1
|
Jimenez-Carretero M, Pozo-Gualda T, Lázaro M, Sola-Leyva A, Rodriguez-Jimenez PA, Carrasco-Jiménez MP, Iglesias GR, Perduca M, Jimenez-Lopez C. Role of Mms7 from Magnetococcus marinus MC-1 in controlling the growth and properties of biomimetic magnetic nanoparticles. Int J Biol Macromol 2025; 307:142165. [PMID: 40101825 DOI: 10.1016/j.ijbiomac.2025.142165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Depicting the function of the magnetosome-associated protein Mms7 is important for further understanding the formation of magnetite by magnetotactic bacteria, and from a biotechnological point of view, for the synthesis of magnetosome-like biomimetic magnetic nanoparticles (BMNPs). In this work, the role of Mms7 (Magnetococcus marinus MC-1) in magnetite precipitation was analyzed by using this protein to in vitro produce BMNPs (Mms7-BMNPs). The new nanoparticles were characterized (X-ray diffraction, electron microscopy, magnetic properties, surface area, thermogravimetry, infrared spectroscopy, electrophoretic mobility and hyperthermia) and compared with MamC-mediated BMNPs (MamC-BMNPs) and inorganic (protein-free) magnetic nanoparticles (MNPs). Results suggest that the N-terminus of Mms7 induces the nucleation of magnetite and stabilizes the nuclei, which later dissolve to provide iron for the growth of larger crystals formed at the C-terminus. We hypothesize that the acidic amino acids in the C-terminus block the growth of (311) and (110) crystal faces, that show up in the final morphology along with the (111) faces already present in MNPs. The resulting Mms7-BMNPs are similar to MamC-BMNPs in terms of size (⁓33 nm) and morphology, but their magnetic saturation (43.7 emu/g) and their ability to raise the temperature when exposed to alternating magnetic fields is lower. However, the heating efficiency upon laser irradiation in the near infrared is similar in all cases. The changes in Mms7-BMNPs are probably related to a higher protein content (⁓8 wt%) attached to the magnetic core, which also provides an isoelectric point of ⁓4.7 to the nanoparticles and allows cell uptake and drug binding/release based on electrostatic interactions.
Collapse
Affiliation(s)
| | | | - Marina Lázaro
- Department of Applied Physics, University of Granada, 18071 Granada, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | |
Collapse
|
2
|
T L S, Rao KJ, Korumilli T. Natural Biogenic Templates for Nanomaterial Synthesis: Advances, Applications, and Environmental Perspectives. ACS Biomater Sci Eng 2025; 11:1291-1316. [PMID: 39928588 DOI: 10.1021/acsbiomaterials.4c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
This review explores the use of biogenic templates in nanomaterial synthesis, emphasizing their role in promoting environmentally sustainable nanotechnology. It categorizes various biogenic templates, including agricultural byproducts and microorganisms, stating their suitability for forming nanostructures due to their distinct properties. A comparative analysis of monostep and multistep synthesis methods is provided, focusing on their efficiencies and outcomes when using biogenic templates. Further, this review also highlights how these templates can generate complex nanostructures and hybrid materials with enhanced functionalities. Applications of biogenic templates across biomedicine, biotechnology, environmental science, and energy are discussed along with their utilization scope in agriculture and electronics. Benefits from nanostructures from biotemplates include sustainability, low cost, and reduced toxicity, but challenges like scalability, reproducibility, and regulatory compliance persist. Future research focuses on improving synthesis techniques, discovering new templates, and evaluating environmental and cytotoxic impacts, especially for biomedical uses. In conclusion, the review reaffirms the potential of biogenic templates in sustainable nanomaterial synthesis while highlighting the ongoing challenges that need to be addressed for broader adoption.
