1
|
Guo J, Zhang M, Xu J, Fang J, Luo S, Yang C. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction. RSC Adv 2022; 12:2246-2252. [PMID: 35425232 PMCID: PMC8979267 DOI: 10.1039/d1ra07998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Pd-P@Pt-Ni core-shell nanoparticles, which consisted of a Pd-P alloy as a core and Pt-Ni thin layer as a shell, were explored as electrocatalysts for methanol oxidation reaction. The crystallographic information and the electronic properties were fully investigated by X-ray diffraction and X-ray photoelectron spectroscopy. In the methanol electrooxidation reaction, the particles showed high catalytic activity and strong resistance to the poisoning carbonaceous species in comparison with those of commercial Pt/C and the as-prepared Pt/C catalysts. The excellent durability was demonstrated by electrochemically active surface area loss and chronoamperometric measurements. These results would be due to the enhanced catalytic properties of Pt by the double synergistic effects from the core part and the nickel species in the shell part.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
2
|
Zhang R, Yang J, Zhao X, Yang H, Li H, Ji B, Zhou G, Ma X, Yang D. Electrochemical deposited zeolitic imidazolate frameworks as an efficient electrocatalyst for CO2 electrocatalytic reduction. ChemCatChem 2021. [DOI: 10.1002/cctc.202101653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Jie Yang
- Zhengzhou University College of Chemistry CHINA
| | - Xinbo Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Han Yang
- Zhengzhou University College of Chemistry CHINA
| | - Hongping Li
- Zhengzhou University College of Chemistry CHINA
| | - Bairun Ji
- Zhengzhou University College of Chemistry CHINA
| | | | - Xiaoxue Ma
- Liaoning University College of Chemistry CHINA
| | - Dexin Yang
- Zhengzhou University College of Chemistry and Molecular Engineering No. 100 Science Avenue, High-tech Development Zone 450001 Zhengzhou CHINA
| |
Collapse
|
3
|
Su C, Wang B, Li S, Wie Y, Wang Q, Li D. Fabrication of Pd@ZnNi‐MOF/GO Nanocomposite and Its Application for H
2
O
2
Detection and Catalytic Degradation of Methylene Blue Dyes. ChemistrySelect 2021. [DOI: 10.1002/slct.202101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ce Su
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Bangxian Wang
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Siliang Li
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Yunbiao Wie
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Qingli Wang
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Dongjian Li
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| |
Collapse
|
4
|
Wu CY, Hsu YH, Chen Y, Yang LC, Tseng SC, Chen WR, Huang CC, Wan D. Robust O 2 Supplementation from a Trimetallic Nanozyme-Based Self-Sufficient Complementary System Synergistically Enhances the Starvation/Photothermal Therapy against Hypoxic Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38090-38104. [PMID: 34342219 DOI: 10.1021/acsami.1c10656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O2 continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment. Thanks to the cooperative effects of the active surface atoms (resulting from the island-like features of the Pt coating), the intrinsically hollow structure, and the strain effect induced by the trimetallic composition, HGN@Pt displayed efficient catalase-like activity. The enhancement in the generation of O2 through the decomposition of H2O2 mediated by the as-designed nanozyme was greater than 400% when compared with that of hollow Ag-Pt bimetallic nanospheres or tiny Pt nanoparticles. Moreover, in the presence of HGN@Pt, significant amounts of O2 could be generated within a few minutes, even in an acidic buffer solution (pH 5.8-6.5) containing a low concentration of H2O2 (100-500 μM). Because HGN@Pt exhibited a strong surface plasmon resonance peak in the near-infrared wavelength range, it could be used as a photothermal agent for hyperthermia therapy. Furthermore, GOx was released gradually from the SF hydrogel into the tumor microenvironment to mediate the depletion of glucose, leading to glucose starvation-induced cancer cell death. Finally, the O2 supplied by HGN@Pt overcame the hypoxia of the microenvironment and, thereby, promoted the starvation therapeutic effect of the GOx-mediated glucose consumption. Meanwhile, the GOx-produced H2O2 from the oxidation of glucose could be used to regenerate O2 and, thereby, construct a complementary circulatory system. Accordingly, this study presents a self-sufficient hybrid enzyme-based system that synergistically alleviates tumor hypoxia and induces an anti-cancer effect when combined with irradiation of light from a near-infrared laser.
