1
|
Matono T, Ueno S, Kato Y, Umehara N, Lang Z, Li Y, Ninomiya W, Elhallal M, Gonzales-Yañez EO, Capron M, Ishikawa S, Ueda W, Sano T, Sadakane M. Preparation and isolation of mono-Nb substituted Keggin-type phosphomolybdic acid and its application as an oxidation catalyst for isobutylaldehyde and Wacker-type oxidation. Dalton Trans 2023. [PMID: 37971057 DOI: 10.1039/d3dt02451b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The potassium and proton mixed salt of mono-Nb substituted Keggin-type phosphomolybdate, KH3[PMo11NbO40], was isolated in a pure form by reacting Keggin-type phosphomolybdic acid (H3[PMo12O40]) and potassium hexaniobate (K8Nb6O19) in water, followed by freeze-drying. The all protonic form, H4[PMo11NbO40], was isolated via proton exchange with H-resin and subsequent freeze-drying. The most crucial factor to isolate KH3[PMo11NbO40] and H4[PMo11NbO40] in pure forms is the evaporation of water using the freeze-drying method. Using a similar procedure, the potassium salt of the di-Nb substituted compound K5[PMo10Nb2O40] was isolated. H4[PMo11NbO40] exhibited high catalytic activity for oxidizing isobutylaldehyde to methacrolein and moderate catalytic activity for the Wacker-type oxidation of allyl phenyl ether when combined with Pd(OAc)2.
Collapse
Affiliation(s)
- Takashi Matono
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Shinsuke Ueno
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Yuki Kato
- MMA R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Ootake, Hiroshima 739-0693, Japan
| | - Naoya Umehara
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Zhongling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wataru Ninomiya
- MMA R&D Center, Mitsubishi Chemical Corporation, 20-1, Miyuki-cho, Ootake, Hiroshima 739-0693, Japan
| | - Maher Elhallal
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Edgar Osiris Gonzales-Yañez
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Mickael Capron
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tsuneji Sano
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527, Japan.
| |
Collapse
|
2
|
Volchek VV, Kompankov NB, Sokolov MN, Abramov PA. Proton Affinity in the Chemistry of Beta-Octamolybdate: HPLC-ICP-AES, NMR and Structural Studies. Molecules 2022; 27:8368. [PMID: 36500457 PMCID: PMC9738851 DOI: 10.3390/molecules27238368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The affinity of [β-Mo8O26]4- toward different proton sources has been studied in various conditions. The proposed sites for proton coordination were highlighted with single crystal X-ray diffraction (SCXRD) analysis of (Bu4N)3[β-{Ag(py-NH2)Mo8O26]}] (1) and from analysis of reported structures. Structural rearrangement of [β-Mo8O26]4- as a direct response to protonation was studied in solution with 95Mo NMR and HPLC-ICP-AES techniques. A new type of proton transfer reaction between (Bu4N)4[β-Mo8O26] and (Bu4N)4H2[V10O28] in DMSO results in both polyoxometalates transformation into [V2Mo4O19]4-, which was confirmed by the 95Mo, 51V NMR and HPLC-ICP-AES techniques. The same type of reaction with [H4SiW12O40] in DMSO leads to metal redistribution with formation of [W2Mo4O19]2-.
Collapse
Affiliation(s)
- Victoria V. Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolay B. Kompankov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University Named after B.N. Yeltsin, 620075 Ekaterinburg, Russia
| |
Collapse
|
3
|
Shmakova AA, Sukhikh TS, Volchek VV, Yanshole V, Stass DV, Filatov EY, Glebov EM, Abramov PA, Sokolov MN. Niobium uptake by {P2W12} polyoxoanion with [NbO(C2O4)2(H2O)2]− as Nb source. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Shmakova AA, Berezin AS, Abramov PA, Sokolov MN. Self-Assembly of Ag +/[PW 11NbO 40] 4- Complexes in Nonaqueous Solutions. Inorg Chem 2020; 59:1853-1862. [PMID: 31967809 DOI: 10.1021/acs.inorgchem.9b03064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembly between Ag+ and [PW11NbO40]4- in N- and O-donor solvents (nitriles and amides) has been studied. In the case of dimethylformamide (DMF), formation of a yellow [Ag4(DMF)12][PW11NbO40] (1a) metastable phase and a colorless [Ag4(DMF)10][PW11NbO40] (1) stable phase was observed. In acetonitrile (CH3CN), the product was [Ag(CH3CN)4]2{[Ag(CH3CN)3]2[PW11NbO40]} (2a). By contrast, [SiW12O40]4- of the same size and charge as [PW11NbO40]4- produces [Ag(CH3CN)3]4[SiW12O40] (3a). Partial desolvation of 2a and 3a leads to Ag4[PW11NbO40]·7.5CH3CN (2) and Ag4[SiW12O40]·7.5CH3CN (3), respectively. The CH3CN molecules in the structure of 2 are labile, and this compound was used as the starting material to study solvent-exchange processes in N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMA), diethylformamide (DEF), and benzonitrile (PhCN) solutions. These solvent reactions yield [Ag(DMA)4][Ag3(DMA)6][PW11NbO40] (4), [Ag2(NMP)4(CH3CN)]2[PW11NbO40]·1.3NMP (5a), [Ag2(NMP)5]2[PW11NbO40] (5b), Ag4[PW11NbO40]·9.5DEF (6), and [Ag(PhCN)4]2[{Ag(PhCN)3}2PW11NbO40] (7). All products were isolated and characterized by single-crystal X-ray diffraction (except for 2 and 3), IR, elemental analysis, and thermogravimetric analysis techniques. The O-donor solvents favor polynuclear, solvent-bridged cationic aggregates. In the case of DMF, DMA, and DEF discrete, tri- and tetranuclear polycations are observed, while in the case of NMP, the formation of infinite polycationic structures takes place. By contrast, the N-donor solvents (CH3CN and PhCN) favor mononuclear cations, which can exist either as distorted tetrahedral, isolated [Ag(Solv)4]+ cations or as pseudotriangular {Ag(Solv)3}+ units, additionally coordinated to a polyoxometalate. Screening of the luminescent properties for solid samples of 1-7 revealed that only 5a/5b and 7 are emissive. In particular, the sample containing 5a and 5b demonstrates long-lived phosphorescence with a 30 ms lifetime.
