1
|
Sun Z, Zhang XS, Bian SW, Zhang C, Han YP, Liang YM. New synthetic approaches for the construction of difluoromethylated architectures. Org Biomol Chem 2025; 23:3029-3075. [PMID: 40013736 DOI: 10.1039/d4ob02000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Fluorinated compounds play a vital role in the fields of agrochemicals, pharmaceuticals, and materials science because of their unique lipophilicity, permeability, and metabolic stability. Among all such appealing fluorine-containing functional groups, the difluoromethyl group has attracted considerable attention owing to its outstanding chemical and physical properties. It has been used as a lipophilic hydrogen bond donor and a bioisostere of thiol, hydroxy, or amino groups. The excellent properties of the CF2H group have motivated many chemists to develop effective strategies for the selective incorporation of the CF2H group into target molecules. Over the past decades, a variety of efficient, atom-economical, and facile methods have been discovered for the difluoromethylation of organic substrates. This review summarizes the developments in different types of difluoromethylations, which could be classified into the following categories: radical difluoromethylation, transition metal-catalyzed difluoromethylation, and nucleophilic and electrophilic difluoromethylation.
Collapse
Affiliation(s)
- Zhou Sun
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Xue-Song Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Shao-Wei Bian
- Tianjin Eco-Environmental Monitoring Center, Tianjin, China
| | - Chun Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Kim S, Kim H. Cu-Electrocatalysis Enables Vicinal Bis(difluoromethylation) of Alkenes: Unraveling Dichotomous Role of Zn(CF 2H) 2(DMPU) 2 as Both Radical and Anion Source. J Am Chem Soc 2024; 146:22498-22508. [PMID: 39079933 DOI: 10.1021/jacs.4c06207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The difluoromethyl group (CF2H) serves as an essential bioisostere in drug discovery campaigns according to Lipinski's Rule of 5 due to its advantageous combination of lipophilicity and hydrogen bonding ability, thereby improving the ADME properties. However, despite the high prevalence and importance of vicinal hydrogen bond donors in pharmaceutical agents, a general synthetic method for doubly difluoromethylated compounds in the vicinal position is absent. Here we describe a copper-electrocatalyzed strategy that enables the vicinal bis(difluoromethylation) of alkenes. By leveraging electrochemistry to oxidize Zn(CF2H)2(DMPU)2-a conventionally utilized anionic transmetalating source, we paved a way to utilize it as a CF2H radical source to deliver the CF2H group in the terminal position of alkenes. Mechanistic studies revealed that the interception of the resultant secondary radical by a copper catalyst and subsequent reductive elimination is facilitated by invoking the Cu(III) intermediate, enabling the second installation of the CF2H group in the internal position. The utility of this electrocatalytic 1,2-bis(difluoromethylation) strategy has been highlighted through the late-stage bioisosteric replacement of pharmaceutical agents such as sotalol and dipivefrine.
Collapse
Affiliation(s)
- Seonyoung Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Fang Z, Liu W, Al-Maharik N, Cao R, Huang Y, Yuan Y, Zhang Q, Li D. Silver-Catalyzed Cascade Radical Bicyclization Reaction: An Atom- and Step-Economical Strategy Accessing γ-Lactam Containing Isoquinolinediones. J Org Chem 2023; 88:15428-15436. [PMID: 37864557 DOI: 10.1021/acs.joc.3c01964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
An efficient and convenient method for the cascade radical bicyclization of N-phenyl-4-pentenamides with N-methyl-N-methacryloylbenzamides under silver-catalyzed conditions is described. Based on this newly developed strategy, a variety of valuable γ-lactam containing isoquinolinediones can be effectively synthesized in one step within 0.5 h, during which two C-C bonds, one C-N bond, and two new N-heterocycles were formed concurrently. With N-aryl allyl carbamates, similar 2-oxazolidinone substituted isoquinolinedione compounds can likewise be produced. The approach demonstrates wide functional group compatibility, high step- and atom-economy, and the ability to be scaled up to gram quantities in a satisfactory yield. It marks the first instance of introducing γ-lactams into isoquinoline-1,3(2H,4H)-diones to construct linked hybrid drug-like molecules, thereby making this strategy highly attractive to drug discovery.
