1
|
Chini A, Guha P, Rishi A, Bhat N, Covarrubias A, Martinez V, Devejian L, Nguyen BN, Mandal SS. HDLR-SR-BI Expression and Cholesterol Uptake are Regulated via Indoleamine-2,3-dioxygenase 1 in Macrophages under Inflammation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11253-11271. [PMID: 40309829 DOI: 10.1021/acs.langmuir.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Macrophages play crucial roles in inflammation, and their dysfunction is a contributing factor to various human diseases. Maintaining the balance of cholesterol and lipid metabolism is central to macrophage function, and any disruption in this balance increases the risk of conditions such as cardiovascular disease, atherosclerosis, and others. HDLR-SR-BI (SR-BI) is pivotal for reverse cholesterol transport and cholesterol homeostasis. Our studies demonstrate that the expression of SR-BI is reduced along with a decrease in cholesterol uptake in macrophages, both of which are regulated by the activation of NF-κB. Furthermore, we have discovered that indoleamine-2,3-dioxygenase 1 (IDO1), which is a critical player in tryptophan (Trp) catabolism, is crucial to the regulation of SR-BI expression. Inflammation leads to elevated levels of IDO1 and the associated Trp catabolite kynurenine (KYN) in macrophages. Interestingly, knockdown or inhibition of IDO1 results in the downregulation of LPS-induced inflammation, decreased KYN levels, and the restoration of SR-BI expression as well as cholesterol uptake in macrophages. Beyond LPS, stimulation with pro-inflammatory cytokine IFNγ exhibits similar trends in inflammatory response, IDO1 regulation, and cholesterol uptake in macrophages. These observations suggest that IDO1 plays a critical role in SR-BI expression and cholesterol uptake in macrophages under inflammation.
Collapse
Affiliation(s)
- Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nagashree Bhat
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Angel Covarrubias
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Valeria Martinez
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lucine Devejian
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Bao Nhi Nguyen
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
2
|
Liu Z, Yin J, Qiu T, Liu A, Yu Y, Yang S, Liu Z, Li Q. Reversing the immunosuppressive tumor microenvironment via "Kynurenine starvation therapy" for postsurgical triple-negative breast cancer treatment. J Control Release 2025; 383:113832. [PMID: 40349785 DOI: 10.1016/j.jconrel.2025.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/18/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Immunotherapy is a potential strategy to suppress the postoperative recurrence and metastasis of triple-negative breast cancer (TNBC). However, the excessive accumulation of kynurenine (Kyn) leads to immunosuppressive tumor microenvironment (TME) and impedes immunotherapeutic efficacy. Herein, a two-pronged approach through "Kynurenine Starvation Therapy" is proposed based on the in-situ hydrogel implantation for postsurgical treatment of TNBC. The hydrogel is constructed via Schiff base reaction between oxidized dextran (ODEX) and 8-arm poly(ethylene glycol) amine (8-arm PEG-NH2), which exhibits excellent biocompatibility and gradual biodegradability. The indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor NLG919 and kynureninase (KYNase) are noncovalently loaded into the hydrogel to prepare NLG919 + KYNase@Gel. The obtained hydrogel can sustainably release NLG919 and KYNase to synergistically deplete Kyn, thereby reversing immunosuppression to enhance the antitumor immunity within TME through "Kynurenine Starvation Therapy". Moreover, a single implantation of NLG919 + KYNase@Gel not only effectively inhibits the postoperative recurrence and metastasis in 4 T1 tumor-bearing mice, but also restrains the growth in an orthotopic TNBC mouse model. These findings highlight an innovative strategy to reinforce the antitumor immune response for the treatment of postsurgical TNBC.
