1
|
Qian J, Zhang X, Jia Y, Xu H, Pan B. Oxidative Polymerization in Water Treatment: Chemical Fundamentals and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1060-1079. [PMID: 39761191 DOI: 10.1021/acs.est.4c10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For several decades, the methodology of complete destruction of organic pollutants via oxidation, i.e., mineralization, has been rooted in real water treatment applications. Nevertheless, this industrially accepted protocol is far from sustainable because of the excessive input of chemicals and/or energy as well as the unregulated carbon emission. Recently, there have been emerging studies on the removal of organic pollutants via a completely different pathway, i.e., polymerization, meaning that the target pollutants undergo oxidative polymerization reactions to generate polymeric products. These studies have collectively shown that compared to the conventional mineralization pathway, the polymerization pathway allows more efficient removal of target pollutants, largely reduced input of chemicals, and suppressed carbon emission. In this review, we aim to provide a comprehensive examination of the fundamentals of the oxidative polymerization process, current state-of-the-art strategies for regulation of the polymerization pathway from both kinetic and thermodynamic perspectives, and resource recovery of the formed polymeric products. In the end, the limitations of the polymerization process for pollutant removal are discussed, with perspectives for future studies. Hopefully, this review could not only provide critical insight for the advancement of polymerization-oriented technologies for removal of more organic pollutants in a greener manner but also stimulate more paradigm innovations for low-carbon water treatment.
Collapse
Affiliation(s)
- Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqian Jia
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
| | - Hui Xu
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Koizumi R, Atsuta Y, Fameau AL, Mitamura K, Watase S, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Stearic Acid as Polymerization Medium, Dopant and Hydrophobizer: Chemical Oxidative Polymerization of Pyrrole. Macromol Rapid Commun 2024; 45:e2400448. [PMID: 39360585 DOI: 10.1002/marc.202400448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Indexed: 10/04/2024]
Abstract
In recent years, fatty acids have garnered significant attention as a natural phase-change material and a hydrophobizer due to their biocompatibility and biodegradability. In this study, the utilization of fatty acid is proposed as a polymerization medium for the first time. As a specific reaction, chemical oxidative polymerizations of pyrrole is conducted using ferric chloride as an oxidant in a stearic acid medium. The polymerizations resulted in the production of micrometer-sized polypyrrole (PPy) grains, which are aggregates of atypical primary particles with submicrometer size. The PPy grains are doped with stearic acid, suggesting that the stearic acid functioned as a dopant and a hydrophobizing agent as well as a polymerization medium. The dried PPy grains can adsorb at the air-water interface and function as a liquid marble stabilizer with light-to-heat photothermal properties. The liquid marble can move on a planar air-water interface by Marangoni flow induced by NIR laser light irradiation.
Collapse
Affiliation(s)
- Rin Koizumi
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yuya Atsuta
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, F-59000, France
| | - Koji Mitamura
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka, 536-8553, Japan
| | - Seiji Watase
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka, 536-8553, Japan
| | - Shinya Higashimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
3
|
Oaki Y, Fujii S. Cascading responses of stimuli-responsive materials. Chem Commun (Camb) 2024; 60:9163-9176. [PMID: 39051149 DOI: 10.1039/d4cc02827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Responsiveness to stimuli is important in daily life: natural biological activity is governed by continuous stimulus responsiveness. The design of stimuli-responsive materials is required for the development of advanced sensing systems. Although fully controlled stimuli-responsive systems have been constructed in nature, artificial systems remain a challenge. Conventional stimuli-responsive materials show direct responsiveness to an applied stimulus (Stimulus 1), with structural changes in their molecules and organized states. This feature article focuses on cascading responses as a new concept for integrating stimuli-responsive material design. In cascading responses, an original stimulus (Stimulus 1) is converted into other stimuli (Stimulus 2, 3, …, N) through successive conversions. Stimulus N provides the eventual output response. Integration of multiple stimuli-responsive materials is required to achieve cascading responses. Although cascade, domino, and tandem chemical reactions have been reported at the molecular level, they are not used for materials with higher organized structures. In this article, we introduce functional carriers and sensors based on cascading responses as model cases. The concept of cascading responses enables the achievement of transscale responsivity and sensitivity, which are not directly induced by the original stimulus or its responsive material, for the development of advanced dynamic functional materials.