Collapse
Affiliation(s)
- Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Wen Liu
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Nawaf Al-Maharik
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus P.O. Box. 7, Palestine, 00970
| | - Ruizhe Cao
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Yingxue Huang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Yiting Yuan
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Qian Zhang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Li
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
4
|
Wei Z, Zheng W, Wan X, Hu J. Copper-Catalyzed Enantioselective Difluoromethylation-Alkynylation of Olefins by Solving the Dilemma between Acidities and Reduction Potentials of Difluoromethylating Agents. Angew Chem Int Ed Engl 2023; 62:e202308816. [PMID: 37466977 DOI: 10.1002/anie.202308816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Molecules containing a difluoromethyl group or a propargylic stereocenter are widely used in pharmaceuticals and agrochemicals, and 1,2-functionalization of olefins is an important method for introducing the two groups into molecules simultaneously. The construction of the propargylic stereocenter with terminal alkynes usually requires bases. However, difluoromethylating agents with high reduction potentials often decompose in the presence of bases because of their acidities, and those with low reduction potentials are stable but difficult to undergo the desired single electron transfer (SET) reduction. Using the linear relationship between reduction potential differences (ΔE) and Hammett substituent constants (σ) of difluoromethyl aryl sulfones, we solved the dilemma between acidities and reduction potentials of difluoromethylating agents. Herein, we report the first enantioselective difluoromethylation-alkynylation of olefins with difluoromethyl 4-chlorophenyl sulfone with high enantioselectivity (>90 % ee). We also extended this asymmetric fluoroalkylation-alkynylation reaction with other fluoroalkyl sulfones, which enabled efficient installation of trifluoromethyl, difluoroalkyl, difluorobenzyl, (benzenesulfonyl)-difluoromethyl and monofluoromethyl groups into products.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Weiqin Zheng
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Xiaolong Wan
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| |
Collapse
|
5
|
Sengoku T, Iwama H, Shimotori T, Fujimoto K, Inuzuka T, Matsune K, Yoda H. Visible-Light-Induced Reductive Coupling of Arylacetylenes with Benzothiazole Sulfones. J Org Chem 2023; 88:12776-12782. [PMID: 37614008 DOI: 10.1021/acs.joc.3c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In this study, we propose heavy-metal-free reductive coupling of arylacetylenes with benzothiazole sulfones. The reactions of alkyl or benzylic benzothiazole sulfones with arylacetylenes are successfully performed in the presence of Hantzsch esters and K2CO3 under visible-light irradiation to afford 1,2-disubstituted alkenes in moderate to good yields, with Z-isomer as the major product. The utility of this protocol is expanded to α-deuterative coupling using a deuterated Hantzsch ester, furnishing the corresponding alkenes with high deuterium incorporation.
Collapse
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Haruka Iwama
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Takuma Shimotori
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Keisuke Fujimoto
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Koki Matsune
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
6
|
Zhang YJ, Pu LY, He YM, Teng F. Palladium-Catalyzed Three-Component Heck/Sulfonation/Amination Leading to Quaternary 3,4-Dihydroisoquinolinones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Huang AX, Fu YR, Zhu HL, Zeng FL, Chen XL, Tang S, Qu LB, Yu B. Visible-Light-Promoted Phosphorylation/Cyclization of 1-Acryloyl-2-cyanoindoles in Green Solvent. J Org Chem 2022; 87:14433-14442. [PMID: 36257064 DOI: 10.1021/acs.joc.2c01890] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced persulfate-promoted cascade phosphorylation/cyclization reaction to access various phosphorylated pyrrolo[1,2-a]indolediones under mild conditions was developed. Notably, the transformation was carried out with diethyl carbonate/H2O as a green medium at room temperature. More impressively, traditional metal catalysts and photocatalysts could be effectively avoided. The reactions are simple to operate, easy to scale up, and have good functional group tolerance.
Collapse
Affiliation(s)
- An-Xiang Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Yi-Rui Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Hu-Lin Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Renmingnan Road No. 120, Hunan 416000, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
8
|
Niu YN, Xia XF. Recent developments in the synthesis of the isoquinoline-1,3(2 H,4 H)-dione by radical cascade reaction. Org Biomol Chem 2022; 20:7861-7885. [PMID: 36185038 DOI: 10.1039/d2ob01554d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, isoquinoline-1,3(2H,4H)-dione compounds have attracted extensive attention from synthetic chemists, with the aim of finding simple, mild, green and efficient synthetic methods. In this review, we summarize the diverse range of synthetic methods employing acryloyl benzamides as key substrates to furnish isoquinoline-1,3-diones using different radical precursors, such as those containing carbon, sulphur, phosphorus, nitrogen, silicon and bromine. This will stimulate the interest of readers to engage in research in this field.