Collapse
Affiliation(s)
- Zengguang Liu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Yin
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tianyuan Qiu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Aijiang Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanan Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shengcai Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Ziling Liu
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, The First Hospital of Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Chao PH, Chan V, Li SD. Nanomedicines modulate the tumor immune microenvironment for cancer therapy. Expert Opin Drug Deliv 2024; 21:1719-1733. [PMID: 39354745 DOI: 10.1080/17425247.2024.2412245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
INTRODUCTION In recent years, the evolution of immunotherapy as a means to trigger a robust antitumor immune response has revolutionized cancer treatment. Despite its potential, the effectiveness of cancer immunotherapy is hindered by low response rates and significant systemic side effects. Nanotechnology emerges as a promising frontier in shaping the future of cancer immunotherapy. AREAS COVERED This review elucidates the pivotal role of nanomedicine in reshaping the immune tumor microenvironment and explores innovative strategies pursued by diverse research groups to enhance the therapeutic efficacy of cancer immunotherapy. It discusses the hurdles encountered in cancer immunotherapy and the application of nanomedicine for small molecule immune modulators and nucleic acid therapeutics. It also highlights the advancements in DNA and mRNA vaccines facilitated by nanotechnology and outlines future trajectories in this evolving field. EXPERT OPINION Collectively, the integration of nanomedicine into cancer immunotherapy stands as a promising avenue to tackle the intricacies of the immune tumor microenvironment. Innovations such as immune checkpoint inhibitors and cancer vaccines have shown promise. Future developments will likely optimize nanoparticle design through artificial intelligence and create biocompatible, multifunctional nanoparticles, promising more effective, personalized, and durable cancer treatments, potentially transforming the field in the foreseeable future.
Collapse
Affiliation(s)
- Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Farrell R, Pascuzzi N, Chen YL, Kim M, Torres M, Gollahon L, Chen KHE. Prolactin Drives Iron Release from Macrophages and Uptake in Mammary Cancer Cells through CD44. Int J Mol Sci 2024; 25:8941. [PMID: 39201626 PMCID: PMC11354873 DOI: 10.3390/ijms25168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Iron is an essential element for human health. In humans, dysregulated iron homeostasis can result in a variety of disorders and the development of cancers. Enhanced uptake, redistribution, and retention of iron in cancer cells have been suggested as an "iron addiction" pattern in cancer cells. This increased iron in cancer cells positively correlates with rapid tumor growth and the epithelial-to-mesenchymal transition, which forms the basis for tumor metastasis. However, the source of iron and the mechanisms cancer cells adopt to actively acquire iron is not well understood. In the present study, we report, for the first time, that the peptide hormone, prolactin, exhibits a novel function in regulating iron distribution, on top of its well-known pro-lactating role. When stimulated by prolactin, breast cancer cells increase CD44, a surface receptor mediating the endocytosis of hyaluronate-bound iron, resulting in the accumulation of iron in cancer cells. In contrast, macrophages, when treated by prolactin, express more ferroportin, the only iron exporter in cells, giving rise to net iron output. Interestingly, when co-culturing macrophages with pre-stained labile iron pools and cancer cells without any iron staining, in an iron free condition, we demonstrate direct iron flow from macrophages to cancer cells. As macrophages are one of the major iron-storage cells and it is known that macrophages infiltrate tumors and facilitate their progression, our work therefore presents a novel regulatory role of prolactin to drive iron flow, which provides new information on fine-tuning immune responses in tumor microenvironment and could potentially benefit the development of novel therapeutics.
Collapse
Affiliation(s)
- Reagan Farrell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Nicholas Pascuzzi
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Yi-Ling Chen
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Mary Kim
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Miguel Torres
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| | - Kuan-Hui Ethan Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (R.F.); (N.P.); (M.T.); (L.G.)