Collapse
Affiliation(s)
- Cheng-Yun Wu
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Yu-Hsuan Hsu
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Ling-Chu Yang
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Wan-Ru Chen
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
LIANG YY, WU Q, LIANG F. Analysis of Catalytic Activity of Au@Pd Core-shell Nanodendrites for Highly Efficient Ethanol Electrooxidation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
7
|
Leteba GM, Mitchell DRG, Levecque PBJ, van Steen E, Lang CI. Topographical and compositional engineering of core-shell Ni@Pt ORR electro-catalysts. RSC Adv 2020; 10:29268-29277. [PMID: 35521089 PMCID: PMC9055937 DOI: 10.1039/d0ra05195k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Complex faceted geometries and compositional anisotropy in alloy nanoparticles (NPs) can enhance catalytic performance. We report on the preparation of binary PtNi NPs via a co-thermolytic approach in which we optimize the synthesis variables, which results in significantly improved catalytic performance. We used scanning transmission electron microscopy to characterise the range of morphologies produced, which included spherical and concave cuboidal core–shell structures. Electrocatalytic activity was evaluated using a rotating disc electrode (1600 rpm) in 0.1 M HClO4; the electrocatalytic performance of these Ni@Pt NPs showed significant (∼11-fold) improvement compared to a commercial Pt/C catalyst. Extended cycling revealed that electrochemical surface area was retained by cuboidal PtNi NPs post 5000 electrochemical cycles (0.05–1.00 V, vs. SHE). This is attributed to the enclosure of Ni atoms by a thick Pt shell, thus limiting Ni dissolution from the alloy structures. The novel synthetic strategy presented here results in a high yield of Ni@Pt NPs which show excellent electro-catalytic activity and useful durability. Complex faceted geometries and compositional anisotropy in alloy nanoparticles (NPs) can enhance catalytic performance.![]()
Collapse
Affiliation(s)
- Gerard M Leteba
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town Cape Town 7700 South Africa .,School of Engineering, Macquarie University Sydney NSW 2109 Australia
| | - David R G Mitchell
- Electron Microscopy Centre, Innovation Campus, University of Wollongong Wollongong NSW 2517 Australia
| | - Pieter B J Levecque
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town Cape Town 7700 South Africa
| | - Eric van Steen
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town Cape Town 7700 South Africa
| | - Candace I Lang
- School of Engineering, Macquarie University Sydney NSW 2109 Australia
| |
Collapse
|
8
|
Kwon T, Jun M, Lee K. Catalytic Nanoframes and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001345. [PMID: 32633878 DOI: 10.1002/adma.202001345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The ever-increasing need for the production and expenditure of sustainable energy is a result of the astonishing rate of consumption of fossil fuels and the accompanying environmental problems. Emphasis is being directed to the generation of sustainable energy by the fuel cell and water splitting technologies. Accordingly, the development of highly efficient electrocatalysts has attracted significant interest, as the fuel cell and water splitting technologies are critically dependent on their performance. Among numerous catalyst designs under investigation, nanoframe catalysts have an intrinsically large surface area per volume and a tunable composition, which impacts the number of catalytically active sites and their intrinsic catalytic activity, respectively. Nevertheless, the structural integrity of the nanoframe during electrochemical operation is an ongoing concern. Some significant advances in the field of nanoframe catalysts have been recently accomplished, specifically geared to resolving the catalytic stability concerns and significantly boosting the intrinsic catalytic activity of the active sites. Herein, general synthetic concepts of nanoframe structures and their structure-dependent catalytic performance are summarized, along with recent notable advances in this field. A discussion on the remaining challenges and future directions, addressing the limitations of nanoframe catalysts, are also provided.
Collapse
Affiliation(s)
- Taehyun Kwon
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
9
|
Lyu X, Jia Y, Mao X, Li D, Li G, Zhuang L, Wang X, Yang D, Wang Q, Du A, Yao X. Gradient-Concentration Design of Stable Core-Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003493. [PMID: 32596981 DOI: 10.1002/adma.202003493] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/02/2020] [Indexed: 05/20/2023]
Abstract
Manipulating the surface structure of electrocatalysts at the atomic level is of primary importance to simultaneously achieve the activity and stability dual-criteria in oxygen reduction reaction (ORR) for proton exchange membrane fuel cells. Here, a durable acidic ORR electrocatalyst with the "defective-armored" structure of Pt shell and Pt-Ni core nanoparticle decorated on graphene (Pt-Ni@PtD /G) using a facile and controllable galvanic replacement reaction to generate gradient distribution of Pt-Ni composition from surface to interior, followed by a partial dealloying approach, leaching the minor nickel atoms on the surface to generate defective Pt skeleton shell, is reported. The Pt-Ni@PtD /G catalyst shows impressive performance for ORR in acidic (0.1 m HClO4 ) electrolyte, with a high mass activity of threefold higher than that of Pt/C catalyst owing to the tuned electronic structure of locally concave Pt surface sites through synergetic contributions of Pt-Ni core and defective Pt shell. More importantly, the electrochemically active surface areas still retain 96% after 20 000 potential cycles, attributing to the Pt atomic shell acting as the protective "armor" to prevent interior Ni atoms from further dissolution during the long-term operation.
