1
|
Bendi A, Devi P, Sharma H, Yadav G, Raghav N, Pundeer R, Afshari M. Innovative Pyrazole Hybrids: A New Era in Drug Discovery and Synthesis. Chem Biodivers 2025; 22:e202402370. [PMID: 39613478 DOI: 10.1002/cbdv.202402370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
Heterocyclic compounds that include nitrogen and their derivatives have long been regarded as excellent sources of medicinal substances. Pyrazole is a compound with two nitrogen atoms and an aromatic structure. It has several uses and intricate stereochemistry arranged in a five-membered ring. The knowledge of different pyrazole derivatives and their range of physiological and pharmacological actions has grown significantly in recent years. The scientific community has recently increasingly focused on exploring the chemistry of various pyrazole hybrids due to their enhanced biological activities. This review investigates the chemistry of these diverse pyrazole hybrids, emphasizing their synthesis and their antidiabetic, antibacterial, anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Articles published from 2014 onward with an emphasis on the last 5 years are included in this review. This review is anticipated to be useful for future investigations and innovative concepts in the pursuit of designs for creating more promising hybrids of pyrazoles.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, Presidency University, Bangalore, Karnataka, India
| | - Poonam Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Harsh Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Geetanjali Yadav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| |
Collapse
|
2
|
Aroua LM, Alkhaibari IS, Alminderej FM, Messaoudi S, Chigurupati S, Al-mahmoud SA, Albadri AE, Emwas AH, Mohammed HA. Synthesis, bioactivity, and molecular docking of pyrazole bearing Schiff-bases as prospective dual alpha-amylase and alpha-glucosidase inhibitors with antioxidant activity. J Mol Struct 2025; 1320:139291. [DOI: 10.1016/j.molstruc.2024.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Sharma A, Kumar N, Gulati HK, Rana R, Jyoti, Khanna A, Muskan, Singh JV, Bedi PMS. Antidiabetic potential of thiazolidinedione derivatives with efficient design, molecular docking, structural activity relationship, and biological activity: an update review (2021-2023). Mol Divers 2024; 28:4609-4633. [PMID: 38253844 DOI: 10.1007/s11030-023-10793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Thiazolidinedione has been used successfully by medicinal chemists all over the world in the development of potent antidiabetic derivatives. The few compounds with excellent antidiabetic potency that we have identified in this review could be used as a lead for further research into additional antidiabetic mechanisms. The information provided in this review regarding the design, biological activity, structure-activity relationships, and docking studies may be useful for scientists who wish to further explore this scaffold in order to fully utilize its biological potential and develop antidiabetic agents that would overcome the limitations of currently available medications for the treatment of diabetes. This review outlines the antidiabetic potential of Thiazolidinedione-based derivatives that have been published in the year 2021- till date.
Collapse
Affiliation(s)
- Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jyoti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aanchal Khanna
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Muskan
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | | |
Collapse
|
4
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
5
|
Devi M, Kumar P, Singh R, Sindhu J, Kumar A, Lal S, Singh D, Kumar H. α-amylase inhibition and in silico studies of novel naphtho[2,3- d]imidazole-4,9-dione linked N-acyl hydrazones. Future Med Chem 2023; 15:1511-1525. [PMID: 37610859 DOI: 10.4155/fmc-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To enrich the pool of α-amylase inhibitors to manage Type 2 diabetes. Methods: Synthesis, conformational study, α-amylase inhibitory action and various in silico studies of novel N'-(arylbenzylidene)-2-(4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d]imidazol-1-yl)acetohydrazides carried out. Results: Compound H6 demonstrated the highest activity (IC50 = 0.0437 μmol mL-1) among the tested compounds. Structure-activity relationship study suggested that variable substitution at the aryl ring has a pivotal role in determining the inhibitory action of tested compounds. Docking simulations of the most active compound (H6) confirmed its interaction potential with active site residues of A. oryzae α-amylase. The root-mean-square deviation fluctuations substantiated the stability of protein-ligand complex. Absorption, distribution, metabolism and excretion prediction revealed optimal values for absorption, distribution, metabolism and excretion parameters. Conclusion: The developed molecules could be beneficial for the development of novel α-amylase inhibitors to treat Type 2 diabetes.
Collapse
Affiliation(s)
- Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123031, India
| |
Collapse
|
6
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D, Kumar H. Thiazolidinedione-triazole conjugates: design, synthesis and probing of the α-amylase inhibitory potential. Future Med Chem 2023; 15:1273-1294. [PMID: 37551699 DOI: 10.4155/fmc-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The primary objective of this investigation was the synthesis, spectral interpretation and evaluation of the α-amylase inhibition of rationally designed thiazolidinedione-triazole conjugates (7a-7aa). Materials & methods: The designed compounds were synthesized by stirring a mixture of thiazolidine-2,4-dione, propargyl bromide, cinnamaldehyde and azide derivatives in polyethylene glycol-400. The α-amylase inhibitory activity of the synthesized conjugates was examined by integrating in vitro and in silico studies. Results: The investigated derivatives exhibited promising α-amylase inhibitory activity, with IC50 values ranging between 0.028 and 0.088 μmol ml-1. Various computational approaches were employed to get detailed information about the inhibition mechanism. Conclusion: The thiazolidinedione-triazole conjugate 7p, with IC50 = 0.028 μmol ml-1, was identified as the best hit for inhibiting α-amylase.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123029, India
| |
Collapse
|
7
|
Devi P, Singh K, Kumar B, Kumari Singh J. Synthesis, spectroscopic, antimicrobial and in vitro anticancer activity of Co+2, Ni+2, Cu+2 and Zn+2 metal complexes with novel Schiff base. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D. Parsing structural fragments of thiazolidin-4-one based α-amylase inhibitors: A combined approach employing in vitro colorimetric screening and GA-MLR based QSAR modelling supported by molecular docking, molecular dynamics simulation and ADMET studies. Comput Biol Med 2023; 157:106776. [PMID: 36947906 DOI: 10.1016/j.compbiomed.2023.106776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