| |
Collapse
|
5
|
Zhang J, Liu Y, Zhi X, Xu L, Tao J, Cui D, Liu TF. Tryptophan catabolism via the kynurenine pathway regulates infection and inflammation: from mechanisms to biomarkers and therapies. Inflamm Res 2024; 73:979-996. [PMID: 38592457 DOI: 10.1007/s00011-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND L-Tryptophan (L-Trp), an essential amino acid, is the only amino acid whose level is regulated specifically by immune signals. Most proportions of Trp are catabolized via the kynurenine (Kyn) pathway (KP) which has evolved to align the food availability and environmental stimulation with the host pathophysiology and behavior. Especially, the KP plays an indispensable role in balancing the immune activation and tolerance in response to pathogens. SCOPE OF REVIEW In this review, we elucidate the underlying immunological regulatory network of Trp and its KP-dependent catabolites in the pathophysiological conditions by participating in multiple signaling pathways. Furthermore, the KP-based regulatory roles, biomarkers, and therapeutic strategies in pathologically immune disorders are summarized covering from acute to chronic infection and inflammation. MAJOR CONCLUSIONS The immunosuppressive effects dominate the functions of KP induced-Trp depletion and KP-produced metabolites during infection and inflammation. However, the extending minor branches from the KP are not confined to the immune tolerance, instead they go forward to various functions according to the specific condition. Nevertheless, persistent efforts should be made before the clinical use of KP-based strategies to monitor and cure infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao Zhi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Tie Fu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Highway, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
6
|
Wu C, Spector SA, Theodoropoulos G, Nguyen DJM, Kim EY, Garcia A, Savaraj N, Lim DC, Paul A, Feun LG, Bickerdike M, Wangpaichitr M. Dual inhibition of IDO1/TDO2 enhances anti-tumor immunity in platinum-resistant non-small cell lung cancer. Cancer Metab 2023; 11:7. [PMID: 37226257 DOI: 10.1186/s40170-023-00307-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The impact of non-small cell lung cancer (NSCLC) metabolism on the immune microenvironment is not well understood within platinum resistance. We have identified crucial metabolic differences between cisplatin-resistant (CR) and cisplatin-sensitive (CS) NSCLC cells with elevated indoleamine 2,3-dioxygenase-1 (IDO1) activity in CR, recognized by increased kynurenine (KYN) production. METHODS Co-culture, syngeneic, and humanize mice models were utilized. C57BL/6 mice were inoculated with either Lewis lung carcinoma mouse cells (LLC) or their platinum-resistant counterpart (LLC-CR) cells. Humanized mice were inoculated with either A (human CS cells) or ALC (human CR cells). Mice were treated with either IDO1 inhibitor or TDO2 (tryptophan 2,3-dioxygenase-2) inhibitor at 200 mg/kg P.O. once a day for 15 days; or with a new-in-class, IDO1/TDO2 dual inhibitor AT-0174 at 170 mg/kg P.O. once a day for 15 days with and without anti-PD1 antibody (10 mg/kg, every 3 days). Immune profiles and KYN and tryptophan (TRP) production were evaluated. RESULTS CR tumors exhibited a more highly immunosuppressive environment that debilitated robust anti-tumor immune responses. IDO1-mediated KYN production from CR cells suppressed NKG2D on immune effector natural killer (NK) and CD8+ T cells and enhanced immunosuppressive populations of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Importantly, while selective IDO1 inhibition attenuated CR tumor growth, it concomitantly upregulated the TDO2 enzyme. To overcome the compensatory induction of TDO2 activity, we employed the IDO1/TDO2 dual inhibitor, AT-0174. Dual inhibition of IDO1/TDO2 in CR mice suppressed tumor growth to a greater degree than IDO1 inhibition alone. Significant enhancement in NKG2D frequency on NK and CD8+ T cells and a reduction in Tregs and MDSCs were observed following AT-1074 treatment. PD-L1 (programmed death-ligand-1) expression was increased in CR cells; therefore, we assessed dual inhibition + PD1 (programmed cell death protein-1) blocking and report profound anti-tumor growth and improved immunity in CR tumors which in turn extended overall survival in mice. CONCLUSION Our study reports the presence of platinum-resistant lung tumors that utilize both IDO1/TDO2 enzymes for survival, and to escape immune surveillance as a consequence of KYN metabolites. We also report early in vivo data in support of the potential therapeutic efficacy of the dual IDO1/TDO2 inhibitor AT-0174 as a part of immuno-therapeutic treatment that disrupts tumor metabolism and enhances anti-tumor immunity.
Collapse
Affiliation(s)
- Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Sydney A Spector
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | | | - Dan J M Nguyen
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Emily Y Kim
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Ashley Garcia
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
| | - Niramol Savaraj
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Diane C Lim
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Ankita Paul
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Lynn G Feun
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | | | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, USA.