Collapse
Affiliation(s)
- Xiao Lyu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
- Queensland Micro- and Nanotechnology Centre and School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia
| | - Yi Jia
- Queensland Micro- and Nanotechnology Centre and School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia
| | - Xin Mao
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Daohao Li
- State Key Lab of Inorganic Chemistry and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gen Li
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Linzhou Zhuang
- School of Chemical Engineering, the University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xin Wang
- Queensland Micro- and Nanotechnology Centre and School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia
| | - Dongjiang Yang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials, Northeastern University, Shenyang, 110819, P. R. China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Xiangdong Yao
- Queensland Micro- and Nanotechnology Centre and School of Natural Sciences, Griffith University, Brisbane, QLD, 4111, Australia
- State Key Lab of Inorganic Chemistry and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Yin S, Xu Y, Liu S, Yu H, Wang Z, Li X, Wang L, Wang H. Binary nonmetal S and P-co-doping into mesoporous PtPd nanocages boosts oxygen reduction electrocatalysis. NANOSCALE 2020; 12:14863-14869. [PMID: 32633743 DOI: 10.1039/d0nr02686g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of doped noble metal catalysts with nonmetal elements to improve the catalytic performance toward the oxygen reduction reaction (ORR) is significant for proton exchange membrane fuel cell technology. Here, we report a one-pot for dual-nonmetal-doping strategy for the synthesis of S and P-co-doped mesoporous PtPd nanocages (PtPdSP mNCs) by using pre-synthesized mesoporous PtPd nanocages (PtPd mNCs) as the precursor and triphenylphosphine sulphide as both S and P sources. Benefitting from the combined advantages of metal-nonmetal incorporation, hollow cavity and surface porosity, the resultant quaternary PtPdSP mNCs exhibit outstanding ORR activity and long-term stability. This research work provides a good strategy for the doping of two or more selected nonmetallic elements into metallic nanocrystals with a controllable structure and composition.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liang X, Yang Y, Zou C, Chen W, Zou HX, Yang Y. Au decahedra with High yield for the improved synthesis of Au nanobipyramids. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Jiang Y, Guo Y, Zhou Y, Deng S, Hou L, Niu Y, Jiao T. Synergism of Multicomponent Catalysis: One-Dimensional Pt-Rh-Pd Nanochain Catalysts for Efficient Methanol Oxidation. ACS OMEGA 2020; 5:14805-14813. [PMID: 32596618 PMCID: PMC7315591 DOI: 10.1021/acsomega.0c01859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 05/10/2023]
Abstract
Designing Pt-based alloy catalysts with multicomponent composition and a controllable structure is important to improve the utilization efficiency of precious metals and catalytic activity, but it still face a lot of challenges for simple preparation. Herein, we used insulin amyloid fibrils as templates and their own one-dimensional spiral structure to synthesize Pt-Rh-Pd ternary alloy nanochains under mild conditions. The prepared Pt-Rh-Pd alloy nanochains (NCs) have uniform diameter, and the particle size is only 2 nm. This ultrafine structure increases the specific surface area of the catalyst to a certain extent, and the synergistic effect of the three metals improves the catalytic performance. Compared with commercial Pt/C and binary Pt-Rh NCs, the as-presented Pt-Rh-Pd NCs show better methanol oxidation activity ability and stability against CO poisoning. The peak current density of front sweep is 1.48 mA cm-2, which is 1.7 times higher than that of commercial Pt/C (0.89 mA cm-2) and 1.4 times higher than that of the Pt-Rh NCs (1.07 mA cm-2), indicating great application potential as high-performance electrocatalysts in fuel cells.
Collapse
Affiliation(s)
| | | | - Yanyan Zhou
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shuolei Deng
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Li Hou
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Yunfeng Niu
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied
Chemistry, Hebei Key Laboratory of Heavy Metal Deep-Remediation in
Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
13
|
Zhou Y, Wang D, Kang X, Zhang D, Dou X, Wang X, Guo G. A scalable synthesis of ternary nanocatalysts for a high-efficiency electrooxidation catalysis by microfluidics. NANOSCALE 2020; 12:12647-12654. [PMID: 32515460 DOI: 10.1039/d0nr03466e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic synthesis has attracted extensive attention due to the ability for the multistep precise control of the synthesis parameters, continuous and reproducible preparation, and its ease of integration. However, its commercial application is still affected by its low production efficiency. In this case, we report a high-throughput continuous flow synthesis of highly dispersed PtFeCu/C nanocatalysts using a metal microchip setup with four parallel channels. The high flow rate and integrated channels enabled improving the throughput, whereby 1.33 g h-1 of catalysts could be achieved with the flow rate of 1200 mL h-1 under the experimental conditions. The as-prepared PtFeCu/C exhibited excellent performance, 1.94 times higher than Pt/C for methanol oxidation. More importantly, the yield of the PtFeCu/C nanocatalysts could be further increased through designing numerous parallel channels, which might provide a promising approach for large-scale commercialization of the catalysts. Such a high-throughput fabrication pathway is significant for the large-scale industrial production of nanomaterials.
Collapse
Affiliation(s)
- Yingyan Zhou
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sun Q, Xu H, Du Y. Recent Achievements in Noble Metal Catalysts with Unique Nanostructures for Liquid Fuel Cells. CHEMSUSCHEM 2020; 13:2540-2551. [PMID: 32096317 DOI: 10.1002/cssc.201903381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In recent years, research efforts have been focused on the design and fabrication of highly efficient catalysts for liquid fuel cells, because the use of these cells is an important approach for alleviating environmental pollution and energy crises. However, the limitations of the catalytic performance of industrial Pt/C have strongly hindered the development of these fuel cells. The catalyst morphology has a strong impact on its performance; nanostructured catalysts are preferred as they offer large specific surface area and more exposed active centers. In view of this, many catalysts with unique structures have been synthesized in recent years, all of which show excellent catalytic performance characteristics. Despite these achievements, few efforts have been made to survey this field comprehensively. Herein, the recent advances in catalysts for liquid fuel cells are summarized, with a focus on noble metal catalysts with unique morphologies such as nanowires, nanosheets, and assembly structures. Their formation mechanisms are discussed critically. The relationship between the unique morphologies and excellent performance of these catalysts is also explored. This work may provide guidelines for the further development of liquid fuel cells.