α-Amylase (EC.3.2.1.1) is a ubiquitous digestive endoamylase. The abrupt rise in blood glucose levels due to the hydrolysis of carbohydrates by α-amylase at a faster rate is one of the main reasons for type 2 diabetes. The inhibitors prevent the action of digestive enzymes, slowing the digestion of carbs and eventually assisting in the management of postprandial hyperglycemia. In the course of developing α-amylase inhibitors, we have screened 2-aryliminothiazolidin-4-one based analogs for their in vitro α-amylase inhibitory potential and employed various in silico approaches for the detailed exploration of the bioactivity. The DNSA bioassay revealed that compounds 5c, 5e, 5h, 5j, 5m, 5o and 5t were more potent than the reference drug (IC60 value = 22.94 ± 0.24 μg mL-1). The derivative 5o with -NO2 group at both the rings was the most potent analog with an IC60 value of 19.67 ± 0.20 μg mL-1 whereas derivative 5a with unsubstituted aromatic rings showed poor inhibitory potential with an IC60 value of 33.40 ± 0.15 μg mL-1. The reliable QSAR models were developed using the QSARINS software. The high value of R2ext = 0.9632 for model IM-9 showed that the built model can be applied to predict the α-amylase inhibitory activity of the untested molecules. A consensus modelling approach was also employed to test the reliability and robustness of the developed QSAR models. Molecular docking and molecular dynamics were employed to validate the bioassay results by studying the conformational changes and interaction mechanisms. A step further, these compounds also exhibited good ADMET characteristics and bioavailability when tested for in silico pharmacokinetics prediction parameters.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| |
Collapse
|
9
|
Design, synthesis, spectroscopic characterization, single crystal X-ray analysis, in vitro α-amylase inhibition assay, DPPH free radical evaluation and computational studies of naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles. Eur J Med Chem 2023; 250:115230. [PMID: 36863227 DOI: 10.1016/j.ejmech.2023.115230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In our quest to design and develop N/O-containing inhibitors of α-amylase, we have tried to synergize the inhibitory action of 1,4-naphthoquinone, imidazole and 1,2,3-triazole motifs by incorporating these structures into a single matrix. For this, a series of novel naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles is synthesized by a sequential approach involving [3 + 2] cycloaddition of 2-aryl-1-(prop-2-yn-1-yl)-1H-naphtho[2,3-d]imidazole-4,9-diones with substituted azides. The chemical structures of all the compounds are established with the help of 1D-NMR, 2D-NMR, IR, mass and X-ray studies. The developed molecular hybrids are screened for their inhibitory action on the α-amylase enzyme using the reference drug, acarbose. Different substituents present on the attached aryl part of the target compounds show amazing variations in inhibitory action against the α-amylase enzyme. Based on the type of substituents and their respective positions, it is observed that compounds containing -OCH3 and -NO2 groups show more inhibition potential than others. All the tested derivatives display α-amylase inhibitory activity with IC50 values in the range of 17.83 ± 0.14 to 26.00 ± 0.17 μg/mL. Compound 2-(2,3,4-trimethoxyphenyl)-1-{[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl]methyl}-1H-naphtho[2,3-d]imidazole-4,9-dione (10y) show maximum inhibition of amylase activity with IC50 value 17.83 ± 0.14 μg/mL as compared to reference drug acarbose (18.81 ± 0.05 μg/mL). A molecular docking study of the most active derivative (10y) is performed with A. oryzae α-amylase (PDB ID: 7TAA) and it unveils favourable binding interactions within the active site of the receptor molecule. The dynamic studies reveal that the receptor-ligand complex is stable as the RMSD of less than 2 is observed in 100 ns molecular dynamic simulation. Also, the designed derivatives are assayed for their DPPH free radical scavenging ability and all of them exhibit comparable radical scavenging activity with the standard, BHT. Further, to assess their drug-likeness properties, ADME properties are also evaluated and all of them demonstrate worthy in silico ADME results.
Collapse
|
10
|
Şahin İ, Çeşme M, Yüce N, Tümer F. Discovery of new 1,4-disubstituted 1,2,3-triazoles: in silico ADME profiling, molecular docking and biological evaluation studies. J Biomol Struct Dyn 2023; 41:1988-2001. [PMID: 35057704 DOI: 10.1080/07391102.2022.2025905] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, eight new 1,2,3-triazoles (6a-h) were synthesized from acetylenes' "click" reaction with p-substituted azide derivatives. The structures of the compounds were characterized using standard analytical and spectroscopic methods (elemental analysis, FT-IR, 1H(13C)NMR). The anticancer, antioxidant, α-amylase, ADME, molecular docking studies of synthesized triazoles were investigated. According to α -amylase enzyme inhibition results, all compounds except 6c (IC50: 2299 μg/mL) were found to have a higher IC50 value than the standard drug acarbose (IC50: 891 μg/mL). Compound 6g (IC50: 68 μg/mL) exhibited 13 times higher activity than standard acarbose. All compounds, except 6e, have been shown to have greater DPPH radical scavenging capabilities than BHT and β-carotene standards. According to ABTS radical scavenging studies, all compounds showed higher scavenging activity than ascorbic acid and Trolox. To determine the anticancer activity of the synthesized compounds, they were screened against the Hela cell line, and the results were compared with standard cisplatin (IC50: 16.30 μg/mL). Compound 6a (IC50: 49.03 μg/mL) was determined to have moderate activity relative to cisplatin. The compounds were examined comprehensively for ADME characteristics and did not violate any drug-likeness rule. ADME data showed that all physicochemical and pharmacological parameters of the compounds remained within defined limits as specified in Lipinski's rules (RO5) and put forth a high bioavailability profile. The molecular docking findings show that all molecules have a high affinity by exhibiting polar and apolar contact with essential residues in the binding pocket of α-amylase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Neslihan Yüce
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
11
|
Design, synthesis, and molecular modeling of heterodimer and inhibitors of α-amylase as hypoglycemic agents. Mol Divers 2023; 27:209-222. [PMID: 35357619 DOI: 10.1007/s11030-022-10414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
Abstract
A series of rosiglitazone-based heterodimers were designed and synthesized, and their α-amylase and antioxidant activity was evaluated. The binding mode of the compounds at the active site of PPARγ and α-amylase enzyme was explored using MolDock docking method. In molecular docking studies against crystal structure of PPARγ (PDB code: 1FM6), compounds 10 and 13 showed interaction with amino acids Arg379, Asp379, Asn385, Ala387, Glu388, Val389, Glu390, and Lys438. Docking results of α-amylase enzyme (PDB code: 5EOF) with compounds 10 and 13 showed excellent interaction with amino acids Ala169, Lys172, Asp173, Tyr174, Val175, Arg176, and Lys178. Depending on the docking score, the designed compounds were selectively prioritized for synthesis. All synthesized compounds were subjected to in vitro α-amylase activity and antioxidant activity. Compounds 10 and 13 were to possess higher potency than acarbose, and most of the compounds showed antioxidant activity. Additionally, the most active compound 10 was evaluated for in vivo anti-diabetic activity.