Collapse
Affiliation(s)
- Srujana T L
- Centre for Interfaces & Nanomaterials, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| | - K Jagajjanani Rao
- Centre for Interfaces & Nanomaterials, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| | - Tarangini Korumilli
- Centre for Biomaterials & Environmental Biotechnology, Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai-600062, India
| |
Collapse
|
3
|
Kuznetsov AA, Novak EV, Pyanzina ES, Kantorovich SS. Multicore-based ferrofluids in zero field: initial magnetic susceptibility and self-assembly mechanisms. SOFT MATTER 2023; 19:4549-4561. [PMID: 37306482 PMCID: PMC10282899 DOI: 10.1039/d3sm00440f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
The necessity to improve magnetic building blocks in magnetic nano-structured soft materials stems from a fascinating potential these materials have in bio-medical applications and nanofluidics. Along with practical reasons, the interplay of magnetic and steric interactions on one hand, and entropy, on the other, makes magnetic soft matter fundamentally challenging. Recently, in order to tailor magnetic response of the magnetic particle suspensions, the idea arose to replace standard single-core nanoparticles with nano-sized clusters of single-domain nanoparticles (grains) rigidly bound together by solid polymer matrix - multicore magnetic nanoparticles (MMNPs). To pursue this idea, a profound understanding of the MMNP interactions and self-assembly is required. In this work we present a computational study of the MMNP suspensions and elucidate their self-assembly and magnetic susceptibility. We show that depending on the magnetic moment of individual grains the suspensions exhibit qualitatively distinct regimes. Firstly, if the grains are moderately interacting, they contribute to a significant decrease of the remanent magnetisation of MMNPs and as such to a decrease of the magnetic susceptibility, this way confirming previous findings. If the grains are strongly interacting, instead, they serve as anchor points and support formation of grain clusters that span through several MMNPs, leading to MMNP cluster formation and a drastic increase of the initial magnetic response. Both the topology of the clusters and their size distribution in MMNP suspensions is found to be notably different from those formed in conventional magnetic fluids or magnetorheological suspensions.
Collapse
Affiliation(s)
- Andrey A Kuznetsov
- Computational and Soft Matter Physics, University of Vienna, Kollingasse 14-16, 1090 Vienna, Austria.
| | - Ekaterina V Novak
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia
| | - Elena S Pyanzina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Lenin av. 51, 620000, Ekaterinburg, Russia
| | - Sofia S Kantorovich
- Computational and Soft Matter Physics, University of Vienna, Kollingasse 14-16, 1090 Vienna, Austria.
- Research Platform MMM Mathematics-Magnetism-Material, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| |
Collapse
|
4
|
Savchenko M, Sebastian V, Lopez-Lopez MT, Rodriguez-Navarro A, Alvarez De Cienfuegos L, Jimenez-Lopez C, Gavira JA. Magnetite Mineralization inside Cross-Linked Protein Crystals. CRYSTAL GROWTH & DESIGN 2023; 23:4032-4040. [PMID: 37304398 PMCID: PMC10251750 DOI: 10.1021/acs.cgd.2c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Indexed: 06/13/2023]
Abstract
Crystallization in confined spaces is a widespread process in nature that also has important implications for the stability and durability of many man-made materials. It has been reported that confinement can alter essential crystallization events, such as nucleation and growth and, thus, have an impact on crystal size, polymorphism, morphology, and stability. Therefore, the study of nucleation in confined spaces can help us understand similar events that occur in nature, such as biomineralization, design new methods to control crystallization, and expand our knowledge in the field of crystallography. Although the fundamental interest is clear, basic models at the laboratory scale are scarce mainly due to the difficulty in obtaining well-defined confined spaces allowing a simultaneous study of the mineralization process outside and inside the cavities. Herein, we have studied magnetite precipitation in the channels of cross-linked protein crystals (CLPCs) with different channel pore sizes, as a model of crystallization in confined spaces. Our results show that nucleation of an Fe-rich phase occurs inside the protein channels in all cases, but, by a combination of chemical and physical effects, the channel diameter of CLPCs exerted a precise control on the size and stability of those Fe-rich nanoparticles. The small diameters of protein channels restrain the growth of metastable intermediates to around 2 nm and stabilize them over time. At larger pore diameters, recrystallization of the Fe-rich precursors into more stable phases was observed. This study highlights the impact that crystallization in confined spaces can have on the physicochemical properties of the resulting crystals and shows that CLPCs can be interesting substrates to study this process.