Collapse
Affiliation(s)
- Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan.
| |
Collapse
|
4
|
Tammela P, Iurchenkova A, Wang Z, Strømme M, Nyholm L, Lindh J. Laser irradiation of photothermal precursors - a novel approach to produce carbon materials for supercapacitors. CHEMSUSCHEM 2024; 17:e202301471. [PMID: 38300463 DOI: 10.1002/cssc.202301471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
A wide array of carbon materials finds extensive utility across various industrial applications today. Nonetheless, the production processes for these materials continue to entail elevated temperatures, necessitate the use of inert atmospheres, and often involve the handling of aggressive and toxic chemicals. The prevalent method for large-scale carbon material production, namely the pyrolysis of waste biomass and polymers, typically unfolds within the temperature range of 500-700 °C under a nitrogen (N2) atmosphere. Unfortunately, this approach suffers from significant energy inefficiency due to substantial heat loss over extended processing durations. In this work, we propose an interesting alternative: the carbonization of photothermal nanocellulose/polypyrrole composite films through CO2 laser irradiation in the presence of air. This innovative technique offers a swift and energy-efficient means of preparing carbon materials. The unique interaction between nanocellulose and polypyrrole imparts the film with sufficient stability to retain its structural integrity post-carbonization. This breakthrough opens up new avenues for producing binder-free electrodes using a rapid and straightforward approach. Furthermore, the irradiated film demonstrates specific and areal capacitances of 159 F g-1 and 62 μF cm-2, respectively, when immersed in a 2 M NaOH electrolyte. These values significantly surpass those achieved by current commercial activated carbons. Together, these attributes render CO2-laser carbonization an environmentally sustainable and ecologically friendly method for carbon material production.
Collapse
Affiliation(s)
- Petter Tammela
- Department of Material Sciences, Ångström laboratory, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Anna Iurchenkova
- Department of Material Sciences, Ångström laboratory, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Zhaohui Wang
- Department of Material Sciences, Ångström laboratory, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
- College of Materials Science and Engineering, Hunan University, 410082, Changsha, Hunan, China
| | - Maria Strømme
- Department of Material Sciences, Ångström laboratory, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Leif Nyholm
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden
| | - Jonas Lindh
- Department of Material Sciences, Ångström laboratory, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| |
Collapse
|
5
|
Matsui K, Yamamoto K, Oyama K, Seike M, Takeuchi K, Funatsu T, Mitamura K, Ikeda S, Watase S, Hirai T, Nakamura Y, Fujii S. Nitrogen-Containing Carbon Tubes Fabricated by Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6272-6284. [PMID: 38483293 DOI: 10.1021/acs.langmuir.3c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Cotton-core/polypyrrole (PPy)-sheath fibers (cotton/PPy fibers) were synthesized by aqueous chemical oxidative seeded polymerization and were utilized as precursors for nitrogen-containing carbon (NCC) tubes. Irradiation of the cotton/PPy fibers with a near-infrared (NIR) laser heated them to approximately 300 °C due to light-to-heat photothermal conversion by the PPy, and the cotton core was thermally decomposed and vaporized. Scanning electron microscopy studies revealed the formation of tubes with monodispersed diameters, and elemental microanalysis, Fourier transform infrared spectroscopy, and Raman spectroscopy confirmed that the PPy sheath was converted into NCC. Furthermore, sunlight also worked as the light source in fabricating the NCC tubes. The thicknesses of the tubes were controlled between 410 nm and 2.30 μm by tuning the PPy sheath thickness. The method developed in this study can be extended to other polymeric fibers, including acrylic and wool fibers. The shapes of the cross sections and surface nanomorphologies of the NCC tubes can be reflected in those of the polymer/PPy fibers.
Collapse
Affiliation(s)
- Kanade Matsui
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kenshin Yamamoto
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Takahiro Funatsu
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Research Laboratory of Advanced Science & Technology, Asahi Kasei Corporation, 1-3-1 Yakoh, Kawasaki-ku, Kawasaki-city, Kanagawa 210-0863, Japan
| | - Koji Mitamura
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Shingo Ikeda
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Seiji Watase
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Tomoyasu Hirai
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
6
|
Sun Y, Zhao M, Th Tee CA, Song L, Guo J, Pan J, Liu C, Zhang S, Zheng Y. Exploring the Effects of Liquid Marbles' Deformation on Their Rolling Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16618-16627. [PMID: 37934203 DOI: 10.1021/acs.langmuir.3c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Liquid marbles (LMs) are nonwetting droplets manufactured by encapsulating droplets with micro- or nanoscale particles. These marbles are widely used as transport carriers for digital microfluidics due to their rapid displacement velocity and leak-free transport. An improved understanding of the resistance mechanism of rolling LMs is crucial for their transport and manipulation. In this study, we investigated the rolling resistance of LMs obtained with different powders and volumes using a high-speed camera. Our findings suggest that the deformation of liquid marbles would hinder their rolling by a resistance torque. To depict this resistance effect, we propose a theoretical model ( f ∼ λ ( ε - 1 2 Bo 1 / 2 ε 2 + 1 4 Bo ε 3 ) ) , where f is the rolling resistance of marbles, λ is the deflection coefficient, Bo is the Bond number, and (ε is the contact surface deformation) that accurately predicts the relationship between deformation and rolling resistance, which is supported by our experimental results. To further validate our theoretical model, we conducted three independent experiments: shape detection of prepared LMs, measuring the elastic force of LMs, and detecting the diffusive motion of the encapsulating particles. Furthermore, we discuss three factors that affect the rolling resistance: the volume of the marbles, the type and size of the encapsulating particles, and the substrate roughness. This comprehensive study not only generalizes the mechanism of deformation hindering the rolling of liquid marbles but also provides a theoretical framework to predict the relationship between the deformation and rolling resistance. These findings have practical implications for improving the manipulation efficiency and advancing the use of LMs as microfluidic carriers.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Clarence Augustine Th Tee