- Department of Surgery, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Oweira H, Lahdou I, Mehrle S, Khajeh E, Nikbakhsh R, Ghamarnejad O, Terness P, Reißfelder C, Sadeghi M, Ramouz A. Kynurenine Is the Main Metabolite of Tryptophan Degradation by Tryptophan 2,3-Dioxygenase in HepG2 Tumor Cells. J Clin Med 2022; 11:jcm11164794. [PMID: 36013032 PMCID: PMC9410271 DOI: 10.3390/jcm11164794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
There are two main enzymes that convert tryptophan (Trp) to kynurenine (Kyn): tryptophan-2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Kyn accumulation can promote immunosuppression in certain cancers. In this study, we investigated Trp degradation to Kyn by IDO and TDO in primary human hepatocytes (PHH) and tumoral HepG2 cells. To quantify Trp-degradation and Kyn-accumulation, using reversed-phase high-pressure liquid chromatography, the levels of Trp and Kyn were determined in the culture media of PHH and HepG2 cells. The role of IDO in Trp metabolism was investigated by activating IDO with IFN-γ and inhibiting IDO with 1-methyl-tryptophan (1-DL-MT). The role of TDO was investigated using one of two TDO inhibitors: 680C91 or LM10. Real-time PCR was used to measure TDO and IDO expression. Trp was degraded in both PHH and HepG2 cells, but degradation was higher in PHH cells. However, Kyn accumulation was higher in the supernatants of HepG2 cells. Stimulating IDO with IFN-γ did not significantly affect Trp degradation and Kyn accumulation, even though it strongly upregulated IDO expression. Inhibiting IDO with 1-DL-MT also had no effect on Trp degradation. In contrast, inhibiting TDO with 680C91 or LM10 significantly reduced Trp degradation. The expression of TDO but not of IDO correlated positively with Kyn accumulation in the HepG2 cell culture media. Furthermore, TDO degraded L-Trp but not D-Trp in HepG2 cells. Kyn is the main metabolite of Trp degradation by TDO in HepG2 cells. The accumulation of Kyn in HepG2 cells could be a key mechanism for tumor immune resistance. Two TDO inhibitors, 680C91 and LM10, could be useful in immunotherapy for liver cancers.
Collapse
Affiliation(s)
- Hani Oweira
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Imad Lahdou
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Mehrle
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Rajan Nikbakhsh
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Terness
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Reißfelder
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Mahmoud Sadeghi
- Department of Transplantation Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ali Ramouz
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-32475
| |
Collapse
|
8
|
Attenuation of tryptophan metabolism by Fe chelators: A hypothesis regarding inhibiting tumor suppressive microenvironments in pancreatic ductal adenocarcinoma. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Yan D, Xu J, Wang X, Zhang J, Zhao G, Lin Y, Tan X. Spiro-Oxindole Skeleton Compounds Are Efficient Inhibitors for Indoleamine 2,3-Dioxygenase 1: An Attractive Target for Tumor Immunotherapy. Int J Mol Sci 2022; 23:4668. [PMID: 35563059 PMCID: PMC9104902 DOI: 10.3390/ijms23094668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an attractive heme enzyme for its significant function in cancer immunotherapy. Potent IDO1 inhibitors have been discovered for decades, whereas no clinical drugs are used for cancer treatment up to now. With the goal of developing medically valuable IDO inhibitors, we performed a systematic study of SAR405838 analogs with a spiro-oxindole skeleton in this study. Based on the expression and purification of human IDO1, the inhibitory activity of spiro-oxindole skeleton compounds to IDO1 was evaluated by IC50 and Ki values. The results demonstrated that inhibitor 3 exhibited the highest IDO1 inhibitory activity with IC50 at 7.9 μM among all inhibitors, which is ~six-fold of the positive control (4-PI). Moreover, inhibitor 3 was found to have the most effective inhibition of IDO1 in MCF-7 cancer cells without toxic effects. Molecular docking analysis revealed that the hydrophobic interaction stabilized the binding of inhibitor 3 to the IDO1 active site and made an explanation for the uncompetitive mode of inhibitors. Therefore, this study provides valuable insights into the screen of more potent IDO1 inhibitors for cancer immunotherapy.
Collapse
Affiliation(s)
- Daojing Yan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, China; (D.Y.); (X.W.)
| | - Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts of Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China;
| | - Xiang Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, China; (D.Y.); (X.W.)
| | - Jiaxing Zhang
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (J.Z.); (G.Z.)
| | - Gang Zhao
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (J.Z.); (G.Z.)
