse
Affiliation(s)
- David R Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Estrada-Ortiz N, Neochoritis CG, Twarda-Clapa A, Musielak B, Holak TA, Dömling A. Artificial Macrocycles as Potent p53-MDM2 Inhibitors. ACS Med Chem Lett 2017; 8:1025-1030. [PMID: 29057045 PMCID: PMC5641952 DOI: 10.1021/acsmedchemlett.7b00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/20/2017] [Indexed: 11/28/2022] Open
Abstract
Based on a combination of an Ugi four component reaction and a ring closing metathesis, a library of novel artificial macrocyclic inhibitors of the p53-MDM2 interaction was designed and synthesized. These macrocycles, alternatively to stapled peptides, target for the first time the large hydrophobic surface area formed by Tyr67, Gln72, His73, Val93, and Lys94 yielding derivatives with affinity to MDM2 in the nanomolar range. Their binding affinity with MDM2 was evaluated using fluorescence polarization (FP) assay and 1H-15N two-dimensional HSQC nuclear magnetic resonance experiments.
Collapse
Affiliation(s)
- Natalia Estrada-Ortiz
- Department of Drug
Design, University of Groningen, A. Deusinglaan 1, Groningen 9700AV, The Netherlands
| | | | - Aleksandra Twarda-Clapa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska Centre
of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Department of Chemistry, Jagiellonian University, Ingardena
3, 30-060 Krakow, Poland
| | - Tad A. Holak
- Malopolska Centre
of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
- Department of Chemistry, Jagiellonian University, Ingardena
3, 30-060 Krakow, Poland
| | - Alexander Dömling
- Department of Drug
Design, University of Groningen, A. Deusinglaan 1, Groningen 9700AV, The Netherlands
| |
Collapse
|
20
|
Abdelraheem EM, Shaabani S, Dömling A. Artificial Macrocycles by Ugi Reaction and Passerini Ring Closure. J Org Chem 2016; 81:8789-8795. [PMID: 27598302 PMCID: PMC6280654 DOI: 10.1021/acs.joc.6b01430] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Artificial macrocycles can be convergently synthesized by a sequence of an Ugi multicomponent reaction (MCR) followed by an intramolecular Passerini MCR used to close the macrocycle. Significantly, in this work, the first intramolecular macrocyclization through a Passerini reaction is described. We describe 21 macrocycles of a size of 15-20. The resulting macrocyclic depsipeptides are model compounds for natural products and could find applications in drug discovery.
Collapse
Affiliation(s)
- Eman M.M. Abdelraheem
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Shabnam Shaabani
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alexander Dömling
- University of Groningen, Department of Drug Design, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|