1
|
Zhang Y, Tian L, Zhang J, Zhong M. pH-Responsive Hyperbranched Polymer Scaffolds for Polymer and Peptide Conjugation through Molecular Recognition: Synthesis and Self-Assembly. Biomacromolecules 2025; 26:2960-2970. [PMID: 40234736 DOI: 10.1021/acs.biomac.5c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Hyperbranched polymers can be suitable polymeric scaffolds for the modification of functional groups and fabrication of applicable nanoparticles considering their good solubility, numerous modification sites, and unique self-assembly behaviors. To facilitate the modification process and obtain various functional hyperbranched polymers, a new inimer 2-((adamantan-1-yl)amino)-1-(4-((2-bromo-2-methylpropanoyl)oxy)phenyl)-2-oxoethyl methacrylate (ABMA) with an adamantyl group was prepared in this research through the Passerini reaction. ABMA was copolymerized with 2-(diisopropylamino)ethyl methacrylate (DPA), affording the pH-responsive hyperbranched polymer hPDPA. Model molecules poly(ethylene glycol) (PEG) and the peptide RRRRRRRRC (PArg) with a cell-penetrating octaarginine fragment were conjugated with β-cyclodextrin (β-CD) to modify the hPDPA through molecular recognition. The inclusion complex hPDPA/PEG self-assembled into micelles in phosphate buffer at pH 7.4, while hPDPA/PEG/PArg self-assembled into vesicles because of the repulsion of the positively charged PArg. It was demonstrated that the DOX-loaded hPDPA/PEG/PArg could be internalized by Hela cells with high efficiency and could induce apoptosis of Hela cells.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Liyuan Tian
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Jimin Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Meihui Zhong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
2
|
Li S, Li Y, Shen G, Sun J, Abdelmohsen LKEA, Yan X, van Hest JCM. Flexible Morphological Regulation of Photothermal Nanodrugs: Understanding the Relationship between the Structure, Photothermal Effect, and Tumoral Biodistribution. ACS NANO 2025; 19:2799-2808. [PMID: 39789913 PMCID: PMC11760176 DOI: 10.1021/acsnano.4c15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)-block-poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated. Four different topologies were compared, namely, spherical vesicles, bowl-shaped vesicles, rodlike micelles, and vesicular tubes. The photothermal properties and in vivo tumoral biodistribution were investigated, revealing their relationship with the particle morphology. Finally, the tumor ablation capability of the optimized nanodrugs was demonstrated. This study represents a systematic study of the morphologically discrete regulation of nanodrugs, highlighting the importance of customization of supramolecular photothermal nanodrugs toward clinical antitumor therapy.
Collapse
Affiliation(s)
- Shukun Li
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yudong Li
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Guizhi Shen
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
| | - Juping Sun
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
- School
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Xuehai Yan
- State
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China
- School
of Chemical Engineering, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Guo Y, He X, Williams GR, Zhou Y, Liao X, Xiao Z, Yu C, Liu Y. Tumor microenvironment-responsive hyperbranched polymers for controlled drug delivery. J Pharm Anal 2024; 14:101003. [PMID: 39831051 PMCID: PMC11742316 DOI: 10.1016/j.jpha.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 01/22/2025] Open
Abstract
Hyperbranched polymers (HBPs) have drawn great interest in the biomedical field on account of their special morphology, low viscosity, self-regulation, and facile preparation methods. Moreover, their large intramolecular cavities, high biocompatibility, biodegradability, and targeting properties render them very suitable for anti-tumor drug delivery. Recently, exploiting the specific characteristics of the tumor microenvironment, a range of multifunctional HBPs responsive to the tumor microenvironment have emerged. By further introducing various types of drugs through physical embedding or chemical coupling, the resulting HBPs based delivery systems have played a crucial part in improving drug stability, increasing effective drug concentration, decreasing drug toxicity and side effects, and enhancing anti-tumor effect. Here, based on different types of tumor microenvironment stimulation signals such as pH, redox, temperature, etc., we systematically review the preparation and response mechanism of HBPs, summarize the latest advances in drug delivery applications, and analyze the challenges and future research directions for such nanomaterials in biomedical clinical applications.