Collapse
|
12
|
Pradhan T, Gupta O, Kumar V, Sristi, Chawla G. A comprehensive review on the antidiabetic attributes of thiazolidine-4-ones: Synthetic strategies and structure-activity relationships. Arch Pharm (Weinheim) 2023; 356:e2200452. [PMID: 36378997 DOI: 10.1002/ardp.202200452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
The thiazolidine-4-one scaffold has recently emerged as a potential pharmacophore having clinical significance for medicinal chemists. This heterocyclic ring has been reported to possess a plethora of biological activities, including antidiabetic activity that has inspired researchers to integrate this core with different pharmacophoric fragments to design novel and effective antidiabetic leads. The antidiabetic activity has been observed due to the ability of the thiazolidine-4-one nucleus to interact with different biological targets, including peroxisome proliferator-activated receptor γ, protein tyrosine phosphatase 1B, aldose reductase, α-glucosidase, and α-amylase. The present review discusses the mode of action of thiazolidine-4-ones through these antidiabetic drug targets. This review attempts to summarize and analyze the recent developments with regard to the antidiabetic potential of thiazolidine-4-ones covering different synthetic strategies, structure-activity relationships, and docking studies reported in the literature. The significance of various structural modifications at C-2, N-3, and C-5 of the thiazolidine-4-one ring has also been discussed in this manuscript. This comprehensive compilation will provide an inevitable scope for the design and development of potential antidiabetic drug candidates having a thiazolidine-4-one core.
Collapse
Affiliation(s)
- Tathagata Pradhan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Ojasvi Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Vivek Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Sristi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Gita Chawla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
13
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. In vitro enzymatic evaluation of some pyrazolo[1,5-a]pyrimidine derivatives: Design, synthesis, antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities with molecular modeling simulation. Drug Dev Res 2023; 84:3-24. [PMID: 36380556 DOI: 10.1002/ddr.22008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The strategy of utilizing nitrogen compounds in various biological applications has recently emerged as a powerful approach to exploring novel classes of therapeutics to face the challenge of diseases. A series of pyrazolo[1,5-a]pyrimidine-based compounds 3a-l and 5a-f were prepared by the direct cyclo-condensation reaction of 5-amino-1H-pyrazoles 1a, b with 2-(arylidene)malononitriles and 3-(dimethylamino)-1-aryl-prop-2-en-1-ones, respectively. The structures of the new pyrazolo[1,5-a]pyrimidine compounds were confirmed via spectroscopic techniques. The in vitro biological activities of all pyrazolo[1,5-a]pyrimidines 3a-l and 5a-f were evaluated by assaying total antioxidant capacity, iron-reducing power, the scavenging activity against 1-diphenyl-2-picryl-hydrazyl (DPPH) and 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, anti-diabetic, anti-Alzheimer, and anti-arthritic biological activities. All compounds displayed good to potent bioactivity, and three compounds 3g, 3h, and 3l displayed the most active derivatives. Among these derivatives, compound 3l exhibited the highest antioxidant (total antioxidant capacity [TAC] = 83.09 mg gallic acid/g; iron-reducing power [IRP] = 47.93 µg/ml) and free radicals scavenging activities with (DPPH = 18.77 µg/ml; ABTS = 40.44%) compared with ascorbic acid (DPPH = 4.28 µg/ml; ABTS = 38.84%). Furthermore, compound 3l demonstrated the strongest inhibition of α-amylase with a percent inhibition of 72.91 ± 0.14 compared to acarbose = 67.92 ± 0.09%. Similarly, it displayed acetylcholinesterase inhibition of 62.80 ± 0.06%. However, compound 3i showed a significantly higher inhibition percentage for protein denaturation and proteinase at 20.66 ± 0.00 and 26.42 ± 0.06%, respectively. Additionally, some in silico ADMET properties were predicted and studied. Finally, molecular docking simulation was performed inside the active site of α-amylase and acetylcholinesterase to study their interactions.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
14
|
Şahin İ, Çeşme M, Özgeriş FB, Tümer F. Triazole based novel molecules as potential therapeutic agents: Synthesis, characterization, biological evaluation, in-silico ADME profiling and molecular docking studies. Chem Biol Interact 2023; 370:110312. [PMID: 36535312 DOI: 10.1016/j.cbi.2022.110312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In this study, eight new compounds (7a-h) based on triazole compounds containing ester groups were synthesized with high yields. The structures of the synthesized compounds (7a-h) were elucidated by various spectroscopic methods (element analysis, FT-IR, 1H-(13C) NMR). Antioxidant, anticancer, and α-amylase enzyme inhibition activities of synthesized new triazole derivatives were carried out, and the effects of different groups on the activity were investigated. When the determined antioxidant properties of the compounds were examined, all synthesized compounds showed a moderate radical scavenging effect against radicals depending on the concentration (6.25-200 g/mL). All compounds except the three derivatives were found to have higher IC50 values than the standard drug acarbose (IC50: 891 μg/mL) according to the α-amylase enzyme inhibition results. Compound 7g (IC50: 50 g/mL) was discovered to have nearly eighteen (18) times the activity of the conventional medication acarbose (IC50: 891 μg/mL). Compounds synthesized for anticancer activity studies were screened against the Hela cell line, and the results were compared with standard cis-platinum (IC50: 16.30 μg/mL). Compound 7g (IC50: 19.78 μg/mL) was found to have almost the same activity as cis-platinum. Using Qikprop, the compounds were thoroughly tested for ADME qualities, and none violated any drug similarity standards. According to ADME data, whole physicochemical drug-likeness parameters of molecules remained within defined ranges as stipulated in the Lipinski rules (RO5) and revealed a high bioavailability profile. The molecular docking results with 2QV4 and 4GQR alpha-amylase enzymes demonstrated that all molecules have a high affinity, indicating polar and apolar interaction with critical amino acids in the α-amylase binding pocket.
Collapse
Affiliation(s)
- İrfan Şahin
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, 46040, Kahramanmaras, Turkey.
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, 46040, Kahramanmaras, Turkey.
| | - Fatma Betül Özgeriş
- Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey.
| | - Ferhan Tümer
- Department of Chemistry, Faculty of Sciences, Kahramanmaras Sutcu Imam University, 46040, Kahramanmaras, Turkey.
| |
Collapse
|
15
|
Chemical Composition, Antibacterial, Antifungal and Antidiabetic Activities of Ethanolic Extracts of Opuntia dillenii Fruits Collected from Morocco. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9471239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Opuntia dillenii (Ker Gawl.) Haw. belongs to the Cactaceae family and is native to the arid and semi-arid regions of Mexico and the southern United States. O. dillenii are now used as medicinal plants in various countries. In this study, we investigated the chemical composition of ethanolic extracts obtained from seeds, juice, and peel of O. dillenii fruits collected from Morocco, and we evaluated their antibacterial, antifungal, and antidiabetic activities. Phytochemical screening revealed high quantities of polyphenols (193.73 ± 81.44 to 341.12 ± 78.90 gallic acid eq [g/100 g dry weight]) in the extracts. The major phenolic compounds determined by HPLC were gallic acid, vanillic acid, and syringic acid. Regarding flavonoids, quercetin 3-O-β-D-glucoside and kaempferol were the predominant molecules. Juice extracts showed weak to moderate antibacterial activity against the bacteria species Listeria monocytogenes, Escherichia coli, and Salmonella braenderup. All tested extracts displayed a significant inhibitory effect on α-glucosidase and α-amylase activities in vitro, with the peel extracts showing the greatest inhibitory effects. Together, these findings suggest that O. dillenii fruits are a promising source for the isolation of novel compounds with antibacterial or antidiabetic activities. For the most abundant phytochemicals identified in O. dillenii peel ethanolic extract, molecular docking simulations against human pancreatic α-amylase enzyme were performed. These indicated the presence of bioactive compounds in the extract with a better potential to decrease the enzyme activity than the commercial drug acarbose.