Collapse
Affiliation(s)
- Yan-Ning Niu
- Department of Teaching and Research, Nanjing Forestry University, Huaian, Jiangsu, 223003, People's Republic of China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
9
|
Mao LL, Zhou AX, Zhu XH, Peng H, Quan LX, Wan JP, Yang SD. Visible-Light-Mediated Tandem Difluoromethylation/Cyclization of Alkenyl Aldehydes toward CF 2H-Substituted Chroman-4-one Derivatives. J Org Chem 2022; 87:12414-12423. [PMID: 36007244 DOI: 10.1021/acs.joc.2c01689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient and facile visible-light-mediated tandem difluoromethylation/cyclization of alkenyl aldehydes, with easily accessible and air-stable [Ph3PCF2H]+Br- as the difluoromethylation reagent, has been established. A range of CF2H-substituted chroman-4-one skeletons and their derivatives, such as 2,3-dihydroquinolin-4(1H)-ones, chroman, 3,4-dihydronaphthalen-1(2H)-one, 2,3-dihydrobenzofuran, and 2,3-dihydro-1H-inden-1-one, are efficiently produced in moderate to good yields with excellent chemoselectivity under mild reaction conditions.
Collapse
Affiliation(s)
- Liu-Liang Mao
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - An-Xi Zhou
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Xian-Hong Zhu
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Huanan Peng
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Li-Xia Quan
- College of Chemistry and Environment Science, Shangrao Normal University, Shangrao 334001, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Wei Z, Lou Z, Ni C, Zhang W, Hu J. Visible-light-promoted S-trifluoromethylation of thiophenols with trifluoromethyl phenyl sulfone. Chem Commun (Camb) 2022; 58:10024-10027. [PMID: 35983787 DOI: 10.1039/d2cc03921d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trifluoromethyl phenyl sulfone is traditionally a nucleophilic trifluoromethylating agent. Herein, we report the first example of the use of trifluoromethyl phenyl sulfone as a trifluoromethyl radical precursor. Arylthiolate anions can form electron donor-acceptor (EDA) complexes with trifluoromethyl phenyl sulfone, which can undergo an intramolecular single electron transfer (SET) reaction under visible light irradiation, thus realizing the S-trifluoromethylation of thiophenols under photoredox catalyst-free conditions. Similar S-perfluoroethylation and S-perfluoro-iso-propylation of thiophenols are also achieved using the corresponding perfluoroalkyl phenyl sulfones.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| | - Zhengzhao Lou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
11
|
Kim S, Hwang KH, Park HG, Kwak J, Lee H, Kim H. Radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Commun Chem 2022; 5:96. [PMID: 36697867 PMCID: PMC9814520 DOI: 10.1038/s42004-022-00697-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023] Open
Abstract
Due to its superior ability in controlling pharmaceutical activity, the installation of difluoromethyl (CF2H) functionality into organic molecules has been an area of intensive research. In this context, difluoromethylation of C-C π bonds mediated by a CF2H radical have been pursued as a central strategy to grant access to difluoromethylated hydrocarbons. However, early precedents necessitate the generation of oxidative chemical species that can limit the generality and utility of the reaction. We report here the successful implementation of radical hydrodifluoromethylation of unsaturated C-C bonds via an electroreductively triggered two-pronged approach. Preliminary mechanistic investigations suggest that the key distinction of the present strategy originates from the reconciliation of multiple redox processes under highly reducing electrochemical conditions. The reaction conditions can be chosen based on the electronic properties of the alkenes of interest, highlighting the hydrodifluoromethylation of both unactivated and activated alkenes. Notably, the reaction delivers geminal (bis)difluoromethylated products from alkynes in a single step by consecutive hydrodifluoromethylation, granting access to an underutilized 1,1,3,3-tetrafluoropropan-2-yl functional group. The late-stage hydrodifluoromethylation of densely functionalized pharmaceutical agents is also presented.
Collapse
Affiliation(s)
- Seonyoung Kim
- grid.255649.90000 0001 2171 7754Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Keon Ha Hwang
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Hyeong Gyu Park
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea ,grid.254230.20000 0001 0722 6377Graduate School of New Drug Discovery and Development, Chungnam University, Daejeon, 34134 Republic of Korea
| | - Jaesung Kwak
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyuk Lee
- grid.29869.3c0000 0001 2296 8192Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114 Republic of Korea
| | - Hyunwoo Kim
- grid.49100.3c0000 0001 0742 4007Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| |
Collapse
|
12
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
13
|
Remete AM, Nonn M, Novák TT, Csányi D, Kiss L. Recent progress in aryltrifluoromethylation reactions of carbon-carbon multiple bonds. Chem Asian J 2022; 17:e202200395. [PMID: 35584374 DOI: 10.1002/asia.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Due to the increasing relevance of fluorine-containing organic molecules in drug design, the synthesis of organofluorine compounds has gained high significance in synthetic organic chemistry. Trifluoromethylative difunctionalizations of carbon-carbon multiple bonds, with the simultaneous incorporation of a CF 3 group and another functional element, have considerable potential. Because of the high importance of carbon-carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations and, in particular, aryltrifluoromethylations or heteroaryltrifluoromethylations are considered to be increasing fields of synthetic organic chemistry. The aim of the current review is to summarize recent developments of aryltrifluoromethylation or heteroaryltrifluoromethylation reactions.