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, China; (D.Y.); (X.W.)
| |
Collapse
|
10
|
Kassab SE, Mowafy S. Structural Basis of Selective Human Indoleamine-2,3-dioxygenase 1 (hIDO1) Inhibition. ChemMedChem 2021; 16:3149-3164. [PMID: 34174026 DOI: 10.1002/cmdc.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Indexed: 11/08/2022]
Abstract
hIDO1 is a heme-dioxygenase overexpressed in the tumor microenvironment and is implicated in the survival of cancer cells. Metabolism of tryptophan to N-formyl-kynurenine by hIDO1 leads to immune suppression to result in cancer cell immune escape. In this article, we discuss the discovery of selective hIDO1 inhibitors for therapeutic intervention that have been promoted to clinical trials and for which crystallographic structural information is available for the respective inhibitor-enzyme complex. The structural insights are based on the complex crystal structures and the relative biological data profiles. The structural basis of selective hIDO1 inhibition, as discussed herein, opens new avenues to the discovery of novel inhibitors with improved activity profiles, selectivity, and distinct structure frameworks.
Collapse
Affiliation(s)
- Shaymaa Emam Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt.,Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States of America
| |
Collapse
|
11
|
Ryter SW. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int J Mol Sci 2021; 22:ijms22115509. [PMID: 34073678 PMCID: PMC8197128 DOI: 10.3390/ijms22115509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.
Collapse
|
12
|
STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer. Cell Immunol 2021; 366:104384. [PMID: 34182334 DOI: 10.1016/j.cellimm.2021.104384] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
Despite impressive clinical success, cancer immunotherapy based on immune checkpoint blockade remains ineffective in colorectal cancer (CRC). Stimulator of interferon genes (STING) is a novel potential target and STING agonists have shown potential anti-tumor efficacy. Combined therapy based on synergistic mechanism can overcome the resistance. However, STING agonists-based combination therapies are deficient. We designed different immunotherapy combinations, including STING agonist, indoleamine 2,3 dioxygenase (IDO) inhibitor and PD-1 blockade, with purpose of exploring which option can effectively inhibit CRC growth. To further explore the possible reasons of therapeutic effectiveness, we observed the combination therapy in C57BL/6Tmem173gt mice. Our findings demonstrated that STING agonist diABZI combined with IDO inhibitor 1-MT significantly inhibited tumor growth, even better than the three-drug combination, promoted the recruitment of CD8+ T cells and dendritic cells, and decreased the infiltration of myeloid-derived suppressor cells. We conclude that diABZI combined with 1-MT is a promising option for CRC.
Collapse
|
13
|
Ge H, Mao L, Zhao J, Wang Y, Shi D, Yang X, Wang X, Liu H, Yao X. Discovery of novel IDO1 inhibitors via structure-based virtual screening and biological assays. J Comput Aided Mol Des 2021; 35:679-694. [PMID: 33905074 DOI: 10.1007/s10822-021-00386-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the first and rate-limiting step in catabolism of tryptophan via the kynurenine pathway, which plays a pivotal role in the proliferation and differentiation of T cells. IDO1 has been proven to be an attractive target for many diseases, such as breast cancer, lung cancer, colon cancer, prostate cancer, etc. In this study, docking-based virtual screening and bioassays were conducted to identify novel inhibitors of IDO1. The cellular assay demonstrated that 24 compounds exhibited potent inhibitory activity against IDO1 at micromolar level, including 8 compounds with IC50 values below 10 μM and the most potent one (compound 1) with IC50 of 1.18 ± 0.04 μM. Further lead optimization based on similarity searching strategy led to the discovery of compound 28 as an excellent inhibitor with IC50 of 0.27 ± 0.02 μM. Then, the structure-activity relationship of compounds 1, 2, 8 and 14 analogues is discussed. The interaction modes of two compounds against IDO1 were further explored through a Python Based Metal Center Parameter Builder (MCPB.py) molecular dynamics simulation, binding free energy calculation and electrostatic potential analysis. The novel IDO1 inhibitors of compound 1 and its analogues could be considered as promising scaffold for further development of IDO1 inhibitors.