Collapse
Affiliation(s)
- Yuqiong Guo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinni He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | | | - Yue Zhou
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ziyi Xiao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cuiyun Yu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- UCL School of Pharmacy, University College London, London, WC1N1AX, UK
| |
Collapse
|
4
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
5
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Balafouti A, Pispas S. Hyperbranched Copolymers of Methacrylic Acid and Lauryl Methacrylate H-P(MAA-co-LMA): Synthetic Aspects and Interactions with Biorelevant Compounds. Pharmaceutics 2023; 15:pharmaceutics15041198. [PMID: 37111683 PMCID: PMC10140914 DOI: 10.3390/pharmaceutics15041198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The synthesis of novel copolymers using one-step reversible addition-fragmentation chain transfer (RAFT) copolymerization of biocompatible methacrylic acid (MAA), lauryl methacrylate (LMA), and difunctional ethylene glycol dimethacrylate (EGDMA) as a branching agent is reported. The obtained amphiphilic hyperbranched H-P(MAA-co-LMA) copolymers are molecularly characterized by size exclusion chromatography (SEC), FTIR, and 1H-NMR spectroscopy, and subsequently investigated in terms of their self-assembly behavior in aqueous media. The formation of nanoaggregates of varying size, mass, and homogeneity, depending on the copolymer composition and solution conditions such as concentration or pH variation, is demonstrated by light scattering and spectroscopic techniques. Furthermore, drug encapsulation properties are studied by incorporating the low bioavailability drug, curcumin, in the nano-aggregate hydrophobic domains, which can also act as a bioimaging agent. The interaction of polyelectrolyte MAA units with model proteins is described to examine protein complexation capacity relevant to enzyme immobilization strategies, as well as explore copolymer self-assembly in simulated physiological media. The results confirm that these copolymer nanosystems could provide competent biocarriers for imaging and drug or protein delivery/enzyme immobilization applications.
Collapse
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
7
|
Zhu CN, Lv MY, Song F, Zheng DY, Liu C, Liu XJ, Cheng DB, Qiao ZY. Reversible covalent nanoassemblies for augmented nuclear drug translocation in drug resistance tumor. J Control Release 2023; 353:186-195. [PMID: 36403684 DOI: 10.1016/j.jconrel.2022.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
The drug efflux by P-glycoprotein (P-gp) is the primary contributor of multidrug resistance (MDR), which eventually generates insufficient nuclear drug accumulation and chemotherapy failure. In this paper, reversible covalent nanoassemblies on the basis of catechol-functionalized methoxy poly (ethylene glycol) (mPEG-dop) and phenylboronic acid-modified cholesterol (Chol-PBA) are successfully synthesized for delivery of both doxorubicin (DOX, anti-cancer drug) and tariquidar (TQR, P-glycoprotein inhibitor), which shows efficient nuclear DOX accumulation for overcoming tumor MDR. Through naturally forming phenylboronate linkage in physiological circumstances, Chol-PBA is able to bond with mPEG-dop. The resulting conjugates (PC) could self-assemble into reversible covalent nanoassemblies by dialysis method, and transmission electron microscopy analysis reveals the PC distributes in nano-scaled spherical particles before and after drug encapsulation. Under the assistance of Chol, PC can enter into lysosome of tumor cells via low-density lipoprotein (LDL) receptor-mediated endocytosis. Then the loaded TQR and DOX are released in acidic lysosomal compartments, which inhibit P-gp mediated efflux and elevate nuclear accumulation of DOX, respectively. At last, this drug loaded PC nanoassemblies show significant tumor suppression efficacy in multidrug-resistant tumor models, which suggests great potential for addressing MDR in cancer therapy.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China..
| | - Mei-Yu Lv
- Department of Respiratory, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Fei Song
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Jun Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No.122 Luoshi Road, Wuhan 430070, China..