Collapse
Affiliation(s)
- Alexandra A Shmakova
- Nikolaev Institute of Inorganic Chemistry , 3 Akad. Lavrentiev Avenue , 630090 Novosibirsk , Russia
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry , 3 Akad. Lavrentiev Avenue , 630090 Novosibirsk , Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry , 3 Akad. Lavrentiev Avenue , 630090 Novosibirsk , Russia.,South Ural State University , Prospekt Lenina 76 , 454080 Chelyabinsk , Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry , 3 Akad. Lavrentiev Avenue , 630090 Novosibirsk , Russia.,Novosibirsk State University , 2 Pirogova strasse , 630090 Novosibirsk , Russia
| |
Collapse
|
5
|
Mukhacheva AA, Shmakova AA, Volchek VV, Romanova TE, Benassi E, Gushchin AL, Yanshole V, Sheven DG, Kompankov NB, Abramov PA, Sokolov MN. Reactions of [Ru(NO)Cl 5] 2- with pseudotrilacunary {XW 9O 33} 9- (X = As III, Sb III) anions. Dalton Trans 2019; 48:15989-15999. [PMID: 31595900 DOI: 10.1039/c9dt03328a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of [Ru(NO)Cl5]2- with pseudotrivacant B-α-[XW9O33]9- (X = AsIII, SbIII) at 160 °C result in the rearrangement of polyoxometalate backbones into {XM18} structures. In the case of arsenic, oxidation of AsIII to AsV takes place with the formation of a mixture of plenary and monosubstituted Dawson [As2W18O62]6- and [As2W17Ru(NO)O61]7- anions, of which the latter was isolated as Me2NH2+ (DMA-1a and DMA-1b) and Bu4N+ (Bu4N-1) salts and fully characterized. Both α1 and α2 isomers of [As2W17Ru(NO)O61]7- were present in the reaction mixture; pure [α2-As2W17Ru(NO)O61]7- was isolated as the Bu4N+ salt. In the case of antimony, [SbW9O33]9- is converted into a mixture of [SbW18O60]9- and [SbW17{Ru(NO)}O59]10-. The formation of trisubstituted [SbW15{Ru(NO)}3O57]12- as a minor byproduct was detected by HPLC-ICP-AES. The monosubstituted [SbW17{Ru(NO)}O59]10- anion was isolated as DMAH+ (DMA-2) and mixed inorganic cation (CsKNa-2) salts and characterized by XRD, HPLC-ICP-AES, EA and TGA techniques. X-ray analysis shows the presence of the {Ru(NO)}-group in the 6-membered ("equatorial") belt of the Sb-free hemisphere. The experimental findings were confirmed and interpreted by means of quantum chemical calculations.
Collapse
Affiliation(s)
- Anna A Mukhacheva
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| | - Alexandra A Shmakova
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Victoria V Volchek
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Tamara E Romanova
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Enrico Benassi
- Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia. and Lanzhou Institute of Chemical Physics, CAS, 10 Tianshui Middle Rd, Chengguan Qu, Lanzhou Shi, Gansu Sheng 730000, People's Republic of China
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| | - Vadim Yanshole
- Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia. and International Tomography Center, Institutskaya str. 3a, 630090, Novosibirsk, Russia
| | - Dmitri G Sheven
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Nikolay B Kompankov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia.
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and South Ural State University, Chelyabinsk, 454080, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, 3 Akad. Lavrentiev Ave, 630090, Novosibirsk, Russia. and Novosibirsk State University, Pirogova str. 2, 630090, Novosibirsk, Russia.
| |
Collapse
|
6
|
Shmakova AA, Gushchin AL, Abramov PA, Sokolov MN. Synthesis and Electrochemical Properties of ((CH3)2NH2)7[P2W17NbO62]. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619060106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Shmakova AA, Volchek VV, Yanshole V, Kompankov NB, Martin NP, Nyman M, Abramov PA, Sokolov MN. Niobium uptake by a [P8W48O184]40−macrocyclic polyanion. NEW J CHEM 2019. [DOI: 10.1039/c9nj01907c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of Nb into the [P8W48O184]40−anionic macrocyclic cavitand leads to formation of new Nb–W POMs. Inclusion of up to five {NbO(H2O)}3+groups was observed. Solution speciation of the Nb-encapsulating macrocycles was studied by HPLC-ICP-AES and SAXS.
Collapse
Affiliation(s)
| | | | - Vadim Yanshole
- Novosibirsk State University
- Novosibirsk
- Russia
- International Tomography Center
- Novosibirsk
| | | | | | - May Nyman
- Department of Chemistry Oregon State University
- Oregon 97331-4003
- USA
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry
- Novosibirsk
- Russia
- Novosibirsk State University
- Novosibirsk
| |
Collapse
|
8
|
|