Collapse
Affiliation(s)
- Attila M Remete
- University of Szeged: Szegedi Tudomanyegyetem, INSTITUTE OF PHARMACEUTICAL CHEMISTRY, HUNGARY
| | - Melinda Nonn
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF MATERIALS AND ENVIRONMENTAL CHEMISTRY, HUNGARY
| | - Tamás T Novák
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Dorottya Csányi
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Lorand Kiss
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont, Institute of Organic Chemistry, Magyar Tudósok krt, 1117, Budapest, HUNGARY
| |
Collapse
|
14
|
Nambo M, Maekawa Y, Crudden CM. Desulfonylative Transformations of Sulfones by Transition-Metal Catalysis, Photocatalysis, and Organocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
| | - Yuuki Maekawa
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario, Canada, K7L 4 V1
| | - Cathleen M. Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan, 464-8602
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario, Canada, K7L 4 V1
| |
Collapse
|
15
|
Feng J, Jia X, Zhang S, Lu K, Cahard D. State of knowledge in photoredox-catalysed direct difluoromethylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00551d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The combination of visible light photoredox catalysis with direct difluoromethylation has allowed the synthesis of a large choice of CF2H-containing value-added molecules under very mild reaction conditions.
Collapse
Affiliation(s)
- Jiaxu Feng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xiaodong Jia
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Shuyue Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
- Department of Chemistry, College of Sciences, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Dominique Cahard
- CNRS, UMR 6014 COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| |
Collapse
|
16
|
Dolbier W, Wei S, Le S, Lei Z, Zhou L, Zhang Z. Difluoromethylarylation of α, β- Unsaturated Amides via a Photocatalytic Radical Smiles Rearrangement. Org Biomol Chem 2022; 20:2064-2068. [DOI: 10.1039/d2ob00186a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalytic Smiles rearrangement, triggered by radical difluoromethylation of conjugated arylsulfonylated amides, was developed to construct both β-difluoromethyl amide and heterocyclic scaffolds selectively. This transformation features mild conditions and broad...
Collapse
|
17
|
Patel S, Paul B, Paul H, Shankhdhar R, Chatterjee I. Redox-active alkylsulfones as precursors for alkyl radicals under photoredox catalysis. Chem Commun (Camb) 2022; 58:4857-4860. [DOI: 10.1039/d2cc00163b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light photoredox catalytic method for the generation of alkyl radicals using redox-active alkylsulfones to form a new C–C bond is reported.
Collapse
Affiliation(s)
- Sandeep Patel
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Biprajit Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Hrishikesh Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Rajat Shankhdhar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
18
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
19
|
Zhou X, Ni C, Deng L, Hu J. Electrochemical reduction of fluoroalkyl sulfones for radical fluoroalkylation of alkenes. Chem Commun (Camb) 2021; 57:8750-8753. [PMID: 34378580 DOI: 10.1039/d1cc03258e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Radical fluoroalkylation of alkenes has been developed by electrochemical reduction of fluoroalkyl sulfones. A series of electron-deficient alkenes readily undergo hydrofluoroalkylation in good to excellent yields. This chemistry represents the first example of electrochemical generation of fluoroalkyl radicals from sulfones, which are used for practical radical fluoroalkylation of organic compounds.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | | | | | | |
Collapse
|
20
|
Metal-free visible-light-catalyzed synthesis of 3-methyl-3,4-dihydroisoquinolin-1(2H)-one: mechanism, DFT calculation and optical properties. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Liu J, Du C, Hao H. Crystal structure of 4-(2,2-difluoroethyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2 H,4 H)-dione, C 14H 12F 5NO 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C14H12F5NO2, monoclinic, P21/c (no. 14), a = 11.8292(10) Å, b = 11.0987(8) Å, c = 11.6480(10) Å, β = 115.282(11)°, V = 1382.8(2) Å3, Z = 4, R
gt
(F) = 0.0913, wR
ref
(F
2) = 0.1609, T = 293(2) K.