Collapse
Affiliation(s)
- Huizhen Ge
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Longfei Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Danfeng Shi
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xing Yang
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaorui Wang
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojun Yao
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
14
|
Dolšak A, Bratkovič T, Mlinarič L, Ogorevc E, Švajger U, Gobec S, Sova M. Novel Selective IDO1 Inhibitors with Isoxazolo[5,4- d]pyrimidin-4(5 H)-one Scaffold. Pharmaceuticals (Basel) 2021; 14:ph14030265. [PMID: 33804161 PMCID: PMC8001472 DOI: 10.3390/ph14030265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising target in immunomodulation of several pathological conditions, especially cancers. Here we present the synthesis of a series of IDO1 inhibitors with the novel isoxazolo[5,4-d]pyrimidin-4(5H)-one scaffold. A focused library was prepared using a 6- or 7-step synthetic procedure to allow a systematic investigation of the structure-activity relationships of the described scaffold. Chemistry-driven modifications lead us to the discovery of our best-in-class inhibitors possessing p-trifluoromethyl (23), p-cyclohexyl (32), or p-methoxycarbonyl (20, 39) substituted aniline moieties with IC50 values in the low micromolar range. In addition to hIDO1, compounds were tested for their inhibition of indoleamine 2,3-dioxygenase 2 and tryptophan dioxygenase, and found to be selective for hIDO1. Our results thus demonstrate a successful study on IDO1-selective isoxazolo[5,4-d]pyrimidin-4(5H)-one inhibitors, defining promising chemical probes with a novel scaffold for further development of potent small-molecule immunomodulators.
Collapse
Affiliation(s)
- Ana Dolšak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Larisa Mlinarič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Eva Ogorevc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Urban Švajger
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
| | - Matej Sova
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; (A.D.); (T.B.); (L.M.); (E.O.); (U.Š.); (S.G.)
- Correspondence: ; Tel.: +386-1-476-9577
| |
Collapse
|
15
|
Yan D, Xu J, Tan X. Inhibitory investigation of niacin derivatives on metalloenzyme indoleamine 2,3-dioxygenase 1 for its immunomodulatory function. Metallomics 2021; 13:6102551. [PMID: 33638642 DOI: 10.1093/mtomcs/mfab001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) have received wide attention for their roles in cancer immunotherapy. It highlights the important role of metalloenzymes in performing human physiological functions. Herein, the recombinant human IDO1 was expressed and purified successfully, and the protein molecule was characterized by SDS-PAGE, MALDI-TOF mass spectrometry, and metalloenzymology. A series of niacin derivatives were investigated with regard to their inhibition on metalloenzyme IDO1, and the resulting potential anti-cancer activities in cell lines. Among the niacin derivatives, 4,4,4-trifluoro-1-(pyridin-3-yl)-butane-1,3-dione (compound 9) was found to be the most effective inhibitor to IDO1 in HepG-2 cells, with an EC50 of 11 µM with low cytotoxicity. The IC50 value of compound 9 with trifluoroethyl group in enzymatic inhibition was shown to be ∼5 times more potent than a positive control 4-phenylimidazole. The interaction between compound 9 and IDO1 was verified by isothermal titration calorimetry and molecular docking study. The most favorable molecular docking results revealed that functional groups of compound 9 contributed to the binding of 9 to IDO1 through IDO1-heme coordination, H-bond interactions and hydrophobic contacts. Our finding provides a strategy for the development of new inhibitor candidates for the therapeutic inhibition of IDO1.
Collapse
Affiliation(s)
- Daojing Yan
- Department of Chemistry and the Institute of Biomedical Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangshi Tan
- Department of Chemistry and the Institute of Biomedical Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China
| |
Collapse
|
16
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2020; 9:1777625. [PMID: 32934882 PMCID: PMC7466863 DOI: 10.1080/2162402x.2020.1777625] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first, rate-limiting step of the so-called “kynurenine pathway”, which converts the essential amino acid L-tryptophan (Trp) into the immunosuppressive metabolite L-kynurenine (Kyn). While expressed constitutively by some tissues, IDO1 can also be induced in specific subsets of antigen-presenting cells that ultimately favor the establishment of immune tolerance to tumor antigens. At least in part, the immunomodulatory functions of IDO1 can be explained by depletion of Trp and accumulation of Kyn and its derivatives. In animal tumor models, genetic or pharmacological IDO1 inhibition can cause the (re)activation of anticancer immune responses. Similarly, neoplasms expressing high levels of IDO1 may elude anticancer immunosurveillance. Therefore, IDO1 inhibitors represent promising therapeutic candidates for cancer therapy, and some of them have already entered clinical evaluation. Here, we summarize preclinical and clinical studies testing IDO1-targeting interventions for oncologic indications.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
17
|