Collapse
Affiliation(s)
- Mariia Savchenko
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia de Química Aplicada a Biomedicina y Medioambiente
(UEQ), Universidad de Granada, 18002 Granada, Spain
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
| | - Victor Sebastian
- Department
of Chemical Engineering and Environmental Technology, Instituto de
Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Networking
Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-
BBN), Madrid 28029, Spain
| | - Modesto Torcuato Lopez-Lopez
- Departamento
de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs, Granada 18012, Spain
| | - Alejandro Rodriguez-Navarro
- Departamento
de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain
| | - Luis Alvarez De Cienfuegos
- Departamento
de Química Orgánica, Facultad de Ciencias, Unidad de
Excelencia de Química Aplicada a Biomedicina y Medioambiente
(UEQ), Universidad de Granada, 18002 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs, Granada 18012, Spain
| | - Concepcion Jimenez-Lopez
- Departamento
de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain
| | - José Antonio Gavira
- Laboratorio
de Estudios Cristalográficos, Instituto
Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones
Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| |
Collapse
|
5
|
Mostarac D, Xiong Y, Gang O, Kantorovich S. Nanopolymers for magnetic applications: how to choose the architecture? NANOSCALE 2022; 14:11139-11151. [PMID: 35771156 PMCID: PMC9367751 DOI: 10.1039/d2nr01502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/15/2022] [Indexed: 05/06/2023]
Abstract
Directional assembly of nanoscale objects results in morphologies that can broadly be classified as supra-molecular nanopolymers. Such morphologies, given a functional choice of the monomers used as building blocks, can be of ubiquitous utility in optical, magnetic, rheological, and medical applications. These applications, however, require a profound understanding of the interplay between monomer shape and bonding on one side, and polymeric properties - on the other. Recently, we fabricated nanopolymers using cuboid DNA nanochambers, as they not only allow fine-tuning of the resulting morphologies but can also carry magnetic nanoparticles. However, it is not known if the cuboid shape and inter-cuboid connectivity restrict the equilibrium confirmations of the resulting nanopolymers, making them less responsive to external stimuli. In this work, using Molecular Dynamics simulations, we perform an extensive comparison between various nanopolymer architectures to explore their polymeric properties, and their response to an applied magnetic field if magnetic nanoparticles are embedded. We explain the impact of monomer shape and bonding on the mechanical and magnetic properties and show that DNA nanochambers can build highly responsive and magnetically controllable nanopolymers.
Collapse
Affiliation(s)
- Deniz Mostarac
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Research Platform MMM Mathematics-Magnetism-Materials, Vienna, Austria
| | | | - Oleg Gang
- Columbia University, New York, USA
- Brookhaven National Laboratories, New York, USA
| | - Sofia Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Kuznetsov AA, Novak EV, Pyanzina ES, Kantorovich SS. Structural and magnetic equilibrium properties of a semi-dilute suspension of magnetic multicore nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Mostarac D, Kantorovich SS. Rheology of a Nanopolymer Synthesized through Directional Assembly of DNA Nanochambers, for Magnetic Applications. Macromolecules 2022; 55:6462-6473. [PMID: 35966117 PMCID: PMC9367010 DOI: 10.1021/acs.macromol.2c00738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Indexed: 11/29/2022]
Abstract
![]()
We present a numerical study of the effects of monomer
shape and
magnetic nature of colloids on the behavior of a single magnetic filament
subjected to the simultaneous action of shear flow and a stationary
external magnetic field perpendicular to the flow. We find that based
on the magnetic nature of monomers, magnetic filaments exhibit a completely
different phenomenology. Applying an external magnetic field strongly
inhibits tumbling only for filaments with ferromagnetic monomers.