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience Laboratory for Biological Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST), Beijing 100190, China..
| |
Collapse
|
8
|
The application of elastin-like peptides in cancer, tissue engineering and ocular disease. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Xu Y, Wang H, Qiao Z. Precise Control of Self‐Assembly in Vivo Based on Polymer‐Peptide Conjugates. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yin‐Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| | - Zeng‐Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
10
|
Niu Y, Lu Y. Construction of
pH
‐responsive core crosslinked micelles via thiol‐yne click reaction. J Appl Polym Sci 2022. [DOI: 10.1002/app.52753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yile Niu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Yanbing Lu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| |
Collapse
|
11
|
Luo Z, Gao Y, Duan Z, Yi Y, Wang H. Mitochondria-Targeted Self-Assembly of Peptide-Based Nanomaterials. Front Bioeng Biotechnol 2021; 9:782234. [PMID: 34900970 PMCID: PMC8664541 DOI: 10.3389/fbioe.2021.782234] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are well known to serve as the powerhouse for cells and also the initiator for some vital signaling pathways. A variety of diseases are discovered to be associated with the abnormalities of mitochondria, including cancers. Thus, targeting mitochondria and their metabolisms are recognized to be promising for cancer therapy. In recent years, great efforts have been devoted to developing mitochondria-targeted pharmaceuticals, including small molecular drugs, peptides, proteins, and genes, with several molecular drugs and peptides enrolled in clinical trials. Along with the advances of nanotechnology, self-assembled peptide-nanomaterials that integrate the biomarker-targeting, stimuli-response, self-assembly, and therapeutic effect, have been attracted increasing interest in the fields of biotechnology and nanomedicine. Particularly, in situ mitochondria-targeted self-assembling peptides that can assemble on the surface or inside mitochondria have opened another dimension for the mitochondria-targeted cancer therapy. Here, we highlight the recent progress of mitochondria-targeted peptide-nanomaterials, especially those in situ self-assembly systems in mitochondria, and their applications in cancer treatments.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Yujuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Zhongyu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021; 121:11653-11698. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent decades, peptides, which can possess high potency, excellent selectivity, and low toxicity, have emerged as promising therapeutics for cancer applications. Combined with an improved understanding of tumor biology and immuno-oncology, peptides have demonstrated robust antitumor efficacy in preclinical tumor models. However, the translation of peptides with intracellular targets into clinical therapies has been severely hindered by limitations in their intrinsic structure, such as low systemic stability, rapid clearance, and poor membrane permeability, that impede intracellular delivery. In this Review, we summarize recent advances in polymer-mediated intracellular delivery of peptides for cancer therapy, including both therapeutic peptides and peptide antigens. We highlight strategies to engineer polymeric materials to increase peptide delivery efficiency, especially cytosolic delivery, which plays a crucial role in potentiating peptide-based therapies. Finally, we discuss future opportunities for peptides in cancer treatment, with an emphasis on the design of polymer nanocarriers for optimized peptide delivery.
Collapse
Affiliation(s)
| | | | - Alexander N Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | |
Collapse
|
13
|
Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Zeng XZ, An HW, Wang H. Chemical Reactions Trigger Peptide Self-Assembly in vivo for Tumor Therapy. ChemMedChem 2021; 16:2452-2458. [PMID: 33882175 DOI: 10.1002/cmdc.202100254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Self-assembly peptide materials have promoted the development of science research including life science, optics, medicine, and catalysis over the past two decades. Especially in tumor treatment, peptide self-assembly strategies have exhibited promising potential by their high degree of biocompatibility, construction modularization, and diversity in structure controllability. Driven by physical and chemical triggers, peptides can self-assemble in vivo to form fibers, spheres, hydrogels, or ribbons to achieve predeterminate biological functions. Peptide self-assembly triggered by chemical reactions provides superior specificity and intelligent responsiveness to produce assembly-induced biological effects in target regions. Herein, from the perspective of triggers of peptide assembly, we briefly review the applications of in vivo peptide self-assembly strategies for tumor treatment, including tumor-pathology-factor-induced chemical reactions and bio-orthogonal reactions.
