1
|
Tobiasz P, Borys F, Kucharska M, Poterała M, Krawczyk H. Synthesis and Study of Building Blocks with Dibenzo[ b,f]oxepine: Potential Microtubule Inhibitors. Int J Mol Sci 2024; 25:6155. [PMID: 38892342 PMCID: PMC11172465 DOI: 10.3390/ijms25116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The synthesis of biphenylmethoxydibenzo[b,f]oxepine or photoswitchable fluorinated dibenzo[b,f]oxepine derivatives with one or three azo bonds, potential microtubule inhibitors, is described. Our studies provide a concise method for constructing derivatives containing the dibenzo[b,f]oxepine skeleton. An analysis of products was run using experimental and theoretical methods. Next, we evaluated the E/Z isomerization of azo-dibenzo[b,f]oxepine derivatives, which could be photochemically controlled using visible-wavelength light.
Collapse
Affiliation(s)
- Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (F.B.); (M.K.); (M.P.)
| | - Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (F.B.); (M.K.); (M.P.)
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Marta Kucharska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (F.B.); (M.K.); (M.P.)
| | - Marcin Poterała
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (F.B.); (M.K.); (M.P.)
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (F.B.); (M.K.); (M.P.)
| |
Collapse
|
2
|
Su K, Vázquez O. Enlightening epigenetics: optochemical tools illuminate the path. Trends Biochem Sci 2024; 49:290-304. [PMID: 38350805 DOI: 10.1016/j.tibs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Optochemical tools have become potent instruments for understanding biological processes at the molecular level, and the past decade has witnessed their use in epigenetics and epitranscriptomics (also known as RNA epigenetics) for deciphering gene expression regulation. By using photoresponsive molecules such as photoswitches and photocages, researchers can achieve precise control over when and where specific events occur. Therefore, these are invaluable for studying both histone and nucleotide modifications and exploring disease-related mechanisms. We systematically report and assess current examples in the field, and identify open challenges and future directions. These outstanding proof-of-concept investigations will inspire other chemical biologists to participate in these emerging fields given the potential of photochromic molecules in research and biomedicine.
Collapse
Affiliation(s)
- Kaijun Su
- Department of Chemistry, University of Marburg, Marburg D-35043, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Marburg D-35043, Germany; Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg D-35043, Germany.
| |
Collapse
|
3
|
Abstract
Metalloenzymes are responsible for numerous physiological and pathological processes in living organisms; however, there are very few FDA-approved metalloenzyme-targeting therapeutics (only ~ 67 FDA-approved metalloenzyme inhibitors as of 2020, less than ~ 5 % of all FDA-approved therapeutics). Most metalloenzyme inhibitors have been developed to target the catalytic metal centers in metalloenzymes via the incorporation of metal-binding groups. Light-controlled inhibition of metalloenzymes has been used as a means to specifically activate and inactivate inhibitor engagement at a desired location and time via light irradiation, allowing for precise spatiotemporal control over metalloenzyme activity. In this review, we summarize the strategies that have been employed to develop biocompatible light-sensitive inhibitors for metalloenzymes via the incorporation of different photo-activatable moieties (including photoswitchable and photocleavable groups), and the application of photo-activateable inhibitors both in vitro and in vivo. We also discuss the photophysical mechanisms of different photo-activatable groups, their action under physiological conditions, and the different modes of interaction between inhibitors and proteins (i.e., inhibition mechanisms) in the presence and absence of light. Finally, we discuss considerations for the future development of light-responsive metalloenzyme inhibitors and the challenges limiting their application in vivo.
Collapse
Affiliation(s)
- Noushaba Nusrat Mafy
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| | - Dorothea B. Hudson
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| | - Emily L. Que
- Department of Chemistry, University of Texas at Austin, 105 E 24th St, Austin, TX 78712, United States
| |
Collapse
|
4
|
Lvov AG, Koffi Kouame E, Khusniyarov MM. Light-Induced Dyotropic Rearrangement of Diarylethenes: Scope, Mechanism, and Prospects. Chemistry 2023; 29:e202301480. [PMID: 37477021 DOI: 10.1002/chem.202301480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Irreversible two-photon photorearrangement of 1,2-diarylethenes is a unique process providing access to complex 2a1 ,5a-dihydro-5,6-dithiaacenaphthylene (DDA) heterocyclic core. This reaction was serendipitously discovered during studies on photoswitchable diarylethenes and was initially considered as a highly undesired process. However, in recent years, it has been recognized as an efficient photochemical reaction, interesting by itself and as a promising synthetic method for the synthesis of challenging molecules. Herein, we discuss the state-of-the-art in studies on this notable process.