Collapse
Affiliation(s)
- Jianlian Liu
- School of Chemical Engineering , Northwest University , 710069, Xi’an , Shaanxi , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Chaojun Du
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Hong Hao
- School of Chemical Engineering , Northwest University , 710069, Xi’an , Shaanxi , People’s Republic of China
| |
Collapse
|
22
|
Li H, Han X, Cao B. Crystal structure of 4-(2,2-difluoroethyl)-2,4,6-trimethylisoquinoline-1,3(2 H,4 H)-dione, C 14H 15F 2NO 2. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2020-0635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
C14H15F2NO2, monoclinic, P21/c (no. 14), a = 11.5474(10) Å, b = 11.0737(7) Å, c = 11.4311(10) Å, β = 114.979(11)°, V = 1325.0(2) Å3, Z = 4, R
gt
(F) = 0.0738, wR
ref
(F
2) = 0.2034, T = 293(2) K.
Collapse
Affiliation(s)
- Huixing Li
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Xinlong Han
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| | - Bin Cao
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
- School of Biological and Chemical Engineering, Nanyang Institute of Technology , 473004 , Nanyang , Henan , People’s Republic of China
| |
Collapse
|
23
|
Kong R, Fu T, Yang R, Chen D, Liang D, Dong Y, Li W, Wang B. 4‐Nitroanisole Facilitates Proton Reduction: Visible Light‐Induced Oxidative Aryltrifluoromethylation of Alkenes with Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202100304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rui Kong
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Tingfeng Fu
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ruihan Yang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Danna Chen
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Ying Dong
- College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong Province 250014 P. R. China
| | - Weili Li
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| | - Baoling Wang
- School of Chemistry and Chemical Engineering Kunming University 2 Puxin Road, Kunming Yunnan Province 650214 Kunming P. R. China
| |
Collapse
|
24
|
Nambo M, Tahara Y, Yim JCH, Yokogawa D, Crudden CM. Synthesis of quaternary centres by single electron reduction and alkylation of alkylsulfones. Chem Sci 2021; 12:4866-4871. [PMID: 34168761 PMCID: PMC8179647 DOI: 10.1039/d1sc00133g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A new method for the generation of tertiary radicals through single electron reduction of alkylsulfones promoted by Zn and 1,10-phenanthroline has been developed. These radicals could be employed in the Giese reaction, affording structurally diverse quaternary products in good yields. With the high modularity and functional group compatibility of sulfones, the utility of this method was demonstrated by intramolecular and iterative reactions to give complex structures. The radical generation process was investigated by control experiments and theoretical calculations. A new method for the generation of tertiary radicals through single electron reduction of alkylsulfones promoted by Zn and 1,10-phenanthroline has been developed.![]()
Collapse
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Yasuyo Tahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Jacky C-H Yim
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan .,Department of Chemistry, Queen's University Chernoff Hall Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
25
|
Sap JBI, Meyer CF, Straathof NJW, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Late-stage difluoromethylation: concepts, developments and perspective. Chem Soc Rev 2021; 50:8214-8247. [DOI: 10.1039/d1cs00360g] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes the conceptual advances that have led to the multiple difluoromethylation processes making use of well-defined CF2H sources.
Collapse
Affiliation(s)
- Jeroen B. I. Sap
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Claudio F. Meyer
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Natan J. W. Straathof
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Ndidi Iwumene
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| | - Christopher W. am Ende
- Pfizer Inc
- Medicine Design, Eastern Point Road, Groton, Connecticut 06340, and 1 Portland Street
- Cambridge
- USA
| | | | - Véronique Gouverneur
- Chemistry Research Laboratory
- Department of Chemistry
- Oxford University
- OX1 3TA Oxford
- UK
| |
Collapse
|
26
|
Synthesis of CF2H-containing isoquinoline-1,3-diones through metal-free, visible-light and air-promoted radical difluoromethylation/cyclization of N-benzamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020; 60:4300-4306. [DOI: 10.1002/anie.202014587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
28
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
29
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
30
|
Barata‐Vallejo S, Postigo A. New Visible‐Light‐Triggered Photocatalytic Trifluoromethylation Reactions of Carbon–Carbon Multiple Bonds and (Hetero)Aromatic Compounds. Chemistry 2020; 26:11065-11084. [DOI: 10.1002/chem.202000856] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Sebastian Barata‐Vallejo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
- ISOFConsiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Al Postigo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
| |
Collapse
|
31
|
Hell SM, Meyer CF, Misale A, Sap JBI, Christensen KE, Willis MC, Trabanco AA, Gouverneur V. Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angew Chem Int Ed Engl 2020; 59:11620-11626. [PMID: 32286720 PMCID: PMC7384135 DOI: 10.1002/anie.202004070] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Sulfonyl chlorides are inexpensive reactants extensively explored for functionalization, but never considered for radical hydrosulfonylation of alkenes. Herein, we report that tris(trimethylsilyl)silane is an ideal hydrogen atom donor enabling highly effective photoredox-catalyzed hydrosulfonylation of electron-deficient alkenes with sulfonyl chlorides. To increase the generality of this transformation, polarity-reversal catalysis (PRC) was successfully implemented for alkenes bearing alkyl substituents. This late-stage functionalization method tolerates a remarkably wide range of functional groups, is operationally simple, scalable, and allows access to building blocks which are important for medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Sandrine M. Hell