Collapse
Affiliation(s)
- Xiang-Zhong Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China.,Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
15
|
Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Chen L, Chen G, Yang Z, Wang H, Liu N, Liu Y, Fang K, Song Y, Guan X. Enhanced cancer treatment by an acid-sensitive cytotoxic peptide-doxorubicin conjugate. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Luo Q, Li X, Wang Y, He J, Zhang Q, Ge P, Cai X, Sun Q, Zhu W, Shen Z, Li X. A biodegradable CO 2-based polymeric antitumor nanodrug via a one-pot surfactant- and solvent-free miniemulsion preparation. Biomater Sci 2020; 8:2234-2244. [PMID: 32129324 DOI: 10.1039/c9bm01931f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, low molecular weight poly(propylene carbonate) (PPC, Mn = 3500), a biodegradable liquid polymer easily prepared from carbon dioxide (CO2), was modified into poly(propylene carbonate)diacrylate (PPC-DA) by acylation, and methoxy poly(ethylene glycol) (mPEG) was modified into methoxy poly(ethylene glycol) acrylate (mPEG-A). Using PPC-DA as the dispersant to dissolve hydrophobic doxorubicin (DOX) and the initiator, and with mPEG-A as the co-monomer and polymerisable surfactant, a biodegradable nanodrug with excellent biocompatibility was prepared by shear emulsification polymerization without surfactants or organic solvent residues. The nanodrug can be efficiently endocytosed by tumor cells and can rapidly release doxorubicin triggered by the acidic endosomal pH. As evidenced by experiments in tumor-bearing mice, such a nanodrug is stealthy during blood circulation, and targets tumor sites with high efficiency. Moreover, this nanodrug is more effective and less toxic than free doxorubicin. This study provides a green and versatile approach for preparing biodegradable nanodrugs via a simple and efficient process. Moreover, this study extends the applications of CO2 based polymers in the biomedical field, promoting the development of CO2 polymerization fixation.
Collapse
Affiliation(s)
- Qiaojie Luo
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Xiaojun Li
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Ying Wang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianfang He
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Qiao Zhang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Pengfei Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xia Cai
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Qiang Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou, 310027, China.
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaodong Li
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P. R. China. and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, P. R. China
| |
Collapse
|
18
|
Ma Z, Zhang Y, Zhang J, Zhang W, Foda MF, Dai X, Han H. Ultrasmall Peptide-Coated Platinum Nanoparticles for Precise NIR-II Photothermal Therapy by Mitochondrial Targeting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39434-39443. [PMID: 32805937 DOI: 10.1021/acsami.0c11469] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photothermal therapy (PTT) is considered an alternative for oncotherapy because it has less invasive damage to normal tissues than other methods, particularly in second near-infrared (NIR-II) PTT (1000-1350 nm) because of deeper biological tissue penetration, lower photon scattering, and higher maximum permissible exposure (1.0 W cm-2). However, for achieving a higher therapeutic effect, the delivery of large amounts of NIR-sensitive agents has been pursued, which in turn enormously increases damage to normal cells. Herein, we developed peptide-coated platinum nanoparticles (TPP-Pt) to create violent damage for a given amount of hyperthermia by purposefully delivering TPP-Pt to the thermally susceptible mitochondria with minimal side effects. Mitochondrial peptide targeting endowed ultrasmall platinum nanoparticles (PtNPs) with monodispersity, high stability, biosafety, and enhanced uptake of cancer cells and priority of mitochondria, causing efficient PTT. Moreover, an in vivo experiment showed that the excellent tumor inhibitory effect and negligible side effects could be achieved with the preferentially striking thermosensitive mitochondria strategy. The mitochondria-based "win by one move" therapeutic platform of peptide-coated platinum nanoparticles (TPP-Pt) demonstrated here will find great potential to overcome the challenges of low therapeutic efficiency and strong systemic side effects in PTT.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