Collapse
Affiliation(s)
- Andrey G Lvov
- Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
| | - Eric Koffi Kouame
- Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
| | - Marat M Khusniyarov
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
5
|
Borys F, Tobiasz P, Fabczak H, Joachimiak E, Krawczyk H. First-in-Class Colchicine-Based Visible Light Photoswitchable Microtubule Dynamics Disrupting Agent. Cells 2023; 12:1866. [PMID: 37508530 PMCID: PMC10378023 DOI: 10.3390/cells12141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Compounds that disrupt microtubule dynamics, such as colchicine, paclitaxel, or Vinca alkaloids, have been broadly used in biological studies and have found application in clinical anticancer medications. However, their main disadvantage is the lack of specificity towards cancerous cells, leading to severe side effects. In this paper, we report the first synthesis of 12 new visible light photoswitchable colchicine-based microtubule inhibitors AzoCols. Among the obtained compounds, two photoswitches showed light-dependent cytotoxicity in cancerous cell lines (HCT116 and MCF-7). The most promising compound displayed a nearly twofold increase in potency. Moreover, dissimilar inhibition of purified tubulin polymerisation in cell-free assay and light-dependent disruption of microtubule organisation visualised by immunofluorescence imaging sheds light on the mechanism of action as microtubule photoswitchable destabilisers. The presented results provide a foundation towards the synthesis and development of a novel class of photoswitchable colchicine-based microtubule polymerisation inhibitors.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
| |
Collapse
|
6
|
Laczi D, Johnstone MD, Fleming CL. Photoresponsive Small Molecule Inhibitors for the Remote Control of Enzyme Activity. Chem Asian J 2022; 17:e202200200. [PMID: 35446477 PMCID: PMC9322446 DOI: 10.1002/asia.202200200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Indexed: 12/14/2022]
Abstract
The development of new and effective therapeutics is reliant on the ability to study the underlying mechanisms of potential drug targets in live cells and multicellular systems. A persistent challenge in many drug development programmes is poor selectivity, which can obscure the mechanisms involved and lead to poorly understood modes of action. In efforts to improve our understanding of these complex processes, small molecule inhibitors have been developed in which their OFF/ON therapeutic activity can be toggled using light. Photopharmacology is devoted to using light to modulate drugs. Herein, we highlight the recent progress made towards the development of light-responsive small molecule inhibitors of selected enzymatic targets. Given the size of this field, literature from 2015 onwards has been reviewed.