Filament orientation with respect to the flow direction is in this
case independent of monomer shape. In contrast, reorientational dynamics
in filaments with superparamagnetic monomers are not inhibited by
applied magnetic fields, but enhanced. We find that the filaments
with spherical, superparamagnetic monomers, depending on the flow
and external magnetic field strength, assume semipersistent, collapsed,
coiled conformations, and their characteristic time of tumbling is
a function of field strength. However, external magnetic fields do
not affect the characteristic time of tumbling for filaments with
cubic, superparamagnetic monomers, but increase how often tumbling
occurs.
Collapse
Affiliation(s)
- Deniz Mostarac
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Materials, 1090 Vienna, Austria
| | - Sofia S. Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
8
|
Novak EV, Pyanzina ES, Gupalo MA, Mauser NJ, Kantorovich SS. Structural transitions and magnetic response of supramolecular magnetic polymerlike structures with bidisperse monomers. Phys Rev E 2022; 105:054601. [PMID: 35706172 DOI: 10.1103/physreve.105.054601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Supramolecular magnetic polymerlike (SMP) structures are nanoscaled objects that combine the flexibility of polymeric conformations and controllability of magnetic nanoparticles. The advantage provided by the presence of permanent cross-linkers is that even at high temperature, a condition at which entropy dominates over magnetic interactions, the length and the topology of the SMP structures are preserved. On cooling, however, preexistent bonds constrain thermodynamically equilibrium configurations, making a low-temperature regime for SMP structures worth investigating in detail. Moreover, making SMP structures with perfectly monodisperse monomers has been a challenge. Thus, the second open problem in the application of SMP structures is the missing understanding of the polydispersity impact on their structural and magnetic properties. Here extensive Langevin dynamics simulations combined with parallel tempering method are used to investigate SMP structures of four different types, i.e., chainlike, Y-like, X-like, and ringlike, composed of monomers of two different sizes. Our results show that the presence of small particles in SMP structures can qualitatively change the magnetic response at low temperature, making those structures surprisingly more magnetically responsive than their monodisperse counterparts.
Collapse
Affiliation(s)
- Ekaterina V Novak
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation
| | - Elena S Pyanzina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation
| | - Marina A Gupalo
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620083, Russian Federation
| | - Norbert J Mauser
- Research Platform MMM Mathematics-Magnetism-Material, c/o Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria
| | - Sofia S Kantorovich
- Faculty of Physics, Computational and Soft Matter Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
9
|
Faizullina K, Pchelintsev I, Burovski E. Critical and geometric properties of magnetic polymers across the globule-coil transition. Phys Rev E 2021; 104:054501. [PMID: 34942695 DOI: 10.1103/physreve.104.054501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2023]
Abstract
We study a lattice model of a single magnetic polymer chain, where Ising spins are located on the sites of a lattice self-avoiding walk in d=2. We consider the regime where both conformations and magnetic degrees of freedom are dynamic, thus the Ising model is defined on a dynamic lattice and conformations generate an annealed disorder. Using Monte Carlo simulations, we characterize the globule-coil and ferromaget-to-paramagnet transitions, which occur simultaneously at a critical value of the spin-spin coupling. We argue that the transition is continuous-in contrast to d=3 where it is first order. Our results suggest that at the transition the metric exponent takes the θ-polymer value ν=4/7 but the crossover exponent ϕ≈0.7, which differs from the expected value for a θ polymer.