Collapse
Affiliation(s)
- Qiwen Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
15
|
Ye P, Xin W, De Rosa IM, Wang Y, Goorsky MS, Zheng L, Yin X, Xie YH. One-Pot Self-Templated Growth of Gold Nanoframes for Enhanced Surface-Enhanced Raman Scattering Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22050-22057. [PMID: 32266808 DOI: 10.1021/acsami.0c04777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one of the representative metallic hollow nanostructures, Au nanoframes have shown fascinating properties such as strong localized surface plasmon resonance associated with emerging applications such as surface-enhanced Raman scattering (SERS) sensors. In this study, for the first time, a facile one-pot synthetic approach for hollow Au nanoframes is demonstrated by directly etching Au nanoplates, that is, the so-called self-templates. A novel growth mechanism has been revealed that involves a synergistic function of Ag and Br ions. The presence of Ag+ leads to the observation of self-limiting Au film thickness, whereas Au{111} facets are preferentially attacked by the presence of Br- in the reaction ambient. More importantly, graphene is introduced to prevent/minimize aggregation during the formation of Au nanoframes. The combined simulation and experimental studies show that the hybrid platform made of graphene/Au nanoframes is capable of detecting analytes at concentration levels down to 10-9 M by using the SERS technique.
Collapse
Affiliation(s)
- Peiyi Ye
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Wenbo Xin
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Igor M De Rosa
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yekan Wang
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Mark S Goorsky
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Li Zheng
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd, Zhong Shan Gong Yuan, Changning Qu, Shanghai 200050, P. R. China
| | - Xunqian Yin
- School of Materials Science and Engineering, Shandong University of Science and Technology, 579 Qianwangang Rd., Economic & Technological Development Zones, Qingdao, Shandong 266590 China
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Shen J, Chen Z, Han S, Zhang H, Xu H, Xu C, Ding Z, Yuan R, Chen J, Long J. Plasmonic Electrons‐Driven Solar‐to‐Hydrocarbon Conversion over Au NR@ZnO Core‐Shell Nanostructures. ChemCatChem 2020. [DOI: 10.1002/cctc.202000390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinni Shen
- State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou University Fuzhou 350116 P.R. China
| | - Zhenye Chen
- State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou University Fuzhou 350116 P.R. China
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Hongwen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou University Fuzhou 350116 P.R. China
| | - Hailing Xu
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 P. R. China
| | - Chao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou University Fuzhou 350116 P.R. China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou University Fuzhou 350116 P.R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou University Fuzhou 350116 P.R. China
| | - Jinquan Chen
- State Key Laboratory of Precision SpectroscopyEast China Normal University Shanghai 200062 P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment College of ChemistryFuzhou University Fuzhou 350116 P.R. China
| |
Collapse
|
17
|
Ren G, Zhang X, Zhang Z, Liang Y, Wu S, Shen J. Three-Dimensional PdPtCu Nanoalloys with a Controllable Composition and Spiny Surface for the Enhancement of Ethanol Electrocatalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2584-2591. [PMID: 32090573 DOI: 10.1021/acs.langmuir.9b03401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pt-based nanomaterials have been proven to be effective catalysts for direct alcohol fuel cells (DAFCs). Specifically, the ternary nanoalloys (NAs) composed of Pt with other noble metals and transition metals can not only reduce the component of Pt but also enhance the electrocatalytic property and durability for alcohol oxidation. Herein, ternary PdPtCu NAs were synthesized through the solvothermal method using ethylene glycol as the solvent and reducing agent. The morphology and composition of PdPtCu NAs can be effectively controlled via selecting suitable surfactants and adjusting the proportion of precursors. The three-dimensional (3D) PdPtCu NAs with spiny rambutan-like morphology were obtained using the triblock copolymer Pluronic F-127 (PF-127) as the surfactant and adding three precursors with an equal molar ratio. The unique structure of PdPtCu NAs and the synergistic effect between the components significantly improved the electrocatalytic activity toward ethanol oxidation. Compared with different atomic ratio binary or ternary nanomaterials, 3D PdPtCu NAs manifested the best electrocatalytic performance.
Collapse
Affiliation(s)
- Guohong Ren
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Xichen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Zhicheng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shishan Wu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Jian Shen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
18
|
Yin S, Wang Z, Li C, Yu H, Deng K, Xu Y, Li X, Wang L, Wang H. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. NANOSCALE ADVANCES 2020; 2:1084-1089. [PMID: 36133045 PMCID: PMC9417950 DOI: 10.1039/d0na00020e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 06/16/2023]
Abstract
Rational design of Pt-based nanostructures with a controllable morphology and composition is vital for electrocatalysis. Herein, we demonstrate a dual-template strategy to fabricate well-defined cage-bell nanostructures including a Pt core and a mesoporous PtM (M = Co, Ni) bimetallic shell (Pt@mPtM (M = Co, Ni) CBs). Owing to their unique nanostructure and bimetallic properties, Pt@mPtM (M = Co, Ni) CBs show higher catalytic activity, better durability and stronger CO tolerance for the methanol oxidation reaction than commercial Pt/C. This work provides a general method for convenient preparation of cage-bell nanostructures with a mesoporous bimetallic shell, which have high promising potential for application in electrocatalytic fields.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
19
|
Gao F, Zhang Y, Song T, Wang C, Chen C, Wang J, Guo J, Du Y. Trimetallic platinum-nickel-palladium nanorods with abundant bumps as robust catalysts for methanol electrooxidation. J Colloid Interface Sci 2020; 561:512-518. [DOI: 10.1016/j.jcis.2019.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
|
20
|
Cao KW, Huang H, Li FM, Yao HC, Bai J, Chen P, Jin PJ, Deng ZW, Zeng JH, Chen Y. Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels for electrocatalytic oxygen reduction. J Colloid Interface Sci 2020; 559:143-151. [PMID: 31622816 DOI: 10.1016/j.jcis.2019.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
The reactive and stable catalysts for the oxygen reduction reaction are highly desirable for low temperature fuel cells. The commercial oxygen reduction reaction electrocatalysts generally reply on noble metal based nanomaterials, which suffer from inherent cost and selectivity issues. At present, it still remains challenge for designing efficient non-noble metal-based oxygen reduction reaction electrocatalysts. Herein, we successfully synthesize Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels hybrids by the high-temperature calcination of the graphene aerogels-polyallylamine-CoII hybrids. The component optimized hybrids show the excellent electrocatalytic activity for oxygen reduction reaction in alkaline media, which is comparable to commercial Pt/C electrocatalyst. Meanwhile, the hybrids also show eminent tolerance for CO and methanol, attributing to their excellent oxygen reduction reaction selectivity. The three-dimensionally interconnected structure of graphene aerogels, N-doping, uniform dispersion and high crystallinity of Co nanoparticles, and holey structure of graphene contribute to the striking oxygen reduction reaction activity of hybrids.