- Department of Biochemistry Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Xinxin Dai
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Li S, Zhang W, Xue H, Xing R, Yan X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem Sci 2020; 11:8644-8656. [PMID: 34123123 PMCID: PMC8163399 DOI: 10.1039/d0sc02937h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aberrant metabolism of tumor cells creates an inimitable microenvironment featuring acidic pH, high glutathione (GSH) levels, and overexpression of certain enzymes, which benefits the overwhelming progress of a tumor. Peptide self-assembly, emerging as a biofriendly and versatile fabrication strategy, harnesses multiple noncovalent interactions to obtain a variety of nanostructures tailored on demand. Orchestrating the reversible nature of noncovalent interactions and abnormal physiological parameters in the tumor microenvironment enables peptide-based nanodrugs to be targetable or switchable, thereby improving the drugs' bioavailability and optimizing the treatment outcome. This review will focus on peptide-modulated self-assembly of photosensitizers, chemotherapeutic drugs, immunoactive agents for tumor microenvironment-oriented adaptive phototherapy, chemotherapy, immunotherapy and combinatorial therapy. We will emphasize the building block design, the intermolecular interaction principle, adaptive structural transformation in the tumor microenvironment and corresponding therapeutic efficacy, and aim to elucidate the critical role of peptide-modulated, tumor microenvironment-oriented adaptive assemblies in improving the therapeutic index. Challenges and opportunities will be covered as well to advance the development and clinical application of tumor therapies based on peptide self-assembly materials and techniques.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China http://www.yan-assembly.org/.,School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenjia Zhang
- Department of Radiology, Peking Union Medical College Hospital Beijing 100730 China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital Beijing 100730 China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China http://www.yan-assembly.org/
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China http://www.yan-assembly.org/.,School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
|
21
|
Kavand A, Anton N, Vandamme T, Serra CA, Chan-Seng D. Synthesis and functionalization of hyperbranched polymers for targeted drug delivery. J Control Release 2020; 321:285-311. [DOI: 10.1016/j.jconrel.2020.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
22
|
Wu WX, Liu Z. Novozym 435-Catalyzed Synthesis of Well-Defined Hyperbranched Aliphatic Poly(β-thioether ester). Molecules 2020; 25:E687. [PMID: 32041136 PMCID: PMC7037349 DOI: 10.3390/molecules25030687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
A series of new hyperbranched aliphatic poly(β-thioether ester)s were prepared by the enzymatic ring-opening polycondensation of 1,4-oxathiepan-7-one (OTO) and AB2/ABB' comonomer with acid-labile β-thiopropionate groups. Two kinds of comonomers, methyl 3-((3-hydroxy-2-(hydroxymethyl)propyl)thio)propanoate (HHTP) and methyl 3-((2,3-dihydroxypropyl)thio)propanoate (DHTP), with different primary alcohols and secondary alcohols, were synthesized by thiol-ene click chemistry and thiol-ene Michael addition, respectively. Immobilized lipase B from Candida antarctica (CALB), Novozym 435, was used as the catalyst. The random copolymers were characterized by 1H-NMR, 13C-NMR, GPC, TGA, and DSC. All branched copolyesters had high molecular weights over 15,000 Da with narrow polydispersities in the range of 1.75-2.01 and were amorphous polymers. Their degradation properties under acidic conditions were also studied in vitro. The polymeric nanoparticles of hyperbranched poly(β-thioether ester)s were successfully obtained and showed good oxidation-responsive properties, indicating their potential for biomedical applications.