Liu X, Zhang Y, Duan H, Luo Q, Liu W, Liang L, Wan H, Chang S, Hu J, Shi H. Inhibition Mechanism of Indoleamine 2, 3-Dioxygenase 1 (IDO1) by Amidoxime Derivatives and Its Revelation in Drug Design: Comparative Molecular Dynamics Simulations. Front Mol Biosci 2020; 6:164. [PMID: 32047753 PMCID: PMC6997135 DOI: 10.3389/fmolb.2019.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023] Open
Abstract
For cancer treatment, in addition to the three standard therapies of surgery, chemotherapy, and radiotherapy, immunotherapy has become the fourth internationally-recognized alternative treatment. Indoleamine 2, 3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan to kynurenine causing lysine depletion, which is an important target in the research and development of anticancer drugs. Epacadostat (INCB024360) is currently one of the most potent IDO1 inhibitors, nevertheless its inhibition mechanism still remains elusive. In this work, comparative molecular dynamics simulations were performed to reveal that the high inhibitory activity of INCB024360 mainly comes from two aspects: disturbing the ligand delivery tunnel and then preventing small molecules such as oxygen and water molecules from accessing the active site, as well as hindering the shuttle of substrate tryptophan with product kynurenine through the heme binding pocket. The scanning of key residues showed that L234 and R231 residues both were crucial to the catalytic activity of IDO1. With the association with INCB024360, L234 forms a stable hydrogen bond with G262, which significantly affects the spatial position of G262-A264 loop and then greatly disturbs the orderliness of ligand delivery tunnel. In addition, the cleavage of hydrogen bond between G380 and R231 increases the mobility of the GTGG conserved region, leading to the closure of the substrate tryptophan channel. This work provides new ideas for understanding action mechanism of amidoxime derivatives, improving its inhibitor activity and developing novel inhibitors of IDO1.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yiwen Zhang
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaichuan Duan
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Qing Luo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Shan Chang
- School of Electrical and Information Engineering, Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
18
|
Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E. The Multifaceted Role of Heme in Cancer. Front Oncol 2020; 9:1540. [PMID: 32010627 PMCID: PMC6974621 DOI: 10.3389/fonc.2019.01540] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Heme, an iron-containing porphyrin, is of vital importance for cells due to its involvement in several biological processes, including oxygen transport, energy production and drug metabolism. Besides these vital functions, heme also bears toxic properties and, therefore, the amount of heme inside the cells must be tightly regulated. Similarly, heme intake from dietary sources is strictly controlled to meet body requirements. The multifaceted nature of heme renders it a best candidate molecule exploited/controlled by tumor cells in order to modulate their energetic metabolism, to interact with the microenvironment and to sustain proliferation and survival. The present review summarizes the literature on heme and cancer, emphasizing the importance to consider heme as a prominent player in different aspects of tumor onset and progression.
Collapse
Affiliation(s)
- Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| |
Collapse
|
19
|
Torrens-Spence MP, Liu CT, Weng JK. Engineering New Branches of the Kynurenine Pathway To Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeast. ACS Synth Biol 2019; 8:2735-2745. [PMID: 31714755 DOI: 10.1021/acssynbio.9b00368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kynurenine pathway, named after its nonproteinogenic amino acid precursor l-kynurenine, is responsible for the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in eukaryotes. Oxo-(2-aminophenyl) and quinoline molecules downstream from l-kynurenine also serve as antagonists of several receptors of the central nervous system in mammals. In this study, we engineered new biosynthetic routes in yeast Saccharomyces cerevisiae to produce a suite of l-kynurenine-derived natural products. Overexpression of Homo sapiens l-tryptophan 2,3-dioxygenase (HsTDO2) in S. cerevisiae led to a marked increase in the production of l-kynurenine and downstream metabolites. Using this background, new branch points to the kynurenine pathway were added through the incorporation of a Psilocybe cubensis noncanonical L-aromatic amino acid decarboxylase (PcncAAAD) capable of catalyzing both decarboxylation and decarboxylation-dependent oxidative-deamination reactions of l-kynurenine and 3-hydroxy-l-kynurenine to yield their corresponding monoamines, aldehydes, and downstream nonenzymatically cyclized quinolines. The PcncAAAD-catalyzed decarboxylation products, kynuramine and 3-hydroxykynuramine, could further be converted to quinoline scaffolds through the addition of H. sapiens monoamine oxidase A (HsMAO-A). Finally, by incorporating upstream regiospecific l-tryptophan halogenases into the engineering scheme, we produced a number of halogenated oxo-(2-aminophenyl) and quinoline compounds. This work illustrates a synthetic biology approach to expand primary metabolic pathways in the production of novel natural-product-like scaffolds amenable for downstream functionalization.