Collapse
|
16
|
Dalli M, Daoudi NE, Abrigach F, Azizi SE, Bnouham M, Kim B, Gseyra N. In vitro α-amylase and hemoglobin glycation inhibitory potential of Nigella sativa essential oil, and molecular docking studies of its principal components. Front Pharmacol 2022; 13:1036129. [PMID: 36339531 PMCID: PMC9631318 DOI: 10.3389/fphar.2022.1036129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Nigella sativa is plant that is endowed with various pharmacological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, antidiabetic, and immunostimulant. This study aims to investigate the antidiabetic activity of the N. sativa essential oil on two key enzymes the α-amylase and hemoglobin glycation. After the extraction procedure, the N. sativa essential oil, were subject to qualitative and semi-quantitative analysis using GC/MS, for the identification of the different bioactive compounds. This was followed by an evaluation of the in vitro inhibition capacity of the α-amylase and the hemoglobin glycation. Finally, a molecular docking study was conducted to determine the bioactive compounds responsible for the antidiabetic activity. The extracted essential oil showed the presence of different bioactive compounds including α-phellandrene (29.6%), β-cymene (23.8%), 4-caranol (9.7%), thymol (7%). The N. sativa essential oil was found to be endowed with an antiradical scavenging activity with an IC50 of (7.81 ± 0.08 mg/ml), and to have a ferric reducing activity with an IC50 value of (7.53 ± 0.11 mg/ml). The IC50 value for the α-amylase inhibitory activity was 0.809 mg/ml, indicating an inhibitory impact of the enzyme. The IC50 value for the N. sativa essential oil’s hemoglobin antiglycation activity was 0.093 mg/ml. For most predominating phytochemicals present in the N. sativa essential oil, molecular docking studies against human pancreatic α-amylase and human hemoglobin enzymes revealed that these compounds can serve as lead molecules to develop new antidiabetic compounds.
Collapse
Affiliation(s)
- Mohammed Dalli
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
- *Correspondence: Mohammed Dalli, ; Bonglee Kim ,
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Farid Abrigach
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Salah-eddine Azizi
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Mohammed Dalli, ; Bonglee Kim ,
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| |
Collapse
|
17
|
Kumar P, Singh R, Kumar A, Toropova AP, Toropov AA, Devi M, Lal S, Sindhu J, Singh D. Identifications of good and bad structural fragments of hydrazone/2,5-disubstituted-1,3,4-oxadiazole hybrids with correlation intensity index and consensus modelling using Monte Carlo based QSAR studies, their molecular docking and ADME analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:677-700. [PMID: 36093620 DOI: 10.1080/1062936x.2022.2120068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The application of QSAR along with other in silico tools like molecular docking, and molecular dynamics provide a lot of promise for finding new treatments for life-threatening diseases like Type 2 diabetes mellitus (T2DM). The present study is an attempt to develop Monte Carlo algorithm-based QSAR models using freely available CORAL software. The experimental data on the α-amylase inhibition by a series of benzothiazole-linked hydrazone/2,5-disubstituted-1,3,4-oxadiazole hybrids were selected as endpoint for the model generation. Initially, a total of eight QSAR models were built using correlation intensity index (CII) as a criterion of predictive potential. The model developed from split 6 using CII was the most reliable because of the highest numerical value of the determination coefficient of the validation set (r2VAL = 0.8739). The important structural fragments responsible for altering the endpoint were also extracted from the best-built model. With the goal of improved prediction quality and lower prediction errors, the validated models were used to build consensus models. Molecular docking was used to know the binding mode and pose of the selected derivatives. Further, to get insight into their metabolism by living beings, ADME studies were investigated using internet freeware, SwissADME.
Collapse
Affiliation(s)
- P Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - R Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - A Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, India
| | - A P Toropova
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - A A Toropov
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - S Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - J Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - D Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
18
|
Garg P, Rawat RS, Bhatt H, Kumar S, Reddy SR. Recent Developments in the Synthesis of N‐Heterocyclic Compounds as α‐Amylase Inhibitors via In‐Vitro and In‐Silico Analysis: Future Drugs for Treating Diabetes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Garg
- Department of Chemistry SAS Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ravindra Singh Rawat
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Harshil Bhatt
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | - Sanjit Kumar
- Centre for Bio Separation and Technology Vellore Institute of Technology Vellore- 632014 Tamil Nadu India
| | | |
Collapse
|
19
|
Patil SM, Martiz RM, Satish AM, Shbeer AM, Ageel M, Al-Ghorbani M, Ranganatha L, Parameswaran S, Ramu R. Discovery of Novel Coumarin Derivatives as Potential Dual Inhibitors against α-Glucosidase and α-Amylase for the Management of Post-Prandial Hyperglycemia via Molecular Modelling Approaches. Molecules 2022; 27:3888. [PMID: 35745030 PMCID: PMC9227442 DOI: 10.3390/molecules27123888] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Coumarin derivatives are proven for their therapeutic uses in several human diseases and disorders such as inflammation, neurodegenerative disorders, cancer, fertility, and microbial infections. Coumarin derivatives and coumarin-based scaffolds gained renewed attention for treating diabetes mellitus. The current decade witnessed the inhibiting potential of coumarin derivatives and coumarin-based scaffolds against α-glucosidase and α-amylase for the management of postprandial hyperglycemia. Hyperglycemia is a condition where an excessive amount of glucose circulates in the bloodstream. It occurs when the body lacks enough insulin or is unable to correctly utilize it. With open-source and free in silico tools, we have investigated novel 80 coumarin derivatives for their inhibitory potential against α-glucosidase and α-amylase and identified a coumarin derivative, CD-59, as a potential dual inhibitor. The ligand-based 3D pharmacophore detection and search is utilized to discover diverse coumarin-like compounds and new chemical scaffolds for the dual inhibition of α-glucosidase and α-amylase. In this regard, four novel coumarin-like compounds from the ZINC database have been discovered as the potential dual inhibitors of α-glucosidase and α-amylase (ZINC02789441 and ZINC40949448 with scaffold thiophenyl chromene carboxamide, ZINC13496808 with triazino indol thio phenylacetamide, and ZINC09781623 with chromenyl thiazole). To summarize, we propose that a coumarin derivative, CD-59, and ZINC02789441 from the ZINC database will serve as potential lead molecules with dual inhibition activity against α-glucosidase and α-amylase, thereby discovering new drugs for the effective management of postprandial hyperglycemia. From the reported scaffold, the synthesis of several novel compounds can also be performed, which can be used for drug discovery.