Collapse
|
10
|
Foster DP, Majumdar D. Critical behavior of magnetic polymers in two and three dimensions. Phys Rev E 2021; 104:024122. [PMID: 34525598 DOI: 10.1103/physreve.104.024122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
We explore the critical behavior of two- and three-dimensional lattice models of polymers in dilute solution where the monomers carry a magnetic moment which interacts ferromagnetically with near-neighbor monomers. Specifically, the model explored consists of a self-avoiding walk on a square or cubic lattice with Ising spins on the visited sites. In three dimensions we confirm and extend previous numerical work, showing clearly the first-order character of both the magnetic transition and the polymer collapse, which happen together. We present results in two dimensions, where the transition is seen to be continuous. Finite-size scaling is used to extract estimates for the critical exponents and the transition temperature in the absence of an external magnetic field.
Collapse
Affiliation(s)
- Damien Paul Foster
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, United Kingdom
| | - Debjyoti Majumdar
- Institute of Physics, Bhubaneswar, Odisha 751005, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
11
|
Labadi Z, Kalas B, Saftics A, Illes L, Jankovics H, Bereczk-Tompa É, Sebestyén A, Tóth É, Kakasi B, Moldovan C, Firtat B, Gartner M, Gheorghe M, Vonderviszt F, Fried M, Petrik P. Sensing Layer for Ni Detection in Water Created by Immobilization of Bioengineered Flagellar Nanotubes on Gold Surfaces. ACS Biomater Sci Eng 2020; 6:3811-3820. [PMID: 33463317 DOI: 10.1021/acsbiomaterials.0c00280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The environmental monitoring of Ni is targeted at a threshold limit value of 0.34 μM, as set by the World Health Organization. This sensitivity target can usually only be met by time-consuming and expensive laboratory measurements. There is a need for inexpensive, field-applicable methods, even if they are only used for signaling the necessity of a more accurate laboratory investigation. In this work, bioengineered, protein-based sensing layers were developed for Ni detection in water. Two bacterial Ni-binding flagellin variants were fabricated using genetic engineering, and their applicability as Ni-sensitive biochip coatings was tested. Nanotubes of mutant flagellins were built by in vitro polymerization. A large surface density of the nanotubes on the sensor surface was achieved by covalent immobilization chemistry based on a dithiobis(succimidyl propionate) cross-linking method. The formation and density of the sensing layer was monitored and verified by spectroscopic ellipsometry and atomic force microscopy. Cyclic voltammetry (CV) measurements revealed a Ni sensitivity below 1 μM. It was also shown that, even after two months of storage, the used sensors can be regenerated and reused by rinsing in a 10 mM solution of ethylenediaminetetraacetic acid at room temperature.
Collapse
Affiliation(s)
- Zoltan Labadi
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary
| | - Benjamin Kalas
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary
| | - Andras Saftics
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary
| | - Levente Illes
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary
| | - Hajnalka Jankovics
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary
| | - Éva Bereczk-Tompa
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary
| | - Anett Sebestyén
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary
| | - Éva Tóth
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary
| | - Balázs Kakasi
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary
| | - Carmen Moldovan
- National Institute for Research & Development in Microtechnologies, Bucharest 077190, Romania
| | - Bogdan Firtat
- National Institute for Research & Development in Microtechnologies, Bucharest 077190, Romania
| | - Mariuca Gartner
- "Ilie Murgulescu" Institute of Physical Chemistry of the Romanian Academy, Bucharest 060021, Romania
| | | | - Ferenc Vonderviszt
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary.,Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary
| | - Miklos Fried
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary.,Institute of Microelectronics and Technology, Óbuda University, Budapest 1034, Hungary