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Claudio F. Meyer
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
- Discovery ChemistryJanssen Research and DevelopmentJarama 75A45007ToledoSpain
| | - Antonio Misale
- Discovery ChemistryJanssen Research and DevelopmentJarama 75A45007ToledoSpain
| | - Jeroen B. I. Sap
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | | | - Michael C. Willis
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Andrés A. Trabanco
- Discovery ChemistryJanssen Research and DevelopmentJarama 75A45007ToledoSpain
| | - Véronique Gouverneur
- University of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
32
|
Hell SM, Meyer CF, Misale A, Sap JBI, Christensen KE, Willis MC, Trabanco AA, Gouverneur V. Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sandrine M. Hell
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Claudio F. Meyer
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
- Discovery Chemistry Janssen Research and Development Jarama 75A 45007 Toledo Spain
| | - Antonio Misale
- Discovery Chemistry Janssen Research and Development Jarama 75A 45007 Toledo Spain
| | - Jeroen B. I. Sap
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | | | - Michael C. Willis
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Andrés A. Trabanco
- Discovery Chemistry Janssen Research and Development Jarama 75A 45007 Toledo Spain
| | - Véronique Gouverneur
- University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
33
|
Radical C–H 18F-Difluoromethylation of Heteroarenes with [18F]Difluoromethyl Heteroaryl-Sulfones by Visible Light Photoredox Catalysis. Catalysts 2020. [DOI: 10.3390/catal10030275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 18F-labeling of CF2H groups has been recently studied in radiopharmaceutical chemistry owing to the favorable nuclear and physical characteristics of the radioisotope 18F for positron emission tomography (PET). Following up on the reported efficiency of the [18F]difluoromethyl benzothiazolyl-sulfone ([18F]1) as a 18F-difluoromethylating reagent, we investigated the influence of structurally-related [18F]difluoromethyl heteroaryl-sulfones in the reactivity toward the photoredox C–H 18F-difluoromethylation of heteroarenes under continuous-flow conditions. In the present work, six new [18F]difluoromethyl heteroaryl-sulfones [18F]5a–[18F]5f were prepared and, based on the overall radiochemical yields (RCYs), three of these reagents ([18F]5a, [18F]5c, and [18F]5f) were selected for the fully automated radiosynthesis on a FASTlabTM synthesizer (GE Healthcare) at high level of starting radioactivity. Subsequently, their efficiency as 18F-difluoromethylating reagents was evaluated using the antiherpetic drug acyclovir as a model substrate. Our results showed that the introduction of molecular modifications in the structure of [18F]1 influenced the amount of fac-IrIII(ppy)3 and the residence time needed to ensure a complete C–H 18F-difluoromethylation process. The photocatalytic C–H 18F-difluoromethylation reaction with the reagents [18F]5a, [18F]5c, and [18F]5f was extended to other heteroarenes. Radical-trapping experiments demonstrated the likely involvement of radical species in the C–H 18F-difluoromethylation process.
Collapse
|
34
|
Su Y, Zhang R, Xue W, Liu X, Zhao Y, Wang KH, Huang D, Huo C, Hu Y. Visible-light-promoted acyl radical cascade reaction for accessing acylated isoquinoline-1,3(2H,4H)-dione derivatives. Org Biomol Chem 2020; 18:1940-1948. [DOI: 10.1039/d0ob00086h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-promoted radical acylation/cyclization cascade reaction of N-methacryloylbenzamides with α-keto acids was developed to construct acylated isoquinoline-dione derivatives.
Collapse
Affiliation(s)
- Yingpeng Su
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Rong Zhang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Wenxuan Xue
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Xuan Liu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Yanan Zhao
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Congde Huo
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| |
Collapse
|
35
|
Hell SM, Meyer CF, Laudadio G, Misale A, Willis MC, Noël T, Trabanco AA, Gouverneur V. Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. J Am Chem Soc 2019; 142:720-725. [DOI: 10.1021/jacs.9b13071] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandrine M. Hell
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Claudio F. Meyer
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Gabriele Laudadio
- Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14, Helix, 5600 MB Eindhoven, The Netherlands
| | - Antonio Misale
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Michael C. Willis
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Timothy Noël
- Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14, Helix, 5600 MB Eindhoven, The Netherlands
| | - Andrés A. Trabanco
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
36
|
Koike T, Akita M. Recent progress in photochemical radical di- and mono-fluoromethylation. Org Biomol Chem 2019; 17:5413-5419. [PMID: 31086872 DOI: 10.1039/c9ob00734b] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, photoinduced radical difluoromethylation has emerged as a step-economical synthetic method of CHF2-containing compounds. In this article, difluoromethylation of alkenes, isonitriles and aryl bromides promoted by photoredox catalysis is described together with a non-catalytic photoinduced system. Representative reactions will be discussed for each highlighted difluoromethylating reagent. In addition, related monofluoromethylation with their corresponding monofluoromethylating reagents is also discussed.