Collapse
Affiliation(s)
- Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| | - A. M. Satish
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Abdullah M. Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Mohammed Ageel
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Mohammed Al-Ghorbani
- Department of Chemistry, College of Science and Arts, Taibah University, Madina 41477, Saudi Arabia;
- Department of Chemistry, College of Education, Thamar University, Thamar 425897, Yemen
| | - Lakshmi Ranganatha
- Department of Chemistry, The National Institute of Engineering, Mysuru 570008, India;
| | - Saravanan Parameswaran
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.M.P.); (R.M.M.); (S.P.)
| |
Collapse
|
20
|
Santos GC, Rocha IO, Stefanello FS, Copetti JPP, Tisoco I, Martins MAP, Zanatta N, Frizzo CP, Iglesias BA, Bonacorso HG. Investigating ESIPT and donor-acceptor substituent effects on the photophysical and electrochemical properties of fluorescent 3,5-diaryl-substituted 1-phenyl-2-pyrazolines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120768. [PMID: 34952444 DOI: 10.1016/j.saa.2021.120768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
This paper describes the synthesis, structural study, and evaluation of electrochemical and photophysical properties by UV-Vis absorption and fluorescence emission analysis (solution and solid-state) of a series of eight 3,5-aryl-substituted 1-phenyl-2-pyrazolines (5), where 3-aryl = 2-OH-C6H4 (5a-g) or Ph (5h), and 5-aryl = Ph (a, h), 1-naphthyl (b), 4-Br-C6H4 (c), 4-F-C6H4 (d), 4-OCH3-C6H4(e), 4-NO2-C6H4 (f), 4-(N(CH3)2)-C6H4(g). The UV-Vis absorption properties of 2-pyrazolines were evaluated in DCM, MeCN, AcOEt, EtOH, and DMSO as the solvent and showed a fluorescence shift for the polar aprotic solvents. The steady-state fluorescence emission exhibited a band in the blue region when excited at the least energetic transition of each compound, although the excited-state intramolecular proton (ESIPT) effect was not detected. In the solid state, compounds presented similar behavior regarding absorption and emission properties compared to the solution assays. With the electrochemical analyses performed for the synthesized 2-pyrazolines, it was possible to conclude that the redox potentials were influenced by the electronic and steric effects of the substituents on the aryl rings and, according to the electronic nature of the substituents, which electron-donating groups were favored. Finally, the TD-DFT analyses revealed that all compounds had delocalized electron density throughout the 2-pyrazolines unit and were not influenced by the substituent bonded at C-5. Nonetheless, LUMO orbital analysis showed that only derivatives 5b and 5f have this localized density over the substituents.
Collapse
Affiliation(s)
- Gabriel C Santos
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Inaiá O Rocha
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Felipe S Stefanello
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - João P P Copetti
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Isadora Tisoco
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Clarissa P Frizzo
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Bernardo A Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
21
|
Mor S, Khatri M. Synthesis, antimicrobial evaluation, α-amylase inhibitory ability and molecular docking studies of 3-alkyl-1-(4-(aryl/heteroaryl)thiazol-2-yl)indeno[1,2-c]pyrazol-4(1H)-ones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Nidhar M, Sonker P, Sharma VP, Kumar S, Tewari AK. Design, synthesis and in-silico & in vitro enzymatic inhibition assays of pyrazole-chalcone derivatives as dual inhibitors of α-amylase & DPP-4 enzyme. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01985-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Singh R, Kumar P, Sindhu J, Devi M. Synthesis and exploration of configurational dynamics in equilibrating E/ Z 2-aryliminothiazolidin-4-ones using NMR and estimation of thermodynamic parameters. NEW J CHEM 2022. [DOI: 10.1039/d1nj06109g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NMR based in-depth exploration of stereodynamic behavior in equilibrating E/Z 2-aryliminothiazolidin-4-ones and determination of kinetic and thermodynamic parameters.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar-125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, India
| |
Collapse
|
24
|
Şahin İ, Çeşme M, Özgeriş FB, Güngör Ö, Tümer F. Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: Biological evaluation, in silico molecular docking and ADME screening. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Ganavi D, Ramu R, Kumar V, Patil SM, Martiz RM, Shirahatti PS, Sathyanarayana R, Poojary B, Holla BS, Poojary V, Kumari KPN, Shivachandra JC. In vitro and in silico studies of fluorinated 2,3-disubstituted thiazolidinone-pyrazoles as potential α-amylase inhibitors and antioxidant agents. Arch Pharm (Weinheim) 2021; 355:e2100342. [PMID: 34923670 DOI: 10.1002/ardp.202100342] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
As part of our effort to identify potent α-amylase inhibitors, in the present study, a novel series of fluorinated thiazolidinone-pyrazole hybrid molecules were prepared by the condensation of 3-(aryl/benzyloxyaryl)-pyrazole-4-carbaldehydes with fluorinated 2,3-disubstituted thiazolidin-4-ones. The structures of the newly synthesized compounds were confirmed by infrared, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and liquid chromatography-mass spectrometry data. All the compounds were screened for their α-amylase inhibitory and free radical scavenging activities by DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS methods. Among the tested compounds, compound 8g emerged as a promising α-amylase inhibitor with IC50 = 0.76 ± 1.23 µM, and it was found to be more potent than the standard drug acarbose (IC50 = 0.86 ± 0.81 μM). Compounds 8b and 8g showed strong free radical scavenging activity compared to the standard butylated hydroxyl anisole. The kinetic study of compound 8g revealed the reversible, classical competitive inhibition mode on the α-amylase enzyme. Molecular docking and dynamic simulations studies were performed for the most potent compound 8g, which displayed remarkable hydrogen bonding with the α-amylase protein (PDB ID: 1DHK).