Collapse
Affiliation(s)
- Dóra Laczi
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Mark D. Johnstone
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Cassandra L. Fleming
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| |
Collapse
|
7
|
Cheng HB, Zhang S, Bai E, Cao X, Wang J, Qi J, Liu J, Zhao J, Zhang L, Yoon J. Future-Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108289. [PMID: 34866257 DOI: 10.1002/adma.202108289] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Diarylethene (DAE) photoswitch is a new and promising family of photochromic molecules and has shown superior performance as a smart trigger in stimulus-responsive materials. During the past few decades, the DAE family has achieved a leap from simple molecules to functional molecules and developed toward validity as a universal switching building block. In recent years, the introduction of DAE into an assembly system has been an attractive strategy that enables the photochromic behavior of the building blocks to be manifested at the level of the entire system, beyond the DAE unit itself. This assembly-based strategy will bring many unexpected results that promote the design and manufacture of a new generation of advanced materials. Here, recent advances in the design and fabrication of diarylethene as a trigger in materials science, chemistry, and biomedicine are reviewed.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Enying Bai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xiaoqiao Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Jing Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
8
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
9
|
Ryazantsev MN, Strashkov DM, Nikolaev DM, Shtyrov AA, Panov MS. Photopharmacological compounds based on azobenzenes and azoheteroarenes: principles of molecular design, molecular modelling, and synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Lameijer LN, Budzak S, Simeth NA, Hansen MJ, Feringa BL, Jacquemin D, Szymanski W. General Principles for the Design of Visible-Light-Responsive Photoswitches: Tetra-ortho-Chloro-Azobenzenes. Angew Chem Int Ed Engl 2020; 59:21663-21670. [PMID: 33462976 PMCID: PMC7756550 DOI: 10.1002/anie.202008700] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Indexed: 12/29/2022]
Abstract
Molecular photoswitches enable reversible external control of biological systems, nanomachines, and smart materials. Their development is driven by the need for low energy (green-red-NIR) light switching, to allow non-invasive operation with deep tissue penetration. The lack of clear design principles for the adaptation and optimization of such systems limits further applications. Here we provide a design rulebook for tetra-ortho-chloroazobenzenes, an emerging class of visible-light-responsive photochromes, by elucidating the role that substituents play in defining their key characteristics: absorption spectra, band overlap, photoswitching efficiencies, and half-lives of the unstable cis isomers. This is achieved through joint photochemical and theoretical analyses of a representative library of molecules featuring substituents of varying electronic nature. A set of guidelines is presented that enables tuning of properties to the desired application through informed photochrome engineering.
Collapse
Affiliation(s)
- Lucien N. Lameijer
- Medical Imaging CenterUniversity Medical Center GroningenUniversity of GroningenHanzeplein 19713GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | - Simon Budzak
- Department of ChemistryFaculty of Natural SciencesMatej Bel UniversityTajovkého 4097401Banska BystricaSlovakia
| | - Nadja A. Simeth
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| | | | - Wiktor Szymanski
- Medical Imaging CenterUniversity Medical Center GroningenUniversity of GroningenHanzeplein 19713GZGroningenThe Netherlands
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AFGroningenThe Netherlands
| |
Collapse
|
11
|
Rustler K, Maleeva G, Gomila AMJ, Gorostiza P, Bregestovski P, König B. Optical Control of GABA A Receptors with a Fulgimide-Based Potentiator. Chemistry 2020; 26:12722-12727. [PMID: 32307732 PMCID: PMC7589408 DOI: 10.1002/chem.202000710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 01/04/2023]
Abstract
Optogenetic and photopharmacological tools to manipulate neuronal inhibition have limited efficacy and reversibility. We report the design, synthesis, and biological evaluation of Fulgazepam, a fulgimide derivative of benzodiazepine that behaves as a pure potentiator of ionotropic γ‐aminobutyric acid receptors (GABAARs) and displays full and reversible photoswitching in vitro and in vivo. The compound enables high‐resolution studies of GABAergic neurotransmission, and phototherapies based on localized, acute, and reversible neuroinhibition.