Collapse
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | |
Collapse
|
37
|
Wang S, Dai P, Yan Z, Wang Y, Shao J, Wu Y, Deng C, Zhang W. Metal‐free, Visible‐Light‐Induced Radical Trifluoromethylation/Cyclization of N‐benzamides with CF
3
SO
2
Na to Synthesize CF
3
‐Containing Isoquinoline‐1,3‐diones. ChemistrySelect 2019. [DOI: 10.1002/slct.201902545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shaowei Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Peng Dai
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Zhichao Yan
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Youjia Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Jiaxuan Shao
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Yanhui Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of ChemistryCollege of SciencesNanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
38
|
Kawamura S, Sodeoka M. Fluoroalkylation Methods for Synthesizing Versatile Building Blocks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shintaro Kawamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Murugan A, Babu VN, Polu A, Sabarinathan N, Bakthadoss M, Sharada DS. Regioselective C3-H Trifluoromethylation of 2 H-Indazole under Transition-Metal-Free Photoredox Catalysis. J Org Chem 2019; 84:7796-7803. [PMID: 31117559 DOI: 10.1021/acs.joc.9b00676] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trifluoromethyl-substituted heteroarenes are biologically active compounds and useful building blocks. In this sequence, we have developed a visible-light-promoted regioselective C3-H trifluoromethylation of 2 H-indazole under metal-free conditions, which proceeds via a radical mechanism. The combination of photocatalysis and hypervalent iodine reagent provides a practical approach to a library of trifluoromethylated indazoles in 35-83% yields.
Collapse
Affiliation(s)
- Arumugavel Murugan
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Venkata Nagarjuna Babu
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Ashok Polu
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Nagaraj Sabarinathan
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| | - Manickam Bakthadoss
- Department of Chemistry , Pondicherry University , Pondicherry 605014 , India
| | - Duddu S Sharada
- Catalysis & Chemical Biology Laboratory, Department of Chemistry , Indian Institute of Technology Hyderabad , Kandi, 502285 Sangareddy , Telangana , India
| |
Collapse
|
40
|
Chen YJ, He YH, Guan Z. Metal-free visible-light-promoted thiocyanation/cyclization cascade for the synthesis of thiocyanato-containing isoquinolinediones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Lemos A, Lemaire C, Luxen A. Progress in Difluoroalkylation of Organic Substrates by Visible Light Photoredox Catalysis. Adv Synth Catal 2019; 361:1500-1537. [PMID: 31680791 PMCID: PMC6813635 DOI: 10.1002/adsc.201801121] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/15/2018] [Indexed: 01/30/2023]
Abstract
The selective incorporation of fluorinated motifs, in particular CF2FG (FG=a functional group) and CF2H groups, into organic compounds has attrracted increasing attention since organofluorine molecules are of the utmost importance in the areas of nuclear imaging, pharmaceutical, agrochemical, and material sciences. A variety of synthetic approaches has been employed in late-stage difluoroalkylation reactions. Visible light photoredox catalysis for the production of CF2FG and CF2H radicals has provided a more sustainable alternative to other conventional radical-triggered reactions from the viewpoint of safety, cost, availability, and "green" chemistry. A wide range of difluoroalkylating reagents has been successfully implemented in these organic transformations in the presence of transition metal complexes or organic photocatalysts. In most cases, upon excitation via visible light irradiation with fluorescent light bulbs or blue light-emitting diode (LED) lamps, these photocatalysts can act as both reductive and oxidative quenchers, thus enabling the application of electron-donor or electron-acceptor difluoroalkylating reagents for the generation of CF2FG and CF2H radicals. Subsequent radical addition to substrates and additional organic transformations afford the corresponding difluoroalkylated derivatives. The present review describes the distinct strategies for the transition metal- and organic-photocatalyzed difluoroalkylation of a broad range of organic substrates by visible light irradiation reported in the literature since 2014.