| | - Peter Petrik
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Budapest 1121, Hungary
| |
Collapse
|
12
|
Mostarac D, Sánchez PA, Kantorovich S. Characterisation of the magnetic response of nanoscale magnetic filaments in applied fields. NANOSCALE 2020; 12:13933-13947. [PMID: 32406897 DOI: 10.1039/d0nr01646b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Incorporating magnetic nanoparticles (MNPs) within permanently crosslinked polymer-like structures opens up the possibility for synthesis of complex, highly magneto-responsive systems. Among such structures are chains of prealigned magnetic (ferro- or super-paramagnetic) monomers, permanently crosslinked by means of macromolecules, which we refer to as magnetic filaments (MFs). In this paper, using molecular dynamics simulations, we encompass filament synthesis scenarios, with a compact set of easily tuneable computational models, where we consider two distinct crosslinking approaches, for both ferromagnetic and super-paramagnetic monomers. We characterise the equilibrium structure, correlations and magnetic properties of MFs in static magnetic fields. Calculations show that MFs with ferromagnetic MNPs in crosslinking scenarios where the dipole moment orientations are decoupled from the filament backbone, have similar properties to MFs with super-paramagnetic monomers. At the same time, magnetic properties of MFs with ferromagnetic MNPs are more dependent on the crosslinking approach than they are for ones with super-paramagnetic monomers. Our results show that, in a strong applied field, MFs with super-paramagnetic MNPs have similar magnetic properties to ferromagnetic ones, while exhibiting higher susceptibility in low fields. We find that MFs with super-paramagnetic MNPs have a tendency to bend the backbone locally rather than to fully stretch along the field. We explain this behaviour by supplementing Flory theory with an explicit dipole-dipole interaction potential, with which we can take in to account folded filament configurations. It turns out that the entropy gain obtained through bending compensates an insignificant loss in dipolar energy for the filament lengths considered in the manuscript.
Collapse
Affiliation(s)
| | - Pedro A Sánchez
- Ural Federal University, Ekaterinburg, Russia and Wolfgang Pauli Institute, Vienna, Austria
| | - Sofia Kantorovich
- University of Vienna, Vienna, Austria. and Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
13
|
Alphandéry E. Bio-synthesized iron oxide nanoparticles for cancer treatment. Int J Pharm 2020; 586:119472. [PMID: 32590095 DOI: 10.1016/j.ijpharm.2020.119472] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
Abstract
Various living organisms, such as bacteria, plants, and animals can synthesize iron oxide nanoparticles (IONP). The mechanism of nanoparticle (NP) formation is usually described as relying on the reduction of ferric/ferrous iron ions into crystallized nanoparticulate iron that is surrounded by an organic stabilizing layer. The properties of these NP are characterized by a composition made of different types of iron oxide whose most stable and purest one appears to be maghemite, by a size predominantly comprised between 5 and 380 nm, by a crystalline core, by a surface charge which depends on the nature of the material coating the iron oxide, and by certain other properties such as a sterility, stability, production in mass, absence of aggregation, that have apparently only been studied in details for IONP synthesized by magnetotactic bacteria, called magnetosomes. In the majority of studies, bio-synthesized IONP are described as being biocompatible and as not inducing cytotoxicity towards healthy cells. Anti-tumor activity of bio-synthesized IONP has mainly been demonstrated in vitro, where this type of NP displayed cytotoxicity towards certain tumor cells, e.g. through the anti-tumor activity of IONP coating or through IONP anti-oxidizing property. Concerning in vivo anti-tumor activity, it was essentially highlighted for magnetosomes administered in different types of glioblastoma tumors (U87-Luc and GL-261), which were exposed to a series of alternating magnetic field applications, resulting in mild hyperthermia treatments at typical temperatures of 41-45 °C, leading to the full disappearance of these tumors without any observable side effects.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Paris Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de, Cosmochimie, IMPMC, 75005 Paris, France; Nanobacterie SARL, 36 boulevard Flandrin, 75116 Paris, France; Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