Collapse
Affiliation(s)
| | - Chun-Ting Liu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, Li Y. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol 2018; 11:100. [PMID: 30068361 PMCID: PMC6090955 DOI: 10.1186/s13045-018-0644-y] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Indoleamine 2, 3-dioxygenases (IDO1 and IDO2) and tryptophan 2, 3-dioxygenase (TDO) are tryptophan catabolic enzymes that catalyze the conversion of tryptophan into kynurenine. The depletion of tryptophan and the increase in kynurenine exert important immunosuppressive functions by activating T regulatory cells and myeloid-derived suppressor cells, suppressing the functions of effector T and natural killer cells, and promoting neovascularization of solid tumors. Targeting IDO1 represents a therapeutic opportunity in cancer immunotherapy beyond checkpoint blockade or adoptive transfer of chimeric antigen receptor T cells. In this review, we discuss the function of the IDO1 pathway in tumor progression and immune surveillance. We highlight recent preclinical and clinical progress in targeting the IDO1 pathway in cancer therapeutics, including peptide vaccines, expression inhibitors, enzymatic inhibitors, and effector inhibitors.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China. .,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Xu Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lei Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zhaojian Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
21
|
Luo B, Que ZJ, Zhou ZY, Wang Q, Dong CS, Jiang Y, Hu B, Shi H, Jin Y, Liu JW, Li HG, Wang L, Tian JH. Feiji Recipe inhibits the growth of lung cancer by modulating T-cell immunity through indoleamine-2,3-dioxygenase pathway in an orthotopic implantation model. JOURNAL OF INTEGRATIVE MEDICINE 2018; 16:283-289. [PMID: 29752140 DOI: 10.1016/j.joim.2018.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/15/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Escape from the body's immune response is a basic characteristic of lung cancer, and indoleamine-2,3-dioxygenase (IDO) plays a key role in mediating immune escape of non-small-cell lung cancer, which leads to recurrence and metastasis. Feiji Recipe, a compound Chinese herbal medicine, has the effect of stabilizing lesions and prolonging survival in patients with lung cancer. The purpose of this study was to investigate the mechanisms underlying the anticancer properties of Feiji Recipe. METHODS An orthotopic transplant model of mouse Lewis lung cancer, with stable expression of IDO gene, was established in C57BL/6 mice. Optical imaging was used to observe the effects of Feiji Recipe in the treatment of lung cancer in vivo. The effects of Feiji Recipe on the proliferation of mouse Lewis lung cancer cell line 2LL, 2LL-enhanced green fluorescent protein (2LL-EGFP) and 2LL-EGFP-IDO were investigated, and the apoptosis of T-cells was examined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide using flow cytometry. Chemical composition of Feiji Recipe was validated by high-performance liquid chromatography. RESULTS Compared to the control group, the survival of animals treated with Feiji Recipe was significantly prolonged (P = 0.0074), and the IDO protein level decreased (P = 0.0072); moreover, the percentages of CD4+CD25+ T-cells and Foxp3+ T-cells were significantly decreased (P < 0.05). The molecular mechanism of Feiji Recipe against lung cancer may relate to the regulation of immune cells, such as T-cells and regulatory T-cells. CONCLUSION The molecular mechanism of Feiji Recipe in treatment of lung cancer is to restore the function of T-cells in the cancer microenvironment through interfering with the IDO pathway.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/enzymology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/physiopathology
- Cell Proliferation/drug effects
- Disease Models, Animal
- Drugs, Chinese Herbal/administration & dosage
- Growth Inhibitors/administration & dosage
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/enzymology
- Lung Neoplasms/immunology
- Lung Neoplasms/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Bin Luo
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zu-Jun Que
- Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Zhi-Yi Zhou
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing Wang
- Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Chang-Sheng Dong
- Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Yi Jiang
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bing Hu
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China
| | - Hui Shi
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Jin
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-Wen Liu
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - He-Gen Li
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lin Wang
- Department of Nephrology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jian-Hui Tian
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Oncology Institute of Traditional Chinese Medicine, Institute of TCM Oncology, Shanghai 200032, China.
| |
Collapse
|