- College of Physics and Electrical Information Engineering, Zhejiang Normal University, Zhejiang 310018, People's Republic of China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinwei Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jie Pan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shiyu Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
7
|
Atsuta Y, Takeuchi K, Shioda N, Hamada W, Hirai T, Nakamura Y, Oaki Y, Fujii S. Colloidally Stable Polypyrrole Nanoparticles Synthesized by Surfactant-Free Coupling Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14984-14995. [PMID: 37831595 DOI: 10.1021/acs.langmuir.3c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Surfactant-free polypyrrole (PPy) nanoparticles, which were colloidally stable in aqueous medium, were successfully synthesized by coupling polymerization of pyrrole using Fe(NO3)3 solids in the absence of any colloidal stabilizer. The pyrrole monomers were gradually supplied from the vapor phase, and the coupling reaction of the monomers could proceed to generate PPy in a water medium. The resulting PPy nanoparticles were extensively characterized in terms of diameter, bulk chemical composition, surface chemistry, and colloidal stability by dynamic light scattering, electron microscopy, elemental microanalysis, Fourier transform infrared spectroscopy, Raman spectroscopy, electrophoresis, and X-ray photoelectron spectroscopy. The characterization results indicated that the PPy nanoparticles can be colloidally stable based on the electrostatic stabilization mechanism due to cationic charges generated on the PPy molecules by doping during the polymerization. General chemical oxidative polymerization in aqueous medium using the Fe(NO3)3 oxidant without a colloidal stabilizer as a control experiment resulted in generation of atypical PPy aggregates with over a micrometer size, indicating that the polymerization at low ionic strength is essential for colloidal particle formation. Finally, it was demonstrated that the PPy nanoparticles worked as a surfactant-free black-colored particulate emulsifier by adsorption at the oil-water interface to stabilize Pickering-type oil-in-water emulsions.
Collapse
Affiliation(s)
- Yuya Atsuta
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Nano Shioda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Wakana Hamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| |
Collapse
|
8
|
Kang HK, Byeon JH, Hwang HJ, Jang YH, Kim JY. Flexible Sensor Film Based on Rod-Shaped SWCNT-Polypyrrole Nanocomposite for Acetone Gas Detection. Polymers (Basel) 2023; 15:3416. [PMID: 37631473 PMCID: PMC10458030 DOI: 10.3390/polym15163416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
A nanocomposite rod-shaped structure with a single-walled carbon nanotube (SWCNT) embedded in polypyrrole (PPy) doped with nonafluorobutanesulfonic acid (C4F), SWCNT/C4F-PPy, was synthesized using emulsion polymerization. The hybrid ink was then directly coated on a polyimide film interdigitated with the Cu/Ni/Au electrodes via a screen-printing technique to create a flexible film sensor. The sensor film showed a response of 1.72% at 25 °C/atmospheric pressure when acetone gas of 5 ppm was injected, which corresponds to almost 95% compared to the Si wafer-based array interdigitated with the Au electrode. Additionally, C4F was used as a hydrophobic dopant of PPy to improve the stability of humidity and to produce a highly sensitive film-type gas sensor that provides stable detection even in humid conditions.
Collapse
Affiliation(s)
- Hyo-Kyung Kang
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea; (H.-K.K.); (J.-H.B.); (H.-J.H.)
| | - Jun-Ho Byeon
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea; (H.-K.K.); (J.-H.B.); (H.-J.H.)
| | - Hyun-Jun Hwang
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea; (H.-K.K.); (J.-H.B.); (H.-J.H.)
| | - Yoon Hee Jang
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin-Yeol Kim
- School of Advanced Materials Engineering, Kookmin University, Seoul 02707, Republic of Korea; (H.-K.K.); (J.-H.B.); (H.-J.H.)
| |
Collapse
|
9
|
Heo J, Lee J, Shim W, Kim H, Fujii S, Lim J, Kappl M, Butt HJ, Wooh S. Evaporation-driven Supraparticle Synthesis by Self-Lubricating Colloidal Dispersion Microdrops. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38986-38995. [PMID: 37530444 DOI: 10.1021/acsami.3c07719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The surface-templated evaporation-driven (S-TED) method that uses liquid-repellent surfaces has attracted considerable attention for its use in fabricating supraparticles of defined shape, size, and porosity. However, challenges in achieving mass production have impeded the widespread adoption of the S-TED method. To overcome this limit, we introduce an evaporation-driven "multiple supraparticle" synthesis by drying arrays of self-lubricating colloidal dispersion microdrops. To facilitate this synthetic method, a hydrophilic micropattern is prepared on a hydrophobic substrate as a template. During the removal of the substrate out of a dispersion, liquid drops are trapped and generate a microdrop array. To produce supraparticles, the contact lines of the trapped drops must be able to recede freely during evaporation. However, hydrophilic micropatterns induce strong contact line pinning for microdrops that hinders supraparticle formation. Herein, we solve this contradiction by employing an Ouzo-like colloidal dispersion, where we can control the wettability of the drop trapping domain. The self-lubrication effect provided by the Ouzo-like solution enables smooth movement of the drops' contact lines during evaporation, thereby resulting in the successful fabrication of supraparticle arrays even within the trapping domain. This strategy offers a promising and scalable approach for large-scale evaporation-driven supraparticle synthesis with a potential for extension to various primary colloidal particles, further broadening its applicability.