Collapse
Affiliation(s)
- Agostinho Lemos
- GIGA Cyclotron Research Centre In Vivo ImagingUniversity of LiègeAllée du 6 Août 8,4000LiègeBelgium
| | - Christian Lemaire
- GIGA Cyclotron Research Centre In Vivo ImagingUniversity of LiègeAllée du 6 Août 8,4000LiègeBelgium
| | - André Luxen
- GIGA Cyclotron Research Centre In Vivo ImagingUniversity of LiègeAllée du 6 Août 8,4000LiègeBelgium
| |
Collapse
|
42
|
Zhu M, Fun W, Guo W, Tian Y, Wang Z, Xu C, Ji B. Visible-Light-Induced Radical Di- and Trifluoromethylation of β, γ-Unsaturated Oximes: Synthesis of Di- and Trifluoromethylated Isoxazolines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801790] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mei Zhu
- College of Food and Drug; and Henan Key Laboratory of Fuction-Oriented Porous Materials; Luoyang Normal University; Luoyang 471934 P. R. China
| | - Weijun Fun
- College of Chemistry and Chemical Engineering; and Henan Key Laboratory of Fuction-Oriented Porous Materials; Luoyang Normal University; Luoyang 471022 P. R. China
| | - Wenbo Guo
- College of Food and Drug; and Henan Key Laboratory of Fuction-Oriented Porous Materials; Luoyang Normal University; Luoyang 471934 P. R. China
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering; and Henan Key Laboratory of Fuction-Oriented Porous Materials; Luoyang Normal University; Luoyang 471022 P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering; and Henan Key Laboratory of Fuction-Oriented Porous Materials; Luoyang Normal University; Luoyang 471022 P. R. China
| | - Chen Xu
- College of Food and Drug; and Henan Key Laboratory of Fuction-Oriented Porous Materials; Luoyang Normal University; Luoyang 471934 P. R. China
| | - Baoming Ji
- College of Chemistry and Chemical Engineering; and Henan Key Laboratory of Fuction-Oriented Porous Materials; Luoyang Normal University; Luoyang 471022 P. R. China
| |
Collapse
|
43
|
Zou S, Geng S, Chen L, Wang H, Huang F. Visible light driven metal-free intramolecular cyclization: a facile synthesis of 3-position substituted 3,4-dihydroisoquinolin-1(2H)-one. Org Biomol Chem 2019; 17:380-387. [PMID: 30556559 DOI: 10.1039/c8ob02560f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A visible-light metal-free photocatalytic synthesis of 3-position substituted 3,4-dihydroisoquinolin-1(2H)-one derivatives under mild conditions in moderate to good yields is described. EosinY Na, an organic dye, which is of low cost and has good availability, is used as the photocatalyst. A wide range of substrates are tolerated and the gram-scale reaction can also proceed smoothly. Mechanistic studies indicate that a plausible free radical process is proposed.
Collapse
Affiliation(s)
- Shuai Zou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | | | | | | | | |
Collapse
|
44
|
Huang S, Niu P, Su Y, Hu D, Huo C. Tandem radical cyclization of N-methacryloyl benzamides with CBr 4 to construct brominated isoquinolinediones. Org Biomol Chem 2018; 16:7748-7752. [PMID: 30298897 DOI: 10.1039/c8ob01964a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple cumene (isopropylbenzene, IPB) promoted auto-oxidation involved tandem radical cyclization of N-methacryloyl benzamides using stable and easy-to-handle CBr4 as the bromine source is described. This strategy provides an efficient and practical approach for the synthesis of bromine containing isoquinolinediones. This method also presents a new way to generate bromine radicals using a mild auto-oxidation pathway.
Collapse
Affiliation(s)
- Songhai Huang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Pengfei Niu
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Yingpeng Su
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Dongcheng Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Congde Huo
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
45
|
Visible light photoredox-catalyzed difluoromethylation and ring expansion of 1-(1-arylvinyl)cyclobutanols. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Visible light induced hydrodifluoromethylation of alkenes derived from oxindoles with (difluoromethyl)triphenylphosphonium bromide. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Wei J, Gu D, Wang S, Hu J, Dong X, Sheng R. Visible-light-mediated radical arylthiodifluoromethylation of isocyanides with fluorinated 2-pyridyl sulfones. Org Chem Front 2018. [DOI: 10.1039/c8qo00644j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
2-PySO2CF2SAr were developed as powerful arylthiodifluoromethylation reagents, and the Stern–Volmer luminescence studies demonstrated that the mechanism might operate via a photoredox cycle consisting of a reductive quenching with Na2CO3.
Collapse
Affiliation(s)
- Jun Wei
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Dongyan Gu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Shengdan Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai
- People's Republic of China
| | - Xiaowu Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- People's Republic of China
| | - Rong Sheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- People's Republic of China
| |
Collapse
|