Collapse
Affiliation(s)
- Karin Rustler
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Galyna Maleeva
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, 13005, Marseille, France.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020, Barcelona, Spain.,Network Biomedical Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-bbn)
| | - Piotr Bregestovski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, 13005, Marseille, France.,M. Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Burkhard König
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
12
|
Lameijer LN, Budzak S, Simeth NA, Hansen MJ, Feringa BL, Jacquemin D, Szymanski W. General Principles for the Design of Visible‐Light‐Responsive Photoswitches: Tetra‐
ortho
‐Chloro‐Azobenzenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lucien N. Lameijer
- Medical Imaging Center University Medical Center Groningen University of Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Simon Budzak
- Department of Chemistry Faculty of Natural Sciences Matej Bel University Tajovkého 40 97401 Banska Bystrica Slovakia
| | - Nadja A. Simeth
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Mickel J. Hansen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| | - Denis Jacquemin
- CEISAM Lab UMR 6230 Université de Nantes CNRS 44000 Nantes France
| | - Wiktor Szymanski
- Medical Imaging Center University Medical Center Groningen University of Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747AF Groningen The Netherlands
| |
Collapse
|
13
|
Sultana F, Manasa KL, Shaik SP, Bonam SR, Kamal A. Zinc Dependent Histone Deacetylase Inhibitors in Cancer Therapeutics: Recent Update. Curr Med Chem 2020; 26:7212-7280. [PMID: 29852860 DOI: 10.2174/0929867325666180530094120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Histone deacetylases (HDAC) are an important class of enzymes that play a pivotal role in epigenetic regulation of gene expression that modifies the terminal of core histones leading to remodelling of chromatin topology and thereby controlling gene expression. HDAC inhibitors (HDACi) counter this action and can result in hyperacetylation of histones, thereby inducing an array of cellular consequences such as activation of apoptotic pathways, generation of reactive oxygen species (ROS), cell cycle arrest and autophagy. Hence, there is a growing interest in the potential clinical use of HDAC inhibitors as a new class of targeted cancer therapeutics. Methodology and Result: Several research articles spanning between 2016 and 2017 were reviewed in this article and presently offer critical insights into the important strategies such as structure-based rational drug design, multi-parameter lead optimization methodologies, relevant SAR studies and biology of various class of HDAC inhibitors, such as hydroxamic acids, benzamides, cyclic peptides, aliphatic acids, summarising the clinical trials and results of various combination drug therapy till date. CONCLUSION This review will provide a platform to the synthetic chemists and biologists to cater the needs of both molecular targeted therapy and combination drug therapy to design and synthesize safe and selective HDAC inhibitors in cancer therapeutics.
Collapse
Affiliation(s)
- Faria Sultana
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India
| | - Kesari Lakshmi Manasa
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India
| | - Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Product Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.,Academy of Scientific and Innovative Research, New Delhi, 110 025, India.,School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi, 110062, India
| |
Collapse
|
14
|
Schehr M, Ianes C, Weisner J, Heintze L, Müller MP, Pichlo C, Charl J, Brunstein E, Ewert J, Lehr M, Baumann U, Rauh D, Knippschild U, Peifer C, Herges R. 2-Azo-, 2-diazocine-thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: limitations and pitfalls of the photoswitchable inhibitor approach. Photochem Photobiol Sci 2019; 18:1398-1407. [PMID: 30924488 DOI: 10.1039/c9pp00010k] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In photopharmacology, photoswitchable compounds including azobenzene or other diarylazo moieties exhibit bioactivity against a target protein typically in the slender E-configuration, whereas the rather bulky Z-configuration usually is pharmacologically less potent. Herein we report the design, synthesis and photochemical/inhibitory characterization of new photoswitchable kinase inhibitors targeting p38α MAPK and CK1δ. A well characterized inhibitor scaffold was used to attach arylazo- and diazocine moieties. When the isolated isomers, or the photostationary state (PSS) of isomers, were tested in commonly used in vitro kinase assays, however, only small differences in activity were observed. X-ray analyses of ligand-bound p38α MAPK and CK1δ complexes revealed dynamic conformational adaptations of the protein with respect to both isomers. More importantly, irreversible reduction of the azo group to the corresponding hydrazine was observed. Independent experiments revealed that reducing agents such as DTT (dithiothreitol) and GSH (glutathione) that are typically used for protein stabilization in biological assays were responsible. Two further sources of error are the concentration dependence of the E-Z-switching efficiency and artefacts due to incomplete exclusion of light during testing. Our findings may also apply to a number of previously investigated azobenzene-based photoswitchable inhibitors.
