1
|
Michael S, Jeyaraman P, Marimuthu B, Rajamanikam R, Thanasamy R, Arunsunai Kumar K, Mitu L, Raman N. Pharmaceutical manifestation of Knoevenagel condensed metal (II) complexes through virtual, in vitro and in vivo assessments. J Biomol Struct Dyn 2025; 43:4028-4042. [PMID: 38189286 DOI: 10.1080/07391102.2023.2301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Sulphur containing compounds possess a great deal of interest due to wide range of beneficial activities towards biotic species. This work also deals with the study of biological examination of newly synthesized sulphur containing Cu(II) and Zn(II) complexes derived from (E)-4-(phenylimino)-3-((E)-1-(phenylimino)ethyl)pent-2-ene-1-thiol Schiff bases. Moreover, the DNA nuclease efficiency of the synthesized metal complexes is studied by UV absorption studies, Fluorescence studies, Viscosity and CV titrations which confirm the intercalative mode of binding. Pharmacokinetic studies and drug like activity of these compounds are screened with the help of SWISS ADME online freeware. Their morphological nature is corroborated by various spectral techniques. Optimized geometry and biologically accessible nature of the synthesized compounds are investigated by Gaussian 09 W software. Interestingly, molecular docking studies are carried out against cancer DNA and 6J10 cancer cell. Anti-inflammatory and in vitro antioxidant activities have been studied to validate the theoretical prediction. Based on these preliminary pharmacological activities, the in vitro cytotoxicity and in vivo antitumor activities are examined using MCF-7, HeLa, Hep-2, HepG-2 and Ehrlich ascites carcinoma (EAC) cell lines. All the above examinations reveal that the nitro substituted transition metal complexes possess higher biological bustle.
Collapse
Affiliation(s)
- Samuel Michael
- Research Department of Chemistry, VHNSN College, Virudhungar, India
- Department of Chemistry, PSR Engineering College, Sivakasi, India
| | - Porkodi Jeyaraman
- Post Graduate and Research Department of Chemistry, The Standard Fireworks Rajaratnam College for Women (Autonomous), Sivakasi, India
| | | | | | - Radha Thanasamy
- Department of Chemistry, Saiva Bhanu Kshatriya College, Aruppukottai, India
| | | | - Liviu Mitu
- Department of Chemistry, University of Pitesti, Pitesti, Romania
| | - Natarajan Raman
- Research Department of Chemistry, VHNSN College, Virudhungar, India
| |
Collapse
|
2
|
Ćorović K, Stojković DL, Petrović ĐS, Jovičić Milić SS, Đukić MB, Radojević ID, Raković I, Jurišević M, Gajović N, Jovanović M, Marinković J, Jovanović I, Stojanović B. Newly synthesized palladium(II) complexes with dialkyl esters of ( S, S)-propylenediamine- N, N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid: in vitro investigation of biological activities and HSA/DNA binding. Dalton Trans 2024; 53:7922-7938. [PMID: 38644680 DOI: 10.1039/d4dt00659c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The four new ligands, dialkyl esters of (S,S)-propylenediamine-N,N'-di-(2,2'-di-(4-hydroxy-benzil))acetic acid (R2-S,S-pddtyr·2HCl) (R = ethyl (L1), propyl (L2), butyl (L3), and pentyl (L4)) and corresponding palladium(II) complexes have been synthesized and characterized by microanalysis, infrared, 1H NMR and 13C NMR spectroscopy. In vitro cytotoxicity was evaluated using the MTT assay on four tumor cell lines, including mouse mammary (4T1) and colon (CT26), and human mammary (MDA-MD-468) and colon (HCT116), as well as non-tumor mouse mesenchymal stem cells. Using fluorescence spectroscopy were investigated the interactions of new palladium(II) complexes [PdCl2(R2-S,S-pddtyr)]; (R = ethyl (C1), propyl (C2), butyl (C3), and pentyl (C4)) with calf thymus human serum albumin (HSA) and DNA (CT-DNA). The high values of the binding constants, Kb, and the Stern-Volmer quenching constant, KSV, show the good binding of all complexes for HSA and CT-DNA. The mentioned ligands and complexes were also tested on in vitro antimicrobial activity against 11 microorganisms. Testing was performed by the microdilution method, where the minimum inhibitory concentration (MMC) and the minimum microbicidal concentration (MMC) were determined.