Collapse
Affiliation(s)
- Kai-Wen Cao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Hao Huang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Hong-Chang Yao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China.
| | - Pei Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Pu-Jun Jin
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Zi-Wei Deng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jing-Hui Zeng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China.
| |
Collapse
|
21
|
Wang H, Liu S, Zhang H, Yin S, Xu Y, Li X, Wang Z, Wang L. Multinary PtPdNiP truncated octahedral mesoporous nanocages for enhanced methanol oxidation electrocatalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03369c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multinary PtPdNiP TOMNs have been synthesized for the electrocatalytic methanol oxidation reaction with a superior electrocatalytic performance.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Hugang Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering, Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
22
|
Wu C, Li H, He H, Song Y, Bi C, Du W, Xia H. Compressive Strain in Core-Shell Au-Pd Nanoparticles Introduced by Lateral Confinement of Deformation Twinnings to Enhance the Oxidation Reduction Reaction Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46902-46911. [PMID: 31775499 DOI: 10.1021/acsami.9b16994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, quasi-spherical, uniform gold nanoparticles with rich deformation twinning (Audt NPs) were first synthesized with the assistance of copper(II) ions. Then, these Audt NPs were used as the cores for the fabrication of core-shell (CS) Audt-Pd NPs with ultrathin Pd layers, which also can bear compressive strain because of the formation of corrugated structured Pd shells led by the lateral confinement imposed by deformation twinning in the Au cores. The presence of compressive strain in the CS Audt-Pd NPs can result in the widening of the d-band width of the Pd shell and further the downshift of their d-band center, which can then improve the desorption ability of intermediates and still maintain the adsorption ability of the reactants because of the broad adsorption potential range. Taking the oxidation reduction reaction and the ethanol oxidation reaction as examples, the as-prepared Audt-Pd NPs indeed exhibited superior catalytic performances because of the synergism of compressive strain and the electronic effect. Thus, our work opens a new way to introduce compressive strain in the Pd-based CS NP catalysts, which can achieve the enhancement in the electrocatalytic performance by combining the merit of compressive strain and the electronic effect.
Collapse
Affiliation(s)
- Chenshuo Wu
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Hong Li
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Hongpeng He
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Yahui Song
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Cuixia Bi
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Wei Du
- School of Environment and Material Engineering , Yantai University , Yantai 264005 , P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| |
Collapse
|
23
|
Ghosh S, Bysakh S, Basu RN. Bimetallic Pd 96Fe 4 nanodendrites embedded in graphitic carbon nanosheets as highly efficient anode electrocatalysts. NANOSCALE ADVANCES 2019; 1:3929-3940. [PMID: 36132105 PMCID: PMC9417808 DOI: 10.1039/c9na00317g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 05/26/2023]
Abstract
A facile route to anchor a nanoalloy catalyst on graphitic carbon nanosheets (GCNs) has been developed for preparing high-performance electrode materials for application in direct alcohol fuel cells (DAFCs). Uniformly dispersed bimetallic Pd-Fe nanoparticles (NPs) with tunable composition have been immobilized on GCNs derived from mesocarbon microbeads (MCMBs) by a one-pot radiolytic reduction method. The Pd-Fe/GCN hybrid shows promising electrocatalytic activity for the methanol, ethanol, ethylene glycol, tri-ethylene glycol and glycerol oxidation reactions in alkaline medium. The as-prepared flower-shape Pd96Fe4/GCN nanohybrids have high mass activity for the ethanol oxidation reaction (EOR), which is ∼36 times (11 A per mg Pd) higher than that of their monometallic counterparts. Moreover, the onset oxidation potential for the EOR on the Pd96Fe4/GCN nanohybrids negatively shifts ca. 780 mV compared to that on commercial Pd/C electrocatalysts, suggesting fast kinetics and superior electrocatalytic activity. Additionally, chronoamperometry measurements display good long-term cycling stability of the Pd96Fe4/GCN nanohybrids for the EOR and also demonstrate only ∼7% loss in forward current density after 1000 cycles. The superior catalytic activity and stability may have originated from the modified electronic structure of the Pd-Fe nanoalloys and excellent physicochemical properties of the graphitic nanosheets. The present synthetic route using GCNs as the supporting material will contribute to further design of multimetallic nanoarchitectures with controlled composition and desired functions for fuel cell applications.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Fuel Cell and Battery Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| | - Sandip Bysakh
- Materials Characterization Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| | - Rajendra Nath Basu
- Fuel Cell and Battery Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| |
Collapse
|
24
|