Collapse
Affiliation(s)
- Miriam Schehr
- Otto Diels-Institute of Organic Chemistry, Christian Albrechts University Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lachmann D, Lahmy R, König B. Fulgimides as Light‐Activated Tools in Biological Investigations. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- D. Lachmann
- Faculty of Chemistry and Pharmacy Institute of Organic Chemistry University of Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - R. Lahmy
- Faculty of Chemistry and Pharmacy Institute of Organic Chemistry University of Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| | - B. König
- Faculty of Chemistry and Pharmacy Institute of Organic Chemistry University of Regensburg Universitätsstrasse 31 93053 Regensburg Germany
| |
Collapse
|
16
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Rustler K, Mickert MJ, Nazet J, Merkl R, Gorris HH, König B. Development of photoswitchable inhibitors for β-galactosidase. Org Biomol Chem 2018; 16:7430-7437. [PMID: 30264846 DOI: 10.1039/c8ob02122h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Azobenzenes are of particular interest as a photochromic scaffold for biological applications because of their high fatigue resistance, their large geometrical change between extended (trans) and bent (cis) isomer, and their diverse synthetic accessibility. Despite their wide-spread use, there is no reported photochromic inhibitor of the well-investigated enzyme β-galactosidase, which plays an important role for biochemistry and single molecule studies. Herein, we report the synthesis of photochromic competitive β-galactosidase inhibitors based on the molecular structure of 2-phenylethyl β-d-thiogalactoside (PETG) and 1-amino-1-deoxy-β-d-galactose (β-d-galactosylamine). The thermally highly stable PETG-based azobenzenes show excellent photochromic properties in polar solvents and moderate to high photostationary states (PSS). The optimized compound 37 is a strong competitive inhibitior of β-galactosidase from Escherichia coli and its inhibition constant (Ki) changes between 60 nM and 290 nM upon irradiation with light. Additional docking experiments supported the observed structure-activity relationship.
Collapse
Affiliation(s)
- Karin Rustler
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry 2018; 24:11245-11254. [PMID: 29633378 DOI: 10.1002/chem.201801205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Diarylethene derivatives, the biological activity of which can be reversibly changed by irradiation with light of different wavelengths, have shown promise as scientific tools and as candidates for photocontrollable drugs. However, examples demonstrating efficient photocontrol of their biological activity are still relatively rare. This concept article discusses the possible reasons for this situation and presents a critical analysis of existing data and hypotheses in this field, in order to extract the design principles enabling the construction of efficient photocontrollable diarylethene-based molecules. Papers addressing biologically relevant interactions between diarylethenes and biomolecules are analyzed; however, in most published cases, the efficiency of photocontrol in living systems remains to be demonstrated. We hope that this article will encourage further discussion of design principles, primarily among pharmacologists, synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601, Kyiv, Ukraine.,Lumobiotics GmbH, Auer Str. 2, 76227, Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Tim Schober
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
19
|
Simeth NA, Altmann LM, Wössner N, Bauer E, Jung M, König B. Photochromic Indolyl Fulgimides as Chromo-pharmacophores Targeting Sirtuins. J Org Chem 2018; 83:7919-7927. [DOI: 10.1021/acs.joc.8b00795] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nadja A. Simeth
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| | - Lisa-Marie Altmann
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| | - Nathalie Wössner
- Institute of Pharmaceutical Sciences, University of Freiburg, D-79104 Freiburg, Germany
| | - Elisabeth Bauer
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, D-79104 Freiburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Department of Chemistry and Pharmacy, University of Regensburg, D-93040, Regensburg, Germany
| |
Collapse
|
20
|
Walton JW, Cross JM, Riedel T, Dyson PJ. Perfluorinated HDAC inhibitors as selective anticancer agents. Org Biomol Chem 2018; 15:9186-9190. [PMID: 29072756 DOI: 10.1039/c7ob02339a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of potent histone deacetylase inhibitors is presented that incorporate alkyl or perfluorinated alkyl chains. Several new compounds show greater in vitro antiproliferative activity than the clinically approved inhibitor, SAHA. Furthermore, the new compounds show up to 5-fold greater activity against cancer cells than healthy cells. This selectivity is in contrast to SAHA, which is more active against the healthy cell line than the cancer cell line tested. Finally, we report an increase in activity for SAHA under mild hyperthermia, indicating that it could be an interesting candidate to use in combination with thermal therapy.
Collapse
Affiliation(s)
- James W Walton
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | | | |
Collapse
|
21
|
Babalhavaeji A, Woolley GA. Modular design of optically controlled protein affinity reagents. Chem Commun (Camb) 2018; 54:1591-1594. [DOI: 10.1039/c7cc07391g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Reversible, optical control of a generalizable protein affinity reagent.
Collapse
Affiliation(s)
| | - G. A. Woolley
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|