Collapse
Affiliation(s)
- Jeongbin Heo
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jaeseung Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Wonmi Shim
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyeonjin Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Jaehoon Lim
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Michael Kappl
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Sanghyuk Wooh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Tsumura Y, Fameau AL, Matsui K, Hirai T, Nakamura Y, Fujii S. Photo- and Thermoresponsive Liquid Marbles Based on Fatty Acid as Phase Change Material Coated by Polypyrrole: From Design to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:878-889. [PMID: 36602465 DOI: 10.1021/acs.langmuir.2c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Responsive liquid marbles (LMs), which can change their shape, stability, and motion by the application of stimuli, attract a growing interest due to their wide range of applications. Our approach to design photo- and thermoresponsive LMs is based on the use of micrometer-sized fatty acid (FA) particles as phase change material covered with polypyrrole (PPy) overlayers with photothermal property. The core-shell particles were synthesized by aqueous chemical oxidative seeded dispersion polymerization. First, we investigated the effect of the alkyl chain length of FA on the resulting FA/PPy core-shell particles by characterizing their size and its distribution, shape, morphology, chemical composition, and photothermal behavior. Then LMs were fabricated by rolling water droplets on the dried FA/PPy particle powder bed and their light and temperature dual stimuli-responsive nature was studied as a function of the FA alkyl chain length. For all FAs studied, LMs disrupted in a domino manner by light irradiation as the first trigger: the temperature of the FA/PPy particles on the LM surface increased by light irradiation, followed by phase change of FA core of the particles from solid to liquid, resulting in disruption of the LM and release of the encapsulated water. The disruption time was closely correlated to the melting point of FA linked to the alkyl chain length and light irradiation power, and it could be controlled and tuned easily between quasi instantaneous and approximately 10 s. Finally, we showed potential applications of the LMs as a carrier for controlled delivery and release of substances and a sensor.
Collapse
Affiliation(s)
- Yusuke Tsumura
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Anne-Laure Fameau
- Université Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Kanade Matsui
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
11
|
Kim JS, Byeon JH, Kang S, Kim JY. A high sensitivity acetone gas sensor based on polyaniline-hydroxypropyl methylcellulose core-shell-shaped nanoparticles. NANOSCALE ADVANCES 2022; 4:5312-5319. [PMID: 36540124 PMCID: PMC9724688 DOI: 10.1039/d2na00647b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/22/2022] [Indexed: 06/17/2023]
Abstract
Core-shell-shaped nanoparticles (CSS-NPs) with polyaniline emeraldine salts (PANi) in the core and hydroxypropyl methylcellulose (HPMC) and heptadecafluorooctanesulfonic acid (C8F) shells, i.e., C8F-doped PANi@HPMC CSS-NPs, were synthesized as a gaseous acetone sensing material with high sensitivity and humidity stability. The HPMC was chemically combined on the positively charged PANi NPs' outer surface, allowing it to efficiently detect acetone gas at concentrations as low as 50 ppb at 25 °C. To impart humidity stability, C8F was employed as a hydrophobic dopant, and a valid signal could be reliably detected even in the range of 0-80% relative humidity. The sensing material's structural analysis was conducted using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and infrared spectroscopy, and in particular, the reaction mechanism with acetone gas was detected through a spectroscopic method. Thus, these findings illustrate the potential as a novel sensing material to detect acetone gas at a trace level of less than 1 ppm in human respiratory gas.
Collapse
Affiliation(s)
- Ji-Sun Kim
- School of Advanced Materials Engineering, Kookmin University Seoul 136-702 Korea +82-2-910-4663
| | - Jun-Ho Byeon
- School of Advanced Materials Engineering, Kookmin University Seoul 136-702 Korea +82-2-910-4663
| | - Sungmin Kang
- Advanced Technology Research Department, LG Japan Lab Inc. 413-14, Higashi Shinagawa, Shinagawa-ku Tokyo 140-0002 Japan
- Institute of Innovative Research Laboratory for Future Interdisciplinary Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Jin-Yeol Kim
- School of Advanced Materials Engineering, Kookmin University Seoul 136-702 Korea +82-2-910-4663
| |
Collapse
|
12
|
Fujii S. Liquid Marble as an Amphibious Carrier for the Controlled Delivery and Release of Substances. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12757-12763. [PMID: 36240141 DOI: 10.1021/acs.langmuir.2c02305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The motion control of small objects has received significant interest in the research field of soft active matter. Controlling the release of substances from small objects has also attracted attention in other fields, such as the agrochemical and biomaterial fields. Until now, these two research objectives have been conducted independently in most cases but have the same ultimate goal: to transport small objects loaded with functional substances in a controlled manner and to release the substances at a desired time within the same system. This Perspective aims to highlight the challenges for realizing both the amphibious motion control of objects and the controlled release of substances by the application of external stimuli within the same system, using liquid marbles, which are particle-layer-coated small droplets, as a carrier.