Zhang Y, Gao F, Song T, Wang C, Chen C, Du Y. Novel networked wicker-like PtFe nanowires with branch-rich exteriors for efficient electrocatalysis. NANOSCALE 2019; 11:15561-15566. [PMID: 31393499 DOI: 10.1039/c9nr05325e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The construction of Pt-based networked nanowire nanocatalysts with high performance is significant in the application of direct alcohol fuel cells. However, it is still a challenge to precisely regulate the surface structure and further improve their catalytic behavior. For this purpose, we have synthesized a series of novel networked wicker-like PtFe nanowire catalysts, different from previous networked nanowire catalysts with smooth surfaces, and the PtFe catalysts possess branch-rich exteriors on the rough surface of each nanowire similar to wickers and they interconnect with each other, which lead to rich steps and defects. Importantly, after electrochemical tests, the composition-optimized Pt3Fe nanowires were found to exhibit superior catalytic performance towards the ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR) compared to that of commercial Pt/C catalysts in acid media. In particular, the specific activities of Pt3Fe nanowires are 7.3 and 7.1 times higher than those of the Pt/C catalysts for EOR and MOR, respectively. In addition, the Pt3Fe nanowires also show the best durability among these catalysts after 1000 successive cycles, and their residual activities are far better than those of the Pt/C catalysts. The synthesis of wicker-like networked PtFe nanowires offers a new guideline to tune the structure and composition of nanocatalysts for their use in direct alcohol fuel cells and beyond.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
25
|
Huang J, Liu Y, Xu M, Wan C, Liu H, Li M, Huang Z, Duan X, Pan X, Huang Y. PtCuNi Tetrahedra Catalysts with Tailored Surfaces for Efficient Alcohol Oxidation. NANO LETTERS 2019; 19:5431-5436. [PMID: 31287958 DOI: 10.1021/acs.nanolett.9b01937] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Direct methanol/ethanol alkaline fuel cells (DMAFCs/DEAFCs) represent an attractive mobile power generation technology. The methanol/ethanol oxidation reaction (MOR/EOR) often requires high-performance yet expensive Pt-based catalysts that may be easily poisoned. Herein, we report the development of PtCuNi tetrahedra electrocatalysts with optimized specific activity and mass activity for MOR and EOR. Our synthetic and structural characterizations show that these PtCuNi tetrahedra have Cu-rich core and PtNi-rich shell with tunable surface composition. Electrocatalytic studies demonstrate that Pt56Cu28Ni16 exhibits exceptional MOR and EOR specific activities of 14.0 ± 1.0 mA/cm2 and 11.2 ± 1.0 mA/cm2, respectively and record high mass activity of 7.0 ± 0.5 A/mgPt and 5.6 ± 0.6 A/mgPt, comparing favorably with the best MOR or EOR Pt alloy-based catalysts reported to date. Furthermore, we show that the unique core-shell tetrahedra configuration can also lead to considerably improved durability.
Collapse
Affiliation(s)
| | - Yang Liu
- Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P.R. China
| | - Mingjie Xu
- Fok Ying Tung Research Institute , Hong Kong University of Science and Technology , Guangzhou 511458 , P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang H, Qian X, Liu S, Yin S, Yu H, Xu Y, Li X, Wang Z, Wang L. Hollow PtPd Nanorods with Mesoporous Shells as an Efficient Electrocatalyst for the Methanol‐Oxidation Reaction. Chem Asian J 2019; 14:3019-3024. [DOI: 10.1002/asia.201900907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/27/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaoqian Qian
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis TechnologyCollege of Chemical Engineering and Materials ScienceZhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
27
|
Liu Y, Wang C, Wang W, Guo R, Bi W, Guo Y, Jin M. H 2-Induced coalescence of Pt nanoparticles for the preparation of ultrathin Pt nanowires with high-density planar defects. NANOSCALE 2019; 11:14828-14835. [PMID: 31355830 DOI: 10.1039/c9nr04349g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Construction of planar defects within a metallic catalyst can significantly improve its catalytic performance. However, it remains a huge challenge to introduce planar defects during the synthesis of metallic catalysts. In this work, we have reported an effective approach for the preparation of Pt nanowires with high-density planar defects. The success of the approach mainly relies on the attaching and merging of small Pt nanoparticles at low temperatures with the assistance of H2. By comparing the catalytic activities of Pt nanowires with high-density planar defects and commercial Pt/C catalysts toward methanol oxidation reactions, we show that the existence of planar defects can markedly enhance the electrocatalytic performance of the Pt nanowires. The Pt nanowires of 2.0 nm in diameter show a factor of 6.1 enhancement in specific activity and a factor of 5.4 enhancement in mass activity, respectively, for this reaction, compared to the commercial Pt/C catalyst. The method developed in this work could be an effective route to introduce planar defects within Pt catalysts, endowing them with much enhanced catalytic properties.
Collapse
Affiliation(s)
- Yaming Liu
- Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang H, Wu Y, Luo X, Jiao L, Wei X, Gu W, Du D, Lin Y, Zhu C. Ternary PtRuCu aerogels for enhanced methanol electrooxidation. NANOSCALE 2019; 11:10575-10580. [PMID: 31139808 DOI: 10.1039/c9nr02712b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ternary PtRuCu aerogels are facilely synthesized by one-step in situ reduction. The formation of ternary PtRuCu aerogels can be completed within 2 hours owing to the accelerated gelation kinetics. Because of the unique porous architectures and synergistic effect, the optimized Pt4Ru1Cu5 aerogels exhibited good electrochemical performance for methanol oxidation reaction.