Collapse
Affiliation(s)
- Wan-Xia Wu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, China;
| | | |
Collapse
|
23
|
Guo RC, Zhang XH, Ji L, Wei ZJ, Duan ZY, Qiao ZY, Wang H. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci 2020; 8:6175-6189. [DOI: 10.1039/d0bm01358g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review has described the synthesis, self-assembly and the anti-cancer application of therapeutic peptides and their conjugates, particularly polymer–peptide conjugates (PPCs).
Collapse
Affiliation(s)
- Ruo-Chen Guo
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Lei Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zi-Jin Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| |
Collapse
|
24
|
Zhu CN, Zang LY, Zheng DY, Cao HM, Liu XJ. Small-sized copolymeric nanoparticles for tumor penetration and intracellular drug release. Chem Commun (Camb) 2020; 56:2000-2003. [DOI: 10.1039/c9cc09716c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-sized copolymeric nanoparticles have been developed for deep tumor penetration and nuclear drug delivery, which exhibit excellent solid tumor growth suppression.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Liu-Yuan Zang
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Dong-Yun Zheng
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Hui-Min Cao
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xiao-Jun Liu
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| |
Collapse
|
25
|
Xu Y, Sun L, Feng S, Chen J, Gao Y, Guo L, An X, Nie Y, Zhang Y, Liu X, Ning X. Smart pH-Sensitive Nanogels for Enhancing Synergistic Anticancer Effects of Integrin α vβ 3 Specific Apoptotic Peptide and Therapeutic Nitric Oxide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34663-34675. [PMID: 31490654 DOI: 10.1021/acsami.9b10830] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apoptotic peptide (kla), which can trigger the mitochondria-mediated apoptotic programmed cell death, has been widely recognized as a potential anticancer agent. However, its therapeutic potential has been significantly impaired by its poor biostability, lack of tumor specificity, and particularly low cellular uptake. Herein, a linear peptide Arg-Trp-d-Arg-Asn-Arg (RWrNR) was identified as an integrin αvβ3 specific ligand with a nanomolar dissociation constant (Kd = 0.95 nM), which can greatly improve kla antitumor activity (IC50 = 8.81 μM) by improving its cellular uptake, compared to the classic integrin-recognition motif c-RGDyK (IC50 = 37.96 μM). Particularly, the RWrNR-kla conjugate can be entrapped in acidic sensitive nanogels (RK/Parg/CMCS-NGs), composed of poly-l-arginine (Parg) and carboxymethyl chitosan (CMCS, pI = 6.8), which can not only carry out controlled release of RWrNR-kla in response to the tumor acidic microenvironment, and consequently enhance its tumor specificity and cell internalization, but also trigger tumor-associated macrophages to generate nitric oxide, leading to enhanced synergistic anticancer efficacy. Importantly, RK/Parg/CMCS-NGs have been proven to effectively activate the apoptosis signaling pathway in vivo and significantly inhibit tumor growth with minimal adverse effects. To summarize, RK/Parg/CMCS-NGs are a promising apoptotic peptide-based therapeutics with enhanced tumor accumulation, cytosolic delivery, and synergistic anticancer effects, thereby holding great potential for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Lei Sun
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Shujun Feng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Ya Gao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Leilei Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials , China Pharmaceutical University , Nanjing 210009 , China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medical School , Nanjing 210093 , China
| | - Yuanyuan Nie
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceutics and Biomaterials , China Pharmaceutical University , Nanjing 210009 , China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
26
|
Wang Q, Jiang N, Fu B, Huang F, Liu J. Self-assembling peptide-based nanodrug delivery systems. Biomater Sci 2019; 7:4888-4911. [PMID: 31509120 DOI: 10.1039/c9bm01212e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Self-assembling peptide-based nanodrug delivery systems (NDDs), consisting of naturally occurring amino acids, not only share the advantages of traditional nanomedicine but also possess the unique properties of excellent biocompatibility, biodegradability, flexible responsiveness, specific biological function, and synthetic feasibility. Physical methods, enzymatic reaction, chemical reaction, and biosurface induction can yield versatile peptide-based NDDs; flexible responsiveness is their main advantage. Different functional peptides and abundant covalent modifications endow such systems with precise controllability and multifunctionality. Inspired by the above merits, researchers have taken advantage of the self-assembling peptide-based NDDs and achieved the accurate delivery of drugs to the lesion site. The present review outlines the methods for designing self-assembling peptide-based NDDs for small-molecule drugs, with an emphasis on the different drug delivery strategies and their applications in using peptides and peptide conjugates.