Collapse
Affiliation(s)
- Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering and Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka535-8585, Japan
| |
Collapse
|
13
|
Zhang Y, Cui H, Binks BP, Shum HC. Liquid Marbles under Electric Fields: New Capabilities for Non-wetting Droplet Manipulation and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9721-9740. [PMID: 35918302 DOI: 10.1021/acs.langmuir.2c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of liquid marbles (LMs) composed of stabilizing liquid droplets with solid particles in a gaseous environment has matured into an established area in surface and colloid science. The minimized "solid-liquid-air" triphase interface enables LMs to drastically reduce adhesion to a solid substrate, making them unique non-wetting droplets transportable with limited energy. The small volume, enclosed environment, and simple preparation render them suitable microreactors in industrial applications and processes such as cell culture, material synthesis, and blood coagulation. Extensive application contexts request precise and highly efficient manipulations of these non-wetting droplets. Many external fields, including magnetic, acoustic, photothermal, and pH, have emerged to prepare, deform, actuate, coalesce, mix, and disrupt these non-wetting droplets. Electric fields are rising among these external stimuli as an efficient source for manipulating the LMs with high controllability and a significant ability to contribute further to proposed applications. This Feature Article attempts to outline the recent developments related to LMs with the aid of electric fields. The effects of electric fields on the preparation and manipulation of LMs with intricate interfacial processes are discussed in detail. We highlight a wealth of novel electric field-involved LM-based applications and beyond while also envisaging the challenges, opportunities, and new directions for future development in this emerging research area.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| | - Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin 999077, Hong Kong, China
| |
Collapse
|
14
|
Acetone Gas Sensor Based on SWCNT/Polypyrrole/Phenyllactic Acid Nanocomposite with High Sensitivity and Humidity Stability. BIOSENSORS 2022; 12:bios12050354. [PMID: 35624655 PMCID: PMC9139215 DOI: 10.3390/bios12050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
We synthesized core-shell-shaped nanocomposites composed of a single-walled carbon nanotube (SWCNT) and heptadecafluorooctanesulfonic acid-doped polypyrrole (C8F-doped-PPy)/phenyllatic acid (PLA), i.e., C8F-doped-PPy/PLA@SWCNT, for detecting acetone gas with high sensitivity and humidity stability. The obtained nanocomposites have the structural features of a sensing material as a C8F-doped-PPy layer surrounding a single-stranded SWCNT, and a PLA layer on the outer surface of the PPy as a specific sensing layer for acetone. PLA was chemically combined with the positively charged PPy backbone and provided the ability to reliably detect acetone gas at concentrations as low as 50 ppb even at 25 °C, which is required for medical diagnoses via human breath analysis. When C8F was contained in the pyrrole monomer in a ratio of 0.1 mol, it was able to stably detect an effective signal in a relative humidity (RH) of 0–80% range.
Collapse
|
15
|
Sun Y, Zheng Y, Liu C, Zhang Y, Wen S, Song L, Zhao M. Liquid marbles, floating droplets: preparations, properties, operations and applications. RSC Adv 2022; 12:15296-15315. [PMID: 35693225 PMCID: PMC9118372 DOI: 10.1039/d2ra00735e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022] Open
Abstract
Liquid marbles (LMs) are non-wettable droplets formed with a coating of hydrophobic particles. They can move easily across either solid or liquid surfaces since the hydrophobic particles protect the internal liquid from contacting the substrate. In recent years, mainly due to their simple preparation, abundant materials, non-wetting/non-adhesive properties, elasticities and stabilities, LMs have been applied in many fields such as microfluidics, sensors and biological incubators. In this review, the recent advances in the preparation, physical properties and applications of liquid marbles, especially operations and floating abilities, are summarized. Moreover, the challenges to achieve uniformity, slow volatilization and stronger stability are pointed out. Various applications generated by LMs' structural characteristics are also expected.