Collapse
Affiliation(s)
- Devaraj Ganavi
- Department of Studies and Research in Chemistry, Mangalore University, Mangalagangothri, India.,Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Vasantha Kumar
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma M Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Reshma Sathyanarayana
- Department of Studies and Research in Chemistry, Mangalore University, Mangalagangothri, India
| | - Boja Poojary
- Department of Studies and Research in Chemistry, Mangalore University, Mangalagangothri, India
| | - B Shivarama Holla
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Vishwanatha Poojary
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - K P Nanda Kumari
- Department of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - Jagadeep Chandra Shivachandra
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
26
|
Exploring biological efficacy of novel benzothiazole linked 2,5-disubstituted-1,3,4-oxadiazole hybrids as efficient α-amylase inhibitors: Synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies. Comput Biol Med 2021; 138:104876. [PMID: 34598068 DOI: 10.1016/j.compbiomed.2021.104876] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
In an effort to explore a class of novel antidiabetic agents, we have made an effort to synergize the α-amylase inhibitory potential of 1,3-benzothiazole and 1,3,4-oxadiazole scaffolds by combining the two into a single structure via an ether linkage. The structure of synthesized benzothiazole clubbed oxadiazole derivatives are established by different spectral techniques. The synthesized hybrids are evaluated for their in vitro inhibitory potential against α-amylase. Compound 8f is found to be the most potent with a significant inhibition (87.5 ± 0.74% at 50 μg/mL, 82.27 ± 1.85% at 25 μg/mL and 79.94 ± 1.88% at 12.5 μg/mL) when compared to positive control acarbose (77.96 ± 2.06%, 71.17 ± 0.60%, 67.24 ± 1.16% at 50 μg/mL, 25 μg/mL and 12.5 μg/mL concentration). Molecular docking of the most potent enzyme inhibitor, 8f, shows promising interaction with the binding site of biological macromolecule Aspergillus oryzae α-amylase (PDB ID: 7TAA) and human pancreatic α-amylase (PDB ID: 3BAJ). To a step further, in-depth QSAR studies show a significant correlation between the experimental and the predicted inhibitory activities with the best Rvalidation2= 0.8701. The developed QSAR model can provide ample information about the structural features responsible for the increase and decrease of inhibitory activity. The mechanistic interpretation of the structure-activity relationship (SAR) is done with the help of combined computational calculations i.e. molecular docking and QSAR. Finally, molecular dynamic simulations are performed to get an insight into the binding mode of the most potent derivative with α-amylase from A. oryzae (PDB ID: 7TAA) and human pancreas (PDB ID: 3BAJ).
Collapse
|
27
|
Kaur N, Kumar V, Nayak SK, Wadhwa P, Kaur P, Sahu SK. Alpha-amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem Biol Drug Des 2021; 98:539-560. [PMID: 34173346 DOI: 10.1111/cbdd.13909] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
The alpha (α)-amylase is a calcium metalloenzyme that aids digestion by breaking down polysaccharide molecules into smaller ones such as glucose and maltose. In addition, the enzyme causes postprandial hyperglycaemia and blood glucose levels to rise. α-Amylase is a well-known therapeutic target for the treatment and maintenance of postprandial blood glucose elevations. Various enzymatic inhibitors, such as acarbose, miglitol and voglibose, have been found to be effective in targeting this enzyme, prompting researchers to express an interest in developing potent alpha-amylase inhibitor molecules. The review mainly focused on designing different derivatives of drug molecules such as benzofuran hydrazone, indole hydrazone, spiroindolone, benzotriazoles, 1,3-diaryl-3-(arylamino) propan-1-one, oxadiazole and flavonoids along with their target-receptor interactions, IC50 values and other biological activities.
Collapse
Affiliation(s)
- Navjot Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vanktesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Surendra Kumar Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Paranjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
28
|
Rathod CH, Nariya PB, Maliwal D, Pissurlenkar RRS, Kapuriya NP, Patel AS. Design, Synthesis and Antidiabetic Activity of Biphenylcarbonitrile‐Thiazolidinedione Conjugates as Potential α‐Amylase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202004362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chirag H. Rathod
- Research Scholar Department of Chemistry School of Science RK University Rajkot Gujarat India- 360020
| | | | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology, Matunga Mumbai 400019 India
| | - Raghuvir R. S. Pissurlenkar
- Department of Pharmaceutical and Medicinal Chemistry Goa College of Pharmacy 18th June Road Panaji Goa India- 403001
| | - Naval P. Kapuriya
- Department of Chemistry and Forensic Science Bhakta Kavi Narsinh Mehta University Bilkha Road, Khadia, Junagadh Gujarat India- 362263
| | - Anilkumar S. Patel
- Department of Chemistry Atmiya University Kalawad Road Rajkot Gujarat India- 360005
| |
Collapse
|
29
|
Synthesis, structural and pharmacological exploration of 2-(3, 5-dimethyl-1H-pyrazol-1-yl)-acetophenone oximes and their silver complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, Lal S, Kumar A, Kumar S, Hussain K. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn 2020; 40:4933-4953. [PMID: 33357037 DOI: 10.1080/07391102.2020.1863861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present manuscript describes the synthesis, α-amylase inhibition, in silico studies and in-depth quantitative structure-activity relationship (QSAR) of a library of aroyl hydrazones based on benzothiazole skeleton. All the compounds of the developed library are characterized by various spectral techniques. α-Amylase inhibitory potential of all compounds has been explored, where compound 7n exhibits remarkable α-amylase inhibition of 87.5% at 50 µg/mL. Robust QSAR models are made by using the balance of correlation method in CORAL software. The chemical structures at different concentration with optimal descriptors are represented by SMILES. A data set of 66 SMILES of 22 hydrazones at three distinct concentrations are prepared. The significance of the index of ideality of correlation (IIC) with applicability domain (AD) is also studied at depth. A QSAR model with best Rvalidation2 = 0.8587 for split 1 is considered as a leading model. The outliers and promoters of increase and decrease of endpoint are also extracted. The binding modes of the most active compound, that is, 7n in the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) are also explored by in silico molecular docking studies. Compound 7n displays high resemblance in binding mode and pose with the standard drug acarbose. Molecular dynamics simulations performed on protein-ligand complex for 100 ns, the protein gets stabilised after 20 ns and remained below 2 Å for the remaining simulation. Moreover, the deviation observed in RMSF during simulation for each amino acid residue with respect to Cα carbon atom is insignificant.