Collapse
Affiliation(s)
- Qian Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Nan Jiang
- Tianjin chest hospital, Tianjin 300051, P. R. China
| | - Bo Fu
- Tianjin chest hospital, Tianjin 300051, P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China. and Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
27
|
Guo Y, Zhang X, Sun X, Kong D, Han M, Wang X. Nanoadsorbents Based on NIPAM and Citric Acid: Removal Efficacy of Heavy Metal Ions in Different Media. ACS OMEGA 2019; 4:14162-14168. [PMID: 31508537 PMCID: PMC6732980 DOI: 10.1021/acsomega.9b00573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/07/2019] [Indexed: 05/30/2023]
Abstract
Heavy metal ions in aqueous solutions are harmful to human health, but exploring and exploiting nanoadsorbents with a high adsorption capacity and low cost should be an effective method for overcoming this problem. In this study, a novel nanoadsorbent termed poly(N-isopropylacrylamide-co-citric acid) (PNCA) was designed and synthesized via free-radical polymerization. PNCA exhibits good solubility in aqueous solutions and can self-assemble into spherical nanoaggregates with a mean hydrodynamic diameter of approximately 723.1 nm. After freeze-drying, the solid powder of PNCA exhibited a loose porous structure. When PNCA is dissolved in water, the resulting copolymer solution exhibits high removal rates for Cu2+ and Pb2+ of over 80%; meanwhile, over 97% of the PNCA is precipitated with metal ions. The adsorption process of PNCA chelated with Cu2+ ions fit the Freundlich model. The adsorption capacity is independent of the media pH, but could be affected by the temperature. Except for herbal medicines with alkaloids as active ingredients, PNCA also presents good adsorption capacity for Cu2+ in herbal medicine decoctions, with a removal rate of over 80%. The cell cytotoxicity in vitro and system toxicity in vivo demonstrate the desirable biosafety of PNCA. These results suggest that PNCA with good biosafety can be utilized as a nanoadsorbent to remove the metal ions, especially Cu2+, in different media.
Collapse
Affiliation(s)
- Yifei Guo
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical
Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xuejie Zhang
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical
Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xueqing Sun
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical
Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Dandan Kong
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical
Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical
Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical
Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
28
|
Cheng DB, Zhang XH, Gao YJ, Wang D, Wang L, Chen H, Qiao ZY, Wang H. Site-Specific Construction of Long-Term Drug Depot for Suppression of Tumor Recurrence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901813. [PMID: 31389136 DOI: 10.1002/smll.201901813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Local tumor recurrence after surgical resection is a critical concern in cancer therapy, and the current treatments, such as postsurgical chemotherapy, still show undesired side effects. Here a nonimplant strategy (transformation induced localization, TIL) is presented to in situ construct long-term retentive drug depots, wherein the sustained drug release from fibrous drug depots results in highly efficient suppression of postsurgical local tumor relapse. The peptide-based prodrug nanoparticles show favorable tumor targeting and instantly reorganize into fibrous nanostructures under overexpressed enzyme, realizing the construction of long-term drug depot in the tumor site. After the resection surgery, the remnant cancer cells are still inhibited by the sustained drug release from the fibrous prodrug depot, effectively preventing postsurgical local recurrences. This TIL strategy shows great potential in cancer recurrence therapy and offers a novel perspective for constructing functional biomaterials in vivo.