Collapse
Affiliation(s)
- Yukai Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Chuntian Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Yihan Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Shiying Wen
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Le Song
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University Tianjin China
| |
Collapse
|
16
|
Seike M, Uda M, Suzuki T, Minami H, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of Polypyrrole and Its Derivatives as a Liquid Marble Stabilizer via a Solvent-Free Chemical Oxidative Polymerization Protocol. ACS OMEGA 2022; 7:13010-13021. [PMID: 35474829 PMCID: PMC9026107 DOI: 10.1021/acsomega.2c00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 05/25/2023]
Abstract
Solvent-free chemical oxidative polymerizations of pyrrole and its derivatives, namely N-methylpyrrole and N-ethylpyrrole, were conducted by mechanical mixing of monomer and solid FeCl3 oxidant under nitrogen atmosphere. Polymerizations occurred at the surface of the oxidant, and optical and scanning electron microscopy studies confirmed production of atypical grains with diameters of a few tens of micrometers. Fourier transform infrared spectroscopy studies indicated the presence of hydroxy and carbonyl groups which were introduced during the polymerization due to overoxidation. The polymer grains were doped with chloride ions, and the chloride ion dopant could be removed by dedoping using an aqueous solution of sodium hydroxide, which was confirmed by elemental microanalysis and X-ray photoelectron spectroscopy studies. Water contact angle measurements confirmed that the larger the alkyl group on the nitrogen of pyrrole ring the higher the hydrophobicity and that the contact angles increased after dedoping in all cases. The grains before and after dedoping exhibited photothermal properties: the near-infrared laser irradiation induced a rapid temperature increase to greater than 430 °C. Furthermore, dedoped poly(N-ethylpyrrole) grains adsorbed to the air-water interface and could work as an effective liquid marble stabilizer. The resulting liquid marble could move on a planar water surface due to near-infrared laser-induced Marangoni flow and could disintegrate by exposure to acid vapor via redoping of the poly(N-ethylpyrrole) grains.
Collapse
Affiliation(s)
- Musashi Seike
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Makoto Uda
- Division
of Applied Chemistry, Environmental and Biomedical Engineering, Graduate
School of Engineering, Osaka Institute of
Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Toyoko Suzuki
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Hideto Minami
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Shinya Higashimoto
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department
of Applied Chemistry, Faculty of Engineering,
Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials
Microdevices Research Center, Osaka Institute
of Technology, 5-16-1
Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
17
|
Seike M, Hirai T, Nakamura Y, Fujii S. Alcohol as hydrophobizer for polypyrrole. CHEM LETT 2022. [DOI: 10.1246/cl.220109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
18
|
Lobel BT, Hobson MJ, Ireland PM, Webber GB, Thomas CA, Ogino H, Fujii S, Wanless EJ. Interparticle Repulsion of Microparticles Delivered to a Pendent Drop by an Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:670-679. [PMID: 34968053 DOI: 10.1021/acs.langmuir.1c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report an unusually large spacing observed between microparticles after delivery to the surface of a pendent water droplet using a DC nonuniform electrostatic field, primarily via dielectrophoresis. The influence of particle properties was investigated using core particles, which were either coated or surface-modified to alter their wettability and conductivity. Particles that exhibited this spacing were both hydrophobic and possessed some dielectric material exposed to the external field, such as a coating or exposed dielectric core. The origin of this behavior is proposed to be the induced dipole-dipole repulsion between particles, which increases with particle size and decreases when the magnitude of the electric field is reduced. When the particles were no longer subjected to an external field, this large interparticle repulsion ceased and the particles settled to the bottom of the droplet under the force of gravity. We derive a simple model to predict this spacing, with the dipole-dipole repulsion balanced against particle weight. The external electric field was calculated using the existing electric field models. The spacing was found to be dependent on particle density and the induced dipole moment as well as the number of particles present on the droplet interface. As the number of particles increased, a decrease in interparticle spacing was observed.
Collapse
Affiliation(s)
- Benjamin T Lobel
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Matthew J Hobson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter M Ireland
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Casey A Thomas
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Haruka Ogino
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
19
|
Liu S, Ma R, Wang X, Chen Y, Xu J, Zhang Y. Palladium catalyzes hydrogen production from formic acid: significant impact of support polypyrrole. NEW J CHEM 2022. [DOI: 10.1039/d2nj03831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a simple and promising hydrogen carrier, hydrogen production from formic acid (HCOOH) has been extensively investigated, owing to the properties of colorlessness, non-toxicity, and safety of formic acid.
Collapse
Affiliation(s)
- Sifan Liu
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| | - Ruixiao Ma
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| | - Xuejing Wang
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| | - Yanmei Chen
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| | - Juan Xu
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| | - Yanhui Zhang
- College of Chemistry, Chemical Engineering and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| |
Collapse
|
20
|
Seike M, Asaumi Y, Kawashima H, Hirai T, Nakamura Y, Fujii S. Morphological and chemical stabilities of polypyrrole in aqueous media for 1 year. Polym J 2021. [DOI: 10.1038/s41428-021-00572-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Uda M, Fujiwara J, Seike M, Segami S, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Controllable Positive/Negative Phototaxis of Millimeter-Sized Objects with Sensing Function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11093-11101. [PMID: 34473503 DOI: 10.1021/acs.langmuir.1c01833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phototaxis, which is the directional motion toward or away from light, is common in nature and inspires development of artificial light-steered active objects. Most of the light-steered objects developed so far exhibit either positive or negative phototaxis, and there are few examples of research on objects that exhibit both positive and negative phototaxis. Herein, small objects showing both positive and negative phototaxis on the water surface upon near-infrared (NIR) light irradiation, with the direction controlled by the position of light irradiation, are reported. The millimeter-sized tetrahedral liquid marble containing gelled water coated by one polymer plate with light-to-heat photothermal characteristic, which adsorbs onto the bottom of the liquid marble, and three polymer plates with highly transparent characteristic, which adsorb onto the upper part of the liquid marble, is utilized as a model small object. Light irradiation on the front side of the object induces negative phototaxis and that on the other side induces positive phototaxis, and the motion can be controlled to 360° arbitrary direction by precise control of the light irradiation position. Thermographic studies confirm that the motions are realized through Marangoni flow generated around the liquid marble, which is induced by position-selective NIR light irradiation. The object can move centimeter distances, and numerical analysis indicates that average velocity and acceleration are approximately 12 mm/s and 71 mm/s2, respectively, which are independent of the direction of motions. The generated force is estimated to be approximately 0.4 μN based on Newton's equation. Furthermore, functional cargo can be loaded into the inner phase of the small objects, which can be delivered and released on demand and endows them with environmental sensing ability.