Collapse
Affiliation(s)
- Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, India
| | - Sudhir Kumar
- Department of MBB&B, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, India
| |
Collapse
|
31
|
Quantitative structure toxicity analysis of ionic liquids toward acetylcholinesterase enzyme using novel QSTR models with index of ideality of correlation and correlation contradiction index. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Synthesis, Type II diabetes inhibitory activity, antimicrobial evaluation and docking studies of indeno[1,2- c]pyrazol-4(1 H)-ones. Med Chem Res 2020; 29:46-62. [PMID: 32435124 PMCID: PMC7223412 DOI: 10.1007/s00044-019-02457-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/05/2019] [Indexed: 12/02/2022]
Abstract
We report a convenient and efficient synthesis of indeno[1,2-c]pyrazol-4(1H)-ones (4a‒o) by the reaction of a variety of 2-acyl-(1H)-indene-1,3(2H)-diones (1) and 2-hydrazinylbenzo[d]thiazole/2-hydrazinyl-6-substitutedbenzo[d]thiazoles (2) in the presence of glacial acetic acid in good yields. The structure of the compounds thus prepared were confirmed by analytical and spectral (FT-IR, 1H NMR, 13C NMR, and HRMS) techniques. All the synthesized indeno[1,2-c]pyrazol-4(1H)-ones (4a‒o) were assayed for their in vitro Type II diabetes inhibitory activity by using Acarbose as standard drug and in vitro antimicrobial activity utilizing Streptomycin and Fluconazole as reference drugs. Among the synthesized derivatives, 4e (IC50 = 6.71 μg/mL) was found to be more potent against α-glucosidase enzyme as compared with the standard Acarbose (IC50 = 9.35 μg/mL) and 4i (IC50 = 11.90 μg/mL) exhibited good inhibitory activity against α-amylase enzyme as compared with the standard Acarbose (IC50 = 22.87 μg/mL). Also, all the titled compounds showed good antimicrobial activity. In addition, in vitro α-glucosidase and α-amylase inhibition were supported by docking studies performed on the derivatives 4e and 4o, respectively. ![]()
Collapse
|
34
|
Kumar P, Duhan M, Sindhu J, Kadyan K, Saini S, Panihar N. Thiazolidine‐4‐one clubbed pyrazoles hybrids: Potent α‐amylase and α‐glucosidase inhibitors with NLO properties. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Parvin Kumar
- Department of ChemistryKurukshetra University Kurukshetra India
| | - Meenakshi Duhan
- Department of ChemistryKurukshetra University Kurukshetra India
| | - Jayant Sindhu
- Department of ChemistryCOBS&H CCS Haryana Agricultural University Hisar India
| | - Kulbir Kadyan
- Department of ChemistryKurukshetra University Kurukshetra India
| | - Sangeeta Saini
- Department of ChemistryKurukshetra University Kurukshetra India
| | - Neeraj Panihar
- Department of Pharmaceutical ScienceG.J.U.S.T Hisar India
| |
Collapse
|
35
|
Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top Curr Chem (Cham) 2020; 378:34. [PMID: 32206929 PMCID: PMC7101601 DOI: 10.1007/s41061-020-0298-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
Abstract
In past decades, interdisciplinary research has been of great interest for scholars. Thiazolidine motifs behave as a bridge between organic synthesis and medicinal chemistry and compel researchers to explore new drug candidates. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. The presence of sulfur enhances their pharmacological properties, and, therefore, they are used as vehicles in the synthesis of valuable organic combinations. They show varied biological properties viz. anticancer, anticonvulsant, antimicrobial, anti-inflammatory, neuroprotective, antioxidant activity and so on. This diversity in the biological response makes it a highly prized moiety. Based on literature studies, various synthetic approaches like multicomponent reaction, click reaction, nano-catalysis and green chemistry have been employed to improve their selectivity, purity, product yield and pharmacokinetic activity. In this review article, we have summarized systematic approaches for the synthesis of thiazolidine and its derivatives, along with their pharmacological activity, including advantages of green synthesis, atom economy, cleaner reaction profile and catalyst recovery which will help scientists to probe and stimulate the study of these scaffolds.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Dinesh K. Agarwal
- Department of Pharmacy, B. N. University, MLSU, Udaipur, 313001 India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| |
Collapse
|
36
|
Bashary R, Vyas M, Nayak SK, Suttee A, Verma S, Narang R, Khatik GL. An Insight of Alpha-amylase Inhibitors as a Valuable Tool in the Management of Type 2 Diabetes Mellitus. Curr Diabetes Rev 2020; 16:117-136. [PMID: 31237215 DOI: 10.2174/1573399815666190618093315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/14/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Among the millions of people around the world, the most prevalent metabolic disorder is diabetes mellitus. Due to the drawbacks which are associated with commercially available antidiabetic agents, new therapeutic approaches are needed to be considered. Alpha-amylase is a membrane- bound enzyme which is responsible for the breakdown of polysaccharides such as starch to monosaccharides which can be absorbed. METHODS We searched the scientific database using alpha-amylase, diabetes, antidiabetic agents as the keywords. Here in, only peer-reviewed research articles were collected which were useful to our current work. RESULTS To overcome the research gap, the alpha-amylase enzyme is regarded as a good target for antidiabetic agents to design the drug and provide an alternate approach for the treatment of type 2 diabetes mellitus. Basically, alpha-amylase inhibitors are classified into two groups: proteinaceous inhibitors, and non-proteinaceous inhibitors. Recently, non-proteinaceous inhibitors are being explored which includes chalcones, flavones, benzothiazoles, etc. as the potential antidiabetic agents. CONCLUSION Herein, we discuss various potential antidiabetic agents which are strategically targeted alpha-amylase enzyme. These are having lesser side effects as compared to other antidiabetic agents, and are proposed to prevent the digestion and absorption of glucose leading to a decrease in the blood glucose level.
Collapse
Affiliation(s)
- Roqia Bashary
- Department of Pharmaceutical Chemistry, Kabul University, Kabul, Afghanistan
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Surendra Kumar Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Ashish Suttee
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Surajpal Verma
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gopal L Khatik
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
37
|
Duhan M, Singh R, Devi M, Sindhu J, Bhatia R, Kumar A, Kumar P. Synthesis, molecular docking and QSAR study of thiazole clubbed pyrazole hybrid as α-amylase inhibitor. J Biomol Struct Dyn 2019; 39:91-107. [DOI: 10.1080/07391102.2019.1704885] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Rimpy Bhatia
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
38
|
Bhatia R, Kadyan K, Duhan M, Devi M, Singh R, Kamboj RC, Kumar P. A Serendipitous Synthesis: SiO2‐HNO3Mediated Oxidative Aromatization and Regioselective Nitration of 1,3,5‐Trisubstituted‐4,5‐Dihydro‐1H‐Pyrazoles. ChemistrySelect 2019. [DOI: 10.1002/slct.201902285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rimpy Bhatia
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Kulbir Kadyan
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Meenakshi Duhan
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Meena Devi
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Rahul Singh
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Ramesh C. Kamboj
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Parvin Kumar
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| |
Collapse
|
39
|
Kumar P, Kumar A. Nucleobase sequence based building up of reliable QSAR models with the index of ideality correlation using Monte Carlo method. J Biomol Struct Dyn 2019; 38:3296-3306. [PMID: 31411551 DOI: 10.1080/07391102.2019.1656109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study describes in silico designing of aptamers against the influenza virus using Monte Carlo method. Aptamers are short, single-stranded oligonucleotides and these bind to an ample range of biologically important proteins which are related to many disease conditions. The affinities and specificities of aptamers are comparable to antibodies. In the medicinal chemistry, quantitative structure-activity relationship (QSAR) is an important skill which is used for drug design and development. To study the inhibitory activity of aptamers, we have developed QSAR models based on Monte Carlo method. The nucleobase sequence descriptors Bk, BBk and BBBk are used to generate the QSAR models. A number of statistical benchmarks together with index of ideality of correlation (IIC) is considered to validate the build QSAR models. Data set of 98 aptamers is divided into four random splits. The statistical criteria R2 = 0.8711 and CCC = 0.9207 of the validation set of split 3 are best, so the build QSAR model of split 3 is the paramount model. The aptamer fragment responsible for the promotors of endpoint increase and decrease are also determined. These fragments are applied to design new nine aptamers from the lead aptamer APT01.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
40
|
Kumar P, Kumar A, Sindhu J. In silico design of diacylglycerol acyltransferase-1 (DGAT1) inhibitors based on SMILES descriptors using Monte-Carlo method. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:525-541. [PMID: 31331203 DOI: 10.1080/1062936x.2019.1629998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
Diabetes, obesity and other diseases related to metabolism are worldwide health problems. These syndromes can be well treated when a particular enzyme-based therapy is developed. Diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) is a microsomal enzyme which is responsible for the synthesis of triglycerides from 1,2-diacylglycerol by catalyzing the acyl-CoA-dependent acylation. The obesity and type-II diabetes can be checked by the inhibition of DGAT1 enzyme. Quantitative structure-activity relationship (QSAR) modelling is an essential technique in drug design and development. To study the aspect of DGAT1 inhibitors, Monte-Carlo method-based QSAR was developed for 197 DGAT1 inhibitors. QSAR models were derived by using the optimal descriptor based on SMILES notation. Different statistical parameters including the novel index of ideality of correlation were applied to validate the generated QSAR models. Four random splits were prepared from the data set. The statistical criteria r2 = 0.8129, CCC = 0.8979 and Q2 = 0.7962 of the validation set of split 1 were the best; therefore, the developed QSAR model of split 1 was decided to be the leading model. The molecular fragments, which were promoter of endpoint increase or decrease were also determined. Thirteen new DGAT1 inhibitors were designed from the lead compound DGAT011.
