1
|
Hosseini II, Hamidi SV, Capaldi X, Liu Z, Silva Pessoa MA, Mahshid S, Reisner W. Tunable nanofluidic device for digital nucleic acid analysis. NANOSCALE 2024. [PMID: 38682564 DOI: 10.1039/d3nr05553a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Nano/microfluidic-based nucleic acid tests have been proposed as a rapid and reliable diagnostic technology. Two key steps for many of these tests are target nucleic acid (NA) immobilization followed by an enzymatic reaction on the captured NAs to detect the presence of a disease-associated sequence. NA capture within a geometrically confined volume is an attractive alternative to NA surface immobilization that eliminates the need for sample pre-treatment (e.g. label-based methods such as lateral flow assays) or use of external actuators (e.g. dielectrophoresis) that are required for most nano/microfluidic-based NA tests. However, geometrically confined spaces hinder sample loading while making it challenging to capture, subsequently, retain and simultaneously expose target NAs to required enzymes. Here, using a nanofluidic device that features real-time confinement control via pneumatic actuation of a thin membrane lid, we demonstrate the loading of digital nanocavities by target NAs and exposure of target NAs to required enzymes/co-factors while the NAs are retained. In particular, as proof of principle, we amplified single-stranded DNAs (M13mp18 plasmid vector) in an array of nanocavities via two isothermal amplification approaches (loop-mediated isothermal amplification and rolling circle amplification).
Collapse
Affiliation(s)
- Imman I Hosseini
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec H3A 2B4, Canada.
| | - Seyed Vahid Hamidi
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec H3A 2B4, Canada.
| | - Xavier Capaldi
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8, Canada.
| | - Zezhou Liu
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8, Canada.
| | | | - Sara Mahshid
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec H3A 2B4, Canada.
| | - Walter Reisner
- Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8, Canada.
| |
Collapse
|
2
|
Moazemi F, Ghanbari-Kashan S, Moharaminezhad F, Nikoofard N. Ejection dynamics of a semiflexible polymer from a nanosphere. Phys Rev E 2023; 108:044501. [PMID: 37978688 DOI: 10.1103/physreve.108.044501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
Polymer ejection has been of interest due to its relation to the viral genome ejection. However, the ejection dynamics of a semiflexible polymer from a nanosphere is not yet understood. Here, a theory is developed for the ejection dynamics of a polymer with total length L_{0} and persistence length l from a sphere of diameter D. These length scales define different confinement regimes to study the polymer dynamics. The polymer sometimes undergoes between two to three regimes during its ejection. The rate of change of the free energy of confinement is balanced by the rate of energy dissipation, in each regime. The polymer experiences a final stage in which the free energy of polymer attachment to the sphere governs the ejection. The total ejection time τ depends on the polymer dynamics in the various regimes that it passes through in the phase space. Dependence of the ejection time on the polymer length, the persistence length, and the sphere diameter τ∝L_{0}^{α}D^{β}l^{γ} is obtained from the theory. It is shown that α changes between 1 and 1.7, β between 3 and 5, and γ takes a zero or positive value often smaller than 1. Agreement of these exponents with other theory and simulations are discussed.
Collapse
Affiliation(s)
- Farzaneh Moazemi
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-53153, Iran
| | | | - Fatemeh Moharaminezhad
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-53153, Iran
| | - Narges Nikoofard
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-53153, Iran
| |
Collapse
|
3
|
Yin M, Alexander Kim Z, Xu B. Micro/Nanofluidic‐Enabled Biomedical Devices: Integration of Structural Design and Manufacturing. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Mengtian Yin
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| | - Zachary Alexander Kim
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville VA 22904 USA
| |
Collapse
|
4
|
Abstract
AbstractThe outbreak of new viral strains promotes advances in universal diagnostic techniques for detecting infectious diseases with unknown viral sequence. Long double-stranded RNA (dsRNA), a hallmark of infections, serves as a virus marker for prompt detection of viruses with unknown genomes. Here, we report on-chip paper electrophoresis for ultrafast screening of infectious diseases. Negatively charged RNAs pass through the micro and nanoscale pores of cellulose in order of size under an external electric field applied to the paper microfluidic channel. Quantitative separation of long dsRNA mimicking poly I:C was analyzed from 1.67 to 33 ng·μL−1, which is close to the viral dsRNA concentration in infected cells. This paper-based capillary electrophoresis chip (paper CE chip) can provide a new diagnostic platform for ultrafast viral disease detection at the point-of-care (POC) level.
Collapse
|
5
|
Nguyen T, Chidambara Vinayaka A, Duong Bang D, Wolff A. A Complete Protocol for Rapid and Low-Cost Fabrication of Polymer Microfluidic Chips Containing Three-Dimensional Microstructures Used in Point-of-Care Devices. MICROMACHINES 2019; 10:mi10090624. [PMID: 31546811 PMCID: PMC6780813 DOI: 10.3390/mi10090624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
This protocol provides insights into the rapid, low-cost, and largescale fabrication of polymer microfluidic chips containing three-dimensional microstructures used in point-of-care devices for applications such as detection of pathogens via molecular diagnostic methods. The details of the fabrication methods are described in this paper. This study offers suggestions for researchers and experimentalists, both at university laboratories and in industrial companies, to prevent doom fabrication issues. For a demonstration of bio-application in point-of-care testing, the 3D microarrays fabricated are then employed in multiplexed detection of Salmonella (Salmonella Typhimurium and Salmonella Enteritidis), based on a molecular detection technique called solid-phase polymerase chain reaction (SP-PCR).
Collapse
Affiliation(s)
- Trieu Nguyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark.
| | - Aaydha Chidambara Vinayaka
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Division of Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, DK 2800 Lyngby, Denmark.
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), Division of Microbiology and Production, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, DK 2800 Lyngby, Denmark.
| | - Anders Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Abstract
A number of outstanding problems in genomics, such as identifying structural variations and sequencing through centromeres and telomeres, stand poised to benefit tremendously from emerging long-read genomics technologies such as nanopore sequencing and genome mapping in nanochannels. However, optimal application of these new genomics technologies requires facile methods for extracting long DNA from cells. These sample preparation tools should be amenable to automation and minimize fragmentation of the long DNA molecules by shear. We present one such approach in a poly(dimethylsiloxane) device, where gel-based high molecular weight DNA extraction and continuous flow purification in a 3D cell culture-inspired geometry is followed by electrophoretic extraction of the long DNA from the miniaturized gel. Molecular combing reveals that the device produces molecules that are typically in excess of 100 kilobase pairs in size, with the longest molecule extending up to 4 megabase pairs. The microfluidic format reduces the standard day-long and labor-intensive DNA extraction process to 4 hours, making it a promising prototype platform for routine long DNA sample preparation.
Collapse
Affiliation(s)
- Paridhi Agrawal
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|