Collapse
Affiliation(s)
- Makoto Uda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Musashi Seike
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Shinji Segami
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Shinya Higashimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
22
|
Polypyrrole-coated Pickering-type droplet as light-responsive carrier of oily material. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Osumi T, Seike M, Oyama K, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of dioctyl sulfosuccinate‐doped polypyrrole grains by aqueous chemical oxidative polymerization and their use as light‐responsive liquid marble stabilizer. J Appl Polym Sci 2021. [DOI: 10.1002/app.51009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomoki Osumi
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering Osaka Institute of Technology Osaka Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering Graduate School of Engineering Osaka Institute of Technology Osaka Japan
| | - Shinya Higashimoto
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology Osaka Japan
- Nanomaterials Microdevices Research Center Osaka Institute of Technology Osaka Japan
| |
Collapse
|
24
|
Oyama K, Seike M, Mitamura K, Watase S, Suzuki T, Omura T, Minami H, Hirai T, Nakamura Y, Fujii S. Monodispersed Nitrogen-Containing Carbon Capsules Fabricated from Conjugated Polymer-Coated Particles via Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4599-4610. [PMID: 33827217 DOI: 10.1021/acs.langmuir.1c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR) light irradiation induced the transformation of polypyrrole (PPy) to nitrogen-containing carbon (NCC) material due to its light-to-heat photothermal property. The temperature of the PPy increased over 700 °C within a few seconds by the NIR laser irradiation, and elemental microanalysis confirmed the decreases of hydrogen and chloride contents and increases of carbon and nitrogen contents. Monodispersed polystyrene (PS)-core/PPy shell particles (PS/PPy particles) synthesized by aqueous chemical oxidative seeded polymerization were utilized as a precursor toward monodispersed NCC capsules. When the NIR laser was irradiated to the PS/PPy particles, the temperature rose to approximately 300 °C and smoke was generated, indicating that the PS component forming the core was thermally decomposed and vaporized. Scanning electron microscopy studies revealed the successful formation of spherical and highly monodispersed capsules, and Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy studies confirmed the capsules consisted of NCC materials. Furthermore, sunlight was also demonstrated to work as a light source to fabricate NCC capsules. The size and thickness of the capsules can be controlled between 1 and 80 μm and 146 and 231 nm, respectively, by tuning the size of the original PS/PPy particles and PPy shell thickness.
Collapse
Affiliation(s)
- Keigo Oyama
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Musashi Seike
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Koji Mitamura
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Seiji Watase
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Toyoko Suzuki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Taro Omura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Hideto Minami
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada, Kobe 657-8501, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
25
|
Uda M, Kawashima H, Mayama H, Hirai T, Nakamura Y, Fujii S. Locomotion of a Nonaqueous Liquid Marble Induced by Near-Infrared-Light Irradiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4172-4182. [PMID: 33788574 DOI: 10.1021/acs.langmuir.1c00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micrometer-sized hydrophobic polyaniline (PANI) grains were synthesized via an aqueous chemical oxidative polymerization protocol in the presence of dopant carrying perfluoroalkyl or alkyl groups. The critical surface tensions of the PANIs synthesized in the presence of heptadecafluorooctanesulfonic acid and sodium dodecyl sulfate dopants were lower than that of PANI synthesized in the absence of dopant, indicating the presence of hydrophobic dopant on the grain surfaces. The PANI grains could adsorb to air-liquid interfaces, and aqueous and nonaqueous liquid marbles (LMs) were successfully fabricated using liquids with surface tensions ranging between 72.8 and 42.9 mN/m. Thermography studies confirmed that the surface temperature of the LMs increased by near-infrared light irradiation thanks to the photothermal property of the PANI, and the maximum temperatures measured for nonaqueous LMs were higher than that measured for aqueous LM. We demonstrated that transport of the LMs on a planar water surface can be achieved via Marangoni flow generated by the near-infrared light-induced temperature gradient. Numerical analyses indicated that the LMs containing liquids with lower specific heat and thermal conductivity and higher density showed longer path length per one light irradiation shot and longer decay time. This is because generated heat could efficiently transfer from the LMs to the water surface and larger inertial force could work on the LMs. The LMs could also move over the solid substrate thanks to their near-spherical shapes. Furthermore, it was also demonstrated that the inner liquids of the LMs could be released on site by an external stimulus.