14
|
Peigneux A, Puentes-Pardo JD, Rodríguez-Navarro AB, Hincke MT, Jimenez-Lopez C. Development and characterization of magnetic eggshell membranes for lead removal from wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110307. [PMID: 32070781 DOI: 10.1016/j.ecoenv.2020.110307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
An increasing concern for natural resources preservation and environmental safety is the removal of heavy metals from contaminated water. It is essential to develop simple procedures that use ecofriendly materials with high removal capacities. In this context, we have synthesized a new hybrid material in which eggshell membranes (ESMs) act as nucleation sites for magnetite nanoparticles (MNPs) precipitation in the presence of an external magnetic field. As a result, ESM was transformed into a magnetic biomaterial (MESM) in order to combine the Pb adsorption abilities of both MNPs and ESM and to facilitate collection of the bioadsorbant using an external magnetic field. This green co-precipitation method produced long strands of bead-like 50 nm superparamagnetic MNPs decorating the ESM fibers. When MESM were incubated in Pb(NO3)2 solutions, the hybrid material displayed a 2.5-fold increase in binding constant with respect to that of ESM alone, and a 10-fold increased capacity to remove Pb ions from aqueous solution. The manufactured MESMs present a maximum loading capacity of 0.066 ± 0.009 mg Pb/mg MNPs at 25 °C, which is increased up to 0.15 ± 0.05 mg Pb/mg MNPs at 45 °C. Moreover, the MESM system is very stable, since incubation in 1% HCl solution resulted in rapid Pb desorption, while MNP release from the MESM during the same period was negligible. Altogether, these results suggest that MESM could be utilized as an efficient nanoremediation agent for separation/removal of heavy metal ions or other charged pollutants from contaminated waters, with facile recovery for recycling.
Collapse
Affiliation(s)
- Ana Peigneux
- Departmento de Microbiologia, Univerisidad de Granada, Campus de Fuentenueva s/n, 18002, Granada, Spain
| | - Jose D Puentes-Pardo
- Departmento de Microbiologia, Univerisidad de Granada, Campus de Fuentenueva s/n, 18002, Granada, Spain
| | | | - Maxwell T Hincke
- Departments of Innovation in Medical Education, and Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Concepción Jimenez-Lopez
- Departmento de Microbiologia, Univerisidad de Granada, Campus de Fuentenueva s/n, 18002, Granada, Spain
| |
Collapse
|
15
|
Tuning properties of biomimetic magnetic nanoparticles by combining magnetosome associated proteins. Sci Rep 2019; 9:8804. [PMID: 31217514 PMCID: PMC6584501 DOI: 10.1038/s41598-019-45219-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/04/2019] [Indexed: 11/08/2022] Open
Abstract
The role of magnetosome associated proteins on the in vitro synthesis of magnetite nanoparticles has gained interest, both to obtain a better understanding of the magnetosome biomineralization process and to be able to produce novel magnetosome-like biomimetic nanoparticles. Up to now, only one recombinant protein has been used at the time to in vitro form biomimetic magnetite precipitates, being that a scenario far enough from what probably occurs in the magnetosome. In the present study, both Mms6 and MamC from Magnetococcus marinus MC-1 have been used to in vitro form biomimetic magnetites. Our results show that MamC and Mms6 have different, but complementary, effects on in vitro magnetite nucleation and growth. MamC seems to control the kinetics of magnetite nucleation while Mms6 seems to preferably control the kinetics for crystal growth. Our results from the present study also indicate that it is possible to combine both proteins to tune the properties of the resulting biomimetic magnetites. In particular, by changing the relative ratio of these proteins, better faceted and/or larger magnetite crystals with, consequently, different magnetic moment per particle could be obtained. This study provides with tools to obtain new biomimetic nanoparticles with a potential utility for biotechnological applications.