Collapse
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xue-Hao Zhang
- College of Science, Huazhong Agricultural University, China, Wuhan, 430070, China
| | - Yu-Juan Gao
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Dong Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, China, Wuhan, 430070, China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
29
|
Wu W. Lipase‐catalyzed synthesis of aliphatic poly(
β
‐thioether ester) with various methylene group contents: thermal properties, crystallization and degradation. POLYM INT 2019. [DOI: 10.1002/pi.5894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wan‐Xia Wu
- College of Pharmacy and Biological EngineeringChengdu University Chengdu China
| |
Collapse
|
30
|
Cheng DB, Zhang XH, Gao YJ, Ji L, Hou D, Wang Z, Xu W, Qiao ZY, Wang H. Endogenous Reactive Oxygen Species-Triggered Morphology Transformation for Enhanced Cooperative Interaction with Mitochondria. J Am Chem Soc 2019; 141:7235-7239. [DOI: 10.1021/jacs.8b07727] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for
Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, National Center for Nanoscience and
Technology (NCNST), Center of Materials Science and Optoelectronics
Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xue-Hao Zhang
- CAS Center for
Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, National Center for Nanoscience and
Technology (NCNST), Center of Materials Science and Optoelectronics
Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Juan Gao
- CAS Center for
Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, National Center for Nanoscience and
Technology (NCNST), Center of Materials Science and Optoelectronics
Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Ji
- CAS Center for
Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, National Center for Nanoscience and
Technology (NCNST), Center of Materials Science and Optoelectronics
Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dayong Hou
- Heilongjiang Key
Laboratory of Scientific Research in Urology, Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - Ziqi Wang
- Heilongjiang Key
Laboratory of Scientific Research in Urology, Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - Wanhai Xu
- Heilongjiang Key
Laboratory of Scientific Research in Urology, Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin 150001, China
| | - Zeng-Ying Qiao
- CAS Center for
Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, National Center for Nanoscience and
Technology (NCNST), Center of Materials Science and Optoelectronics
Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Wang
- CAS Center for
Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects
of Nanomaterials and Nanosafety, National Center for Nanoscience and
Technology (NCNST), Center of Materials Science and Optoelectronics
Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
31
|
Zhao SQ, Hu G, Xu XH, Kang SM, Liu N, Wu ZQ. Synthesis of Redox-Responsive Core Cross-Linked Micelles Carrying Optically Active Helical Poly(phenyl isocyanide) Arms and Their Applications in Drug Delivery. ACS Macro Lett 2018; 7:1073-1079. [PMID: 35632938 DOI: 10.1021/acsmacrolett.8b00610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this manuscript, we designed and synthesized three core cross-linked micelles (M-5L, P-5L, and P-5D) with redox-responsive disulfide bonds in the core and carrying optically active helical polyisocyanide arms. Their arms were different in the helicity of the main chain and the chirality of the side groups. These micelles showed excellent redox-responsiveness to reducing agent. However, because of the different chiralities of the arms, the three micelles exhibited different performances in drug delivery and controlled release. The M-5L micelle carrying left-handed helical arms showed better therapeutic effect than the other two due to the rapid cell membrane permeability.
Collapse
Affiliation(s)
- Song-Qing Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Guiju Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, Anhui Province, China
| |
Collapse
|
32
|
Zhao MZ, Cheng DB, Shang ZR, Wang L, Qiao ZY, Zhang JP, Wang H. An “In Vivo Self-assembly” Strategy for Constructing Superstructures for Biomedical Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2170-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Wu WX, Yang XL, Wang X, Zhang Y, Li HM, Lan L, Deng J, Wang N, Yu XQ. Lipase-catalyzed synthesis of pH-responsive poly(β-thioether ester)-b-poly(ethylene glycol)-b-poly(β-thioether ester) amphiphilic triblock copolymers for drug delivery. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1473864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Wan-Xia Wu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Xian-Ling Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Xiong Wang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Han-Mei Li
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Li Lan
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Deng
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China
| |
Collapse
|