Collapse
Affiliation(s)
- Kemal Ćorović
- Community Health Center Tutin, Department of Emergency Medicine, Bogoljuba Čukića 12, 36320 Tutin, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Danijela Lj Stojković
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia.
| | - Đorđe S Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Sandra S Jovičić Milić
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia.
| | - Maja B Đukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Ivana D Radojević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Ivana Raković
- University of Kragujevac, Faculty of Medical Sciences, Department of Infectious Diseases, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Milena Jurišević
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Nevena Gajović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Marina Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Otorinolaringology, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Jovana Marinković
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Ivan Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Bojan Stojanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
- University of Kragujevac, Faculty of Medical Sciences, Department of Surgery, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| |
Collapse
|
3
|
Petrović ĐS, Jovičić Milić SS, Đukić MB, Radojević ID, Jurišević MM, Gajović NM, Petrović A, Arsenijević NN, Jovanović IP, Avdović E, Stojković DL, Jevtić VV. Synthesis, characterization, HSA binding, molecular docking, cytotoxicity study, and antimicrobial activity of new palladium(II) complexes with propylenediamine derivatives of phenylalanine. J Inorg Biochem 2023; 246:112283. [PMID: 37301165 DOI: 10.1016/j.jinorgbio.2023.112283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The four new ligands, propylenediamine derivatives of phenylalanine (R2-S,S-pddbaˑ2HCl; L1-L4) and their palladium(II) complexes (C1-C4) were synthesized and characterized by elemental analysis, infrared, 1H and 13C NMR spectroscopy. The interactions of new palladium(II) complexes with human serum albumin (HSA) were studied by fluorescence spectroscopy. All investigated compounds can be transported to target cells by binding to HSA, but complex C4 interacts most strongly. Molecular docking simulations were applied to comprehend the binding of the complex to the molecular target of HSA. Obtained results are in good correlations with experimental data regarding binding affinity by HSA. In vitro cytotoxicity activities were investigated on four tumor cell lines (mouse mammary (4 T1) and colon (CT26), human mammary (MDA-MD-468) and colon (HCT116)) and mouse mesenchymal stem cells as non-tumor control cells. Cytotoxic capacity was determined by MTT test and according to obtained results ligand L4 stands out as the most active and selective compound and as a good candidate for future in vivo testing. Further examination of the ligand L4 and corresponding complex C4 led to the conclusion that both induced cell death mainly by apoptosis. Ligand L4 facilitated cycle arrest in G0/G1 phase and decreased proliferative capacity of tumor cells. In vitro antimicrobial activity for ligands and corresponding Pd(II) complexes was investigated against eleven microorganisms (eight strains of pathogenic bacteria and three yeast species) using microdilution method. The minimum inhibitory concentration and minimum microbicidal concentration were determined.
Collapse
Affiliation(s)
- Đorđe S Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Sandra S Jovičić Milić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Maja B Đukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Ivana D Radojević
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia
| | - Milena M Jurišević
- University of Kragujevac, Faculty of Medical Sciences, Department of Clinical pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Nevena M Gajović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Anđela Petrović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Nebojša N Arsenijević
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Ivan P Jovanović
- University of Kragujevac, Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Republic of Serbia
| | - Edina Avdović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - Danijela Lj Stojković
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - Verica V Jevtić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Republic of Serbia.
| |
Collapse
|
4
|
Michael S, Jeyaraman P, Marimuthu B, Rajasekar R, Thanasamy R, Kumar KA, Raman N. Influence of electron density on the biological activity of aniline substituted Schiff base: in silico, in vivo and in vitro authentication. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Petrović ĐS, Milić SSJ, Đukić MB, Radojević ID, Jelić RM, Jurišević MM, Radić GP, Gajović NM, Arsenijević NN, Jovanović IP, Marković NV, Lj. Stojković D, Jevtić VV. Synthesis, characterization, HSA/DNA binding, cytotoxicity study, and antimicrobial activity of new palladium(II) complexes with some esters of (S,S)-propylenediamine-N,N'-di-2-(3-methyl)butanoic acid. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ganji N, Daravath S, Rambabu A, Venkateswarlu K, Shiva Shankar D, Shivaraj. Exploration of DNA interaction, antimicrobial and antioxidant studies on binary transition metal complexes with isoxazole Schiff bases: Preparation and spectral characterization. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Đukić MB, Jeremić MS, Filipović IP, Klisurić OR, Kojić VV, Jakimov DS, Jelić RM, Onnis V, Matović ZD. Synthesis, characterization, HSA/DNA interactions and antitumor activity of new [Ru(η 6-p-cymene)Cl 2(L)] complexes. J Inorg Biochem 2020; 213:111256. [PMID: 32980642 DOI: 10.1016/j.jinorgbio.2020.111256] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Three new ruthenium(II) complexes were synthesized from different substituted isothiazole ligands 5-(methylamino)-3-pyrrolidine-1-ylisothiazole-4-carbonitrile (1), 5-(methylamino)-3-(4-methylpiperazine-1-yl)isothiazole-4-carbonitrile (2) and 5-(methylamino)-3-morpholine-4-ylisothiazole-4-carbonitrile (3): [Ru(η6-p-cymene)Cl2(L1)]·H2O (4), [Ru(η6-p-cymene)Cl2(L2)] (5) and [Ru(η6-p-cymene)Cl2(L3)] (6). All complexes were characterized by IR, UV-Vis, NMR spectroscopy, and elemental analysis. The molecular structures of all ligands and complexes 4 and 6 were determined by an X-ray. The results of the interactions of CT-DNA (calf thymus deoxyribonucleic acid) and HSA (human serum albumin) with ruthenium (II) complexes reveal that complex 4 binds well to CT-DNA and HSA. Kinetic and thermodynamic parameters for the reaction between complex and HSA confirmed the associative mode of interaction. The results of Quantum mechanics (QM) modelling and docking experiments toward DNA dodecamer and HSA support the strongest binding of the complex 4 to DNA major groove, as well as its binding to IIa domain of HSA with the lowest ΔG energy, which agrees with the solution studies. The modified GOLD docking results are indicative for Ru(p-cymene)LCl··(HSA··GLU292) binding and GOLD/MOPAC(QM) docking/modelling of DNA/Ligand (Ru(II)-N(7)dG7) covalent binding. The cytotoxic activity of compounds was evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Neither of the tested compounds shows activity against a healthy MRC-5 cell line while the MCF-7 cell line is the most sensitive to all. Compounds 3, 4 and 5 were about two times more active than cisplatin, while the antiproliferative activity of 6 was almost the same as with cisplatin. Flow cytometry analysis showed the apoptotic death of the cells with a cell cycle arrest in the subG1 phase.
Collapse
Affiliation(s)
- Maja B Đukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Marija S Jeremić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Ignjat P Filipović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Vesna V Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Dimitar S Jakimov
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Doktora Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Ratomir M Jelić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Valentina Onnis
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, University Campus, S.P. n° 8, Km 0.700, I-09042 Monserrato (CA), Italy
| | - Zoran D Matović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
8
|
Jovičić Milić SS, Jevtić VV, Lj. Stojković D, Petrović ĐS, Avdović EH, Marković ZS, Radojević ID, Čomić L, Mladenović VS. Synthesis, characterization and antimicrobial activity of palladium(II) complexes with O,O'-dialkyl esters of (S,S)-ethylenediamine-N,N'-di-(3,3′-1H-indol-3yl)-propionic acid. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Gao EJ, Hui Y, Wang N, Jia ZL, Zhao HW, Wu SY, Zhu MC. Synthesis, Crystal Structures, Interaction with DNA, Cytotoxicity, and Apoptosis Studies of Co(II), Cd(II) Complexes Bearing Pyrazine-2,3-dicarboxylic Acid. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420080035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Recent Studies on the Antimicrobial Activity of Transition Metal Complexes of Groups 6–12. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2020026] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is an increasingly serious threat to global public health that requires innovative solutions to counteract new resistance mechanisms emerging and spreading globally in infectious pathogens. Classic organic antibiotics are rapidly exhausting the structural variations available for an effective antimicrobial drug and new compounds emerging from the industrial pharmaceutical pipeline will likely have a short-term and limited impact before the pathogens can adapt. Inorganic and organometallic complexes offer the opportunity to discover and develop new active antimicrobial agents by exploiting their wide range of three-dimensional geometries and virtually infinite design possibilities that can affect their substitution kinetics, charge, lipophilicity, biological targets and modes of action. This review describes recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. It focuses on the effectiveness of the metal complexes in relation to the rich structural chemical variations of the same. The aim is to provide a short vade mecum for the readers interested in the subject that can complement other reviews.
Collapse
|
11
|
Pereira AKDS, Manzano CM, Nakahata DH, Clavijo JCT, Pereira DH, Lustri WR, Corbi PP. Synthesis, crystal structures, DFT studies, antibacterial assays and interaction assessments with biomolecules of new platinum(ii) complexes with adamantane derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj02009e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synthesis, crystal structures and antibacterial activities of new Pt(ii) complexes with adamantane derivatives are presented in this article.
Collapse
Affiliation(s)
| | | | | | | | | | - Wilton Rogério Lustri
- Department of Biological and Health Sciences
- University of Araraquara
- UNIARA
- São Paulo
- Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry
- University of Campinas – UNICAMP
- 13083-970 Campinas
- Brazil
| |
Collapse
|
12
|
Aseman MD, Aryamanesh S, Shojaeifard Z, Hemmateenejad B, Nabavizadeh SM. Cycloplatinated(II) Derivatives of Mercaptopurine Capable of Binding Interactions with HSA/DNA. Inorg Chem 2019; 58:16154-16170. [DOI: 10.1021/acs.inorgchem.9b02696] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Shiva Aryamanesh
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Zahra Shojaeifard
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Bahram Hemmateenejad
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, 71348-53734, Iran
| | - S. Masoud Nabavizadeh
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|