Collapse
|
16
|
Hasnain MS, Javed MN, Alam MS, Rishishwar P, Rishishwar S, Ali S, Nayak AK, Beg S. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1105-1114. [PMID: 30889643 DOI: 10.1016/j.msec.2019.02.061] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
The present research work describes a novel method for green synthesis of silver nanoparticles using purple heart plant leaves extract, which is recognized as frequently found in households as an ornamental plant. The aqueous methanolic extract of purple heart plant leaves was prepared and employed in the synthesis of stable silver nanoparticles via biological reduction method. The purple heart plant leaves extract-mediated synthesized silver nanoparticles were systematically optimized using Box-Behnken design considering the effect of various independent variables (factors) like concentration of AgNO3, temperature and volume of purple heart plant leaves extract solution on the responses like particle size and polydispersity index of synthesized silver nanoparticles were optimized. Mathematical modelling was performed using quadratic polynomial model and response surface analysis was done to understand the factor-response relationship. The synthesized silver nanoparticles at optimum condition were found to be of spherical in shape under TEM with particle size of 98 nm and polydispersity index of 0.15. Optimized silver nanoparticles were further characterized through UV-VIS spectrophotometry, FTIR spectroscopy and TEM imaging studies. Also, the silver nanoparticles were evaluated for antibacterial activity on E. coli and S. aureus. In a nutshell, the studies construed successful synthesis of silver nanoparticles along with thorough understanding of the associated factors influencing their quality characteristics and significantly improved antibacterial activity as beneficial effect.
Collapse
Affiliation(s)
- M Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha 244236, Uttar Pradesh, India.
| | - Md Noushad Javed
- Quality Assurance Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110025, India
| | - Md Sabir Alam
- School of Medical and Allied Sciences, K R Mangalam University, Gurgaon, Haryana, India
| | - Poonam Rishishwar
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha 244236, Uttar Pradesh, India
| | - Sanjay Rishishwar
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha 244236, Uttar Pradesh, India
| | - Sadath Ali
- Department of Pharmacy, Glocal University, Saharanpur 247001, Uttar Pradesh, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj 757086, India.
| | - Sarwar Beg
- Product Development Research, Jubilant Generics Limited, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
17
|
Kaptay G. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Adv Colloid Interface Sci 2018; 256:163-192. [PMID: 29705027 DOI: 10.1016/j.cis.2018.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/25/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
In the most influential monograph on colloid and interfacial science by Adamson three fundamental equations of "physical chemistry of surfaces" are identified: the Laplace equation, the Kelvin equation and the Gibbs adsorption equation, with a mechanical definition of surface tension by Young as a starting point. Three of them (Young, Laplace and Kelvin) are called here the "mechanical paradigm". In contrary it is shown here that there is only one fundamental equation of the thermodynamics of colloid and interface science and all the above (and other) equations of this field follow as its derivatives. This equation is due to chemical thermodynamics of Gibbs, called here the "chemical paradigm", leading to the definition of surface tension and to 5 rows of equations (see Graphical abstract). The first row is the general equation for interfacial forces, leading to the Young equation, to the Bakker equation and to the Laplace equation, etc. Although the principally wrong extension of the Laplace equation formally leads to the Kelvin equation, using the chemical paradigm it becomes clear that the Kelvin equation is generally incorrect, although it provides right results in special cases. The second row of equations provides equilibrium shapes and positions of phases, including sessile drops of Young, crystals of Wulff, liquids in capillaries, etc. The third row of equations leads to the size-dependent equations of molar Gibbs energies of nano-phases and chemical potentials of their components; from here the corrected versions of the Kelvin equation and its derivatives (the Gibbs-Thomson equation and the Freundlich-Ostwald equation) are derived, including equations for more complex problems. The fourth row of equations is the nucleation theory of Gibbs, also contradicting the Kelvin equation. The fifth row of equations is the adsorption equation of Gibbs, and also the definition of the partial surface tension, leading to the Butler equation and to its derivatives, including the Langmuir equation and the Szyszkowski equation. Positioning the single fundamental equation of Gibbs into the thermodynamic origin of colloid and interface science leads to a coherent set of correct equations of this field. The same provides the chemical (not mechanical) foundation of the chemical (not mechanical) discipline of colloid and interface science.
Collapse
|