Collapse
Affiliation(s)
- Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li JL, Zhao L, Li XF, Hao SE, Wang ZB. Carbon-Coated and Interfacial-Functionalized Mixed-Phase Mo x Ti 1-x O 2-δ Nanotubes as Highly Active and Durable PtRu Catalyst Support for Methanol Electrooxidation. Chem Asian J 2019; 14:1549-1556. [PMID: 30924601 DOI: 10.1002/asia.201900264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Indexed: 11/11/2022]
Abstract
A synchronous carbon-coating and interfacial-functionalizing approach is proposed for the fabrication of Mo-doped Mox Ti1-x O2-δ nanotubes (C@IF-MTNTs) under mild hydrothermal reaction with subsequent annealing as advanced catalyst supports for PtRu nanoparticles (NPs) towards methanol electrooxidation. The carbonation of glucose and Mo-doping takes place simultaneously at the interface of pristine anatase TiO2 nanotubes (TNTs), generating a unique concentric multilayered one-dimensional (1D) structure with crystalline an anatase/rutile mixed-phase TiO2 core and Mo-functionalized interface and subsequently a carbon shell. The obtained PtRu/C@IF-MTNTs catalyst exhibits an over 2 times higher mass activity with comparable durability than that of the unmodified PtRu/C@TNTs catalyst and over 1.7 times higher mass activity with over 20 % higher stability than that of PtRu/C catalyst. Such superior catalytic performance towards methanol electrooxidation is ascribed to the Mo-functionalized interface, concentric multilayered 1D architecture, and anatase/rutile mixed-phase core, which facilitates the charge transport through 1D structural support and electronic interaction between C@IF-MTNTs and ultrafine PtRu NPs. This work reveals the critical application of a 1D interfacial functionalized architecture for advanced energy storage and conversion.
Collapse
Affiliation(s)
- Jia-Long Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xi-Fei Li
- Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Su-E Hao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhen-Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
30
|
Yin S, Wang H, Deng K, Dai Z, Wang Z, Xu Y, Li X, Xue H, Wang L. Ultralong Ternary PtRuTe Mesoporous Nanotubes Fabricated by Micelle Assembly with a Self‐Sacrificial Template. Chemistry 2019; 25:5316-5321. [DOI: 10.1002/chem.201806382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/22/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Zechuan Dai
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Hairong Xue
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical, Synthesis TechnologyCollege of Chemical EngineeringZhejiang University of Technology, Hangzhou 310014 Zhejiang P.R. China
| |
Collapse
|
31
|
Zhao J, Huang H, Liu M, Wang JH, Liu K, Li ZY. Hofmann-like metal–organic-framework-derived PtxFe/C/N-GC composites as efficient electrocatalysts for methanol oxidation. RSC Adv 2019; 9:26450-26455. [PMID: 35530993 PMCID: PMC9070393 DOI: 10.1039/c9ra04652f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/19/2019] [Indexed: 01/14/2023] Open
Abstract
PtxFe/C/N-GC electrocatalysts were prepared using a composite of Hofmann-like Pt/Fe-based metal–organic frameworks and two-dimensional oxidized graphene. The PtxFe/C/N-GC-700 composite (annealed at 700 °C) exhibited an enhanced mass activity in the electrocatalytic methanol oxidation reaction, which was ten times higher than that of commercial Pt/C (20%) catalysts. Pt-based bimetallic catalysts derived from Pt/Fe-based metal–organic frameworks were prepared for electrocatalytic methanol oxidation, for which the mass activity is ten times higher than that of commercial Pt/C (20%) catalysts.![]()
Collapse
Affiliation(s)
- Jia Zhao
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Hui Huang
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Ming Liu
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Jin-Hua Wang
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Kai Liu
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Zhao-Yang Li
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- China
| |
Collapse
|
32
|
Aqueous Preparation of Platinum Nanoflowers on Three-Dimensional Graphene for Efficient Methanol Oxidation. Catalysts 2018. [DOI: 10.3390/catal8110519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A facile aqueous method to construct a platinum nanoflowers (PtNFs)/three-dimensional (3D) graphene electrode for electrochemical catalysis was demonstrated. PtNFs composed of thin Pt nanowires with the length of 6–16 nm and the diameter of 2–3 nm were prepared on 3D graphene foam as a growth template in the aqueous solution without any surfactant. The 3D graphene foam was used for patterning PtNFs and controlling their morphology. The fabricated PtNF/3D graphene electrode was applied for electrocatalytic methanol oxidation. Electrochemical measurements show that the PtNF/3D graphene electrode has higher electrocatalytic activity and better stability than commercial Pt-C modified glassy carbon electrode. It displays promising potential for applications in fuel cells.
Collapse
|
33
|
Liu F, Qi P, Liang X, Chen W, Li B, Zhang L, Yang Y, Huang S. Tuning Ion Complexing To Rapidly Prepare Hollow Ag-Pt Nanowires with High Activity toward the Methanol Oxidization Reaction. Chemistry 2018; 24:17345-17355. [PMID: 30222221 DOI: 10.1002/chem.201804250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 11/06/2022]
Abstract
Hollow Pt-based nanowires (NWs) have important applications in catalysis. Their preparation often involves a two-step process in which M (M=Ag, Pd, Co, Ni) NWs are prepared and subsequently subjected to galvanic reaction in solution containing a Pt precursor. It is challenging to achieve a simple one-step preparation, because the redox potential of PtIV /Pt or PtII /Pt to Pt is high, and therefore, Pt atoms always form first. This work demonstrates that an appropriate pH can decrease the redox potential of PtIV /Pt and allows the one-step preparation of high-quality hollow Pt-Ag NWs rapidly (10 min). Moreover, it is easy to realize large-scale preparation with this method. The NW composition can be adjusted readily to optimize their performance in the electrocatalytic methanol oxidization reaction (MOR). Compared with commercial Pt/C, NWs with appropriate Ag/Pt ratios exhibit high stability, activity, and CO tolerance ability.