Collapse
Affiliation(s)
- P Kumar
- Department of Chemistry, Kurukshetra University , Kurukshetra , India
| | - A Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology , Hisar , India
| | - J Sindhu
- Department of Chemsitry, COBS&H CCS Haryana Agriculture University , Hisar , India
| |
Collapse
|
41
|
Duan Y, Zhao Q, Yang Y, Zhang J, Tao X, Shen Y. Design and Synthesis of Novel Organic Luminescent Materials Based on Pyrazole Derivative. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yingxiang Duan
- Applied Chemistry Department, School of Material Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Qian Zhao
- Applied Chemistry Department, School of Material Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Yanhua Yang
- Applied Chemistry Department, School of Material Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Jinyang Zhang
- Applied Chemistry Department, School of Material Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Xuan Tao
- Jiang Su MO Opto‐Electronic Material Co. Ltd Qinglongshan Branch Road 1 Zhenjiang New District Zhenjiang 212132 China
| | - Yingzhong Shen
- Applied Chemistry Department, School of Material Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| |
Collapse
|
42
|
Kumar P, Kumar A, Sindhu J. Design and development of novel focal adhesion kinase (FAK) inhibitors using Monte Carlo method with index of ideality of correlation to validate QSAR. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:63-80. [PMID: 30793981 DOI: 10.1080/1062936x.2018.1564067] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Quantitative structure-activity relationship (QSAR) modelling of 55 focal adhesion kinase (FAK) (EC 2.7.10.2) inhibitors of triazinic nature was performed using the Monte Carlo method. The QSAR models were designed by CORAL software, and optimal descriptors were calculated with the simplified molecular input line entry system (SMILES). Four splits were made from the triazinic derivative data by random division into training, invisible training, calibration and validation sets. The QSAR results from these four random splits were robust, very simple, predictive and reliable. The best statistical parameters of the validation set (r2 = 0.8398 and Q2 = 0.7722) for the QSAR equation for split 3 with IIC = 0.9127 were obtained. The predictive potential of QSAR models of FAK inhibitors was explored by applying the index of ideality of correlation (IIC), which is a new criterion for the prediction of the potential for quantitative structure-property activity relationships (QSPRs/QSARs). The present method follows OECD principles.
Collapse
Affiliation(s)
- P Kumar
- a Department of Chemistry , Kurukshetra University , Kurukshetra , Haryana , India
| | - A Kumar
- b Department of Pharmaceutical Sciences , Guru Jambheshwar University of Science and Technology , Hisar , Haryana , India
| | - J Sindhu
- c K. M. Govt. College , Narwana , Haryana , India
| |
Collapse
|
43
|
Silica-supported ceric ammonium nitrate (CAN): a simple, mild and solid-supported reagent for quickest oxidative aromatization of Hantzsch 1,4-dihydropyridines. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0666-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Yousuf S, Khan KM, Salar U, Chigurupati S, Muhammad MT, Wadood A, Aldubayan M, Vijayan V, Riaz M, Perveen S. 2'-Aryl and 4'-arylidene substituted pyrazolones: As potential α-amylase inhibitors. Eur J Med Chem 2018; 159:47-58. [PMID: 30268823 DOI: 10.1016/j.ejmech.2018.09.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/25/2022]
Abstract
Acarbose and voglibose are well-known α-amylase inhibitors used for the management of type-II diabetes mellitus. Unfortunately, these well-known and clinically used inhibitors are also associated with several adverse effects. Therefore, there is still need to develop the safer therapy. Despite of a broad spectrum of biological significances of pyrazolone, it is infrequently evaluated for α-amylase inhibition. Current study deals with the synthesis and biological screening of aryl and arylidene substituted pyrazolones 1-18 for their potential α-amylase inhibitory activity. Structures of synthetic derivatives 1-18 were identified by different spectroscopic techniques. All compounds 1-18 (IC50 = 1.61 ± 0.16 μM to 2.38 ± 0.09 μM) exhibited significant to moderate inhibitory potential when compared to standard acarbose (IC50 = 1.46 ± 0.26 μM). A number of derivatives including 8-12 (IC50 = 1.68 ± 0.1 μM to 1.97 ± 0.07 μM) and 14-16 (IC50 = 1.61 ± 0.16 μM to 1.93 ± 0.07 μM) were found to be significantly active. Limited SAR suggested that different substitutions on compounds do not have any significant effect on the inhibitory potential. Compounds were found to be mixed-type inhibitors revealed by kinetic studies. However, in silico study was identified a number of key features participating in the interaction with the binding site of α-amylase enzyme.
Collapse
Affiliation(s)
- Sahar Yousuf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Uzma Salar
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Munira Taj Muhammad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Maha Aldubayan
- Department of Pharmacology, Faculty of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Venugopal Vijayan
- Faculty of Pharmacy, AIMST University, Semeling, 08100, Bedong, Kedah, Malaysia
| | - Muhammad Riaz
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, UCSS, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahnaz Perveen
- PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi, 75280, Pakistan
| |
Collapse
|
45
|
Ghonchepour E, Islami MR, Mostafavi H, Tikdari AM. Three-component reaction for an efficient synthesis of 5-hydroxy-1-phenyl-1H-pyrazoles containing a stable phosphorus ylide moiety. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1437619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ehsan Ghonchepour
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hamid Mostafavi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|