Collapse
Affiliation(s)
- Fangyan Liu
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Peimei Qi
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Xiaoli Liang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Wei Chen
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Benxia Li
- Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
| | - Lijie Zhang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China
| | - Shaoming Huang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Xueyuan road 276, WenZhou, Zhejiang, 325027, P.R. China.,School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P.R. China
| |
Collapse
|
34
|
Li A, Duan W, Liu J, Zhuo K, Chen Y, Wang J. Electrochemical synthesis of AuPt nanoflowers in deep eutectic solvent at low temperature and their application in organic electro-oxidation. Sci Rep 2018; 8:13141. [PMID: 30177708 PMCID: PMC6120876 DOI: 10.1038/s41598-018-31402-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
Abstract
Deep eutectic solvents (DESs), called a new generation of green solvents, have broad applied in synthesis of nanomaterials due to their remarkable physicochemical properties. In this work, we used a unique strategy (adding moderate water (10%) to DES) to effectively prepare nanomaterials. Flower-like AuPt alloy nanoparticles were successfully synthesized using one-step electrochemical reduction method at a low potential of −0.30 V (vs. Pt) and a low temperature of 30 °C. In this process, the DES acted as solvent and shape-directing agent. More importantly, we used the electrode modified with the as-prepared nanomaterials as the anode to the electrochemical oxidation synthesis. The glassy carbon electrode modified with the AuPt nanoflowers was directly employed to the electro-oxidation of xanthene (XT) to xanthone (XO) under a constant low potential of 0.80 V (vs. Ag/AgCl) and room temperature, with a high yield of XO. Moreover, the synthesis process was milder and more environment-friendly than conventional organic syntheses. This new strategy would have a promising application in electroorganic synthesis fields.
Collapse
Affiliation(s)
- Aoqi Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Wanyi Duan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.
| | - Yujuan Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.
| |
Collapse
|
35
|
Sha R, Vishnu N, Badhulika S. Bimetallic Pt-Pd nanostructures supported on MoS 2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Mikrochim Acta 2018; 185:399. [PMID: 30073591 DOI: 10.1007/s00604-018-2927-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
The authors report on a composite based electrocatalyst for methanol oxidation and H2O2 sensing. The composite consists of Pt nanoparticles (NPs), Pd nanoflakes, and MoS2. It was synthesized by chemical reduction followed by template-free electro-deposition of Pt NPs. FESEM images of the Pd nanoflakes on the MoS2 reveal nanorod-like morphology of the Pd NPs on the MoS2 support, whilst FESEM images of the Pt-Pd/MoS2 composite show Pt NPs in high density and with the average size of ~15 nm, all homogeneously electrodeposited on the Pd-MoS2 composite. A glassy carbon electrode (GCE) was modified with the composite to obtain an electrode for methanol oxidation and H2O2 detection. The modified GCE exhibits excellent durability with good catalytic efficiency (the ratio of forward and backward peak current density, If/Ib, is 3.23) for methanol oxidation in acidic medium. It was also used to sense H2O2 at an applied potential of -0.35 V vs. Ag|AgCl which can be detected with a 3.4 μM lower limit of detection. The sensitivity is 7.64 μA μM-1 cm-2 and the dynamic range extends from 10 to 80 μM. This enhanced performance can be explained in terms of the presence of higher percentage of metallic 1T phase rather than a semiconducting 2H phase in MoS2. In addition, this is a result of the high surface area of MoS2 with interwoven nanosheets, the uniform distribution of the Pt NPs without any agglomeration on MoS2 support, and the synergistic effect of Pt NPs, Pd nanoflakes and MoS2 nanosheets. In our perception, this binder-free nano-composite has promising applications in next generation energy conversion and in chemical sensing. Graphical abstract A composite consisting of palladium nanoflakes and molybdenum disulfide was decorated with platinum nanoparticles and then placed on a glassy carbon electrode which is shown to be a viable electrocatalyst for both methanol oxidation and detection of hydrogen peroxide.
Collapse
Affiliation(s)
- Rinky Sha
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Nandimalla Vishnu
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India
| | - Sushmee Badhulika
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, 502285, India.
| |
Collapse
|
36
|
Bai J, Xiao X, Xue YY, Jiang JX, Zeng JH, Li XF, Chen Y. Bimetallic Platinum-Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19755-19763. [PMID: 29799726 DOI: 10.1021/acsami.8b05422] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt1Rh1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.
Collapse
Affiliation(s)
- Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Xue Xiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Yuan-Yuan Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Jia-Xing Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Jing-Hui Zeng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Xi-Fei Li
- Institute of Advanced Electrochemical Energy , Xi'an University of Technology , Xi'an 710048 , P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| |
Collapse
|
37
|
An Iron-Based Catalyst with Multiple Active Components Synergetically Improved Electrochemical Performance for Oxygen Reduction Reaction. Catalysts 2018. [DOI: 10.3390/catal8060243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Wang Z, Zhang F, Zou H, Yuan Y, Wang H, Xia J, Wang Z. Preparation of a Pt/NiFe layered double hydroxide/reduced graphene oxide composite as an electrocatalyst for methanol oxidation. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|