Collapse
Affiliation(s)
- Makoto Uda
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hisato Kawashima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1, Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
26
|
Uda M, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Synthesis of poly(alkylaniline)s by aqueous chemical oxidative polymerization and their use as stimuli-responsive liquid marble stabilizer. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Asaumi Y, Rey M, Oyama K, Vogel N, Hirai T, Nakamura Y, Fujii S. Effect of Stabilizing Particle Size on the Structure and Properties of Liquid Marbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13274-13284. [PMID: 33115238 DOI: 10.1021/acs.langmuir.0c02265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A liquid marble (LM) describes a liquid droplet that is wrapped by nonwetting micro- or nanoparticles and therefore obtains characteristics of a solid powder particle. Here, we investigate the effect of the stabilizing particle size on the resulting structure and properties of the LM. We synthesize a series of polystyrene particles with ultrathin coatings of heptadecafluorooctanesulfonic acid-doped polypyrrole with diameters ranging between 1 and 1000 μm by an aqueous chemical oxidative seeded polymerization of pyrrole. The methodology produced a set of hydrophobic particles with similar surface characteristics to allow the formation of LMs and to probe size effects in the LM formation and stabilization efficiency. We found that particles with a size above 20 μm adsorb as a particle monolayer to the surface of the LM, while smaller particles are adsorbed as ill-defined, multilayered aggregates. These results indicate that the balance between particle-particle interaction and gravity is an important parameter to control the surface structure of the LMs. The assembly behavior and size of the particles also correlated with the mechanical integrity of the LM against fall impact. The mechanical resistance was affected by the gap distance between the inner liquid of the LM and supporting substrate, the capillary forces acting between the particles at the LM surface, and the potential energy that depended on the particle size. Last, we demonstrate that the broadband light-absorbing properties of the polypyrrole shell also allow manipulating the evaporation rate of the inner liquid.
Collapse
Affiliation(s)
- Yuta Asaumi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
28
|
Asaumi Y, Fujiwara J, Oyama K, Rey M, Vogel N, Hirai T, Nakamura Y, Fujii S. Synthesis of Millimeter-sized Polymer Particles by Seeded Polymerization and Their Use as Shape-designable Liquid Marble Stabilizer. CHEM LETT 2020. [DOI: 10.1246/cl.200508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuta Asaumi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Junya Fujiwara
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Keigo Oyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Marcel Rey
- Institute of Particle Technology, Friedrich–Alexander University Erlangen–Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich–Alexander University Erlangen–Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
29
|
Lee B, Willis AC, Ward JS, Smith WT, Lan P, Banwell MG. Iterative Suzuki-Miyaura Cross-coupling/Bromo-desilylation Reaction Sequences for the Assembly of Chemically Well-defined, Acyclic Oligopyrrole/Benzenoid Hybrids Embodying Mixed Modes of Connectivity. Chem Asian J 2020; 15:3059-3081. [PMID: 32749069 DOI: 10.1002/asia.202000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Indexed: 11/12/2022]
Abstract
Syntheses of a range of chemically well-defined oligopyrrole/benzenoid hybrids are described using tandem Suzuki-Miyaura cross-coupling/bromo-desilyation reaction sequences for linking borylated pyrroles, halogenated pyrroles and/or dibromobenzenes to one another. By such means, including iterative variants, a range of all α-linked, all β-linked oligopyrroles as well as certain combinations thereof have been assembled, some of them for the first time. The conductivities of iodine-treated thin films formed from certain such systems have been determined.
Collapse
Affiliation(s)
- BoRa Lee
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Anthony C Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Jas S Ward
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632/, Zhuhai, 519070, Guangdong, China
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, 510632/, Zhuhai, 519070, Guangdong, China
| |
Collapse
|
30
|
Ito M, Mayama H, Asaumi Y, Nakamura Y, Fujii S. Light-Driven Locomotion of Bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7021-7031. [PMID: 31859517 DOI: 10.1021/acs.langmuir.9b03356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Remotely controlling the movement of small objects is a challenging research topic, which can realize the transportation of materials. In this study, remote locomotion control of particle-stabilized bubbles on a planar water surface by near-infrared laser or sunlight irradiation is demonstrated. A light-induced Marangoni flow was utilized to induce the locomotion of the bubbles on water surface, and the timing and direction of the locomotion can be controlled by irradiation timing and direction on demand. The velocity, acceleration, and force of the bubbles were analyzed. It was also confirmed that the bubbles can work as light-driven towing engines to pull other objects. Furthermore, it was demonstrated that the bubbles can work as an adhesive to bond two solid substrates by application of compressive stress under water. Such remote transport of the materials, pulling of the objects by light, and controlling the release of gas on demand should open up a wide field of conceivable applications.
Collapse
Affiliation(s)
- Masaya Ito
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Yuta Asaumi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
31
|
|
32
|
Asaumi Y, Rey M, Vogel N, Nakamura Y, Fujii S. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2695-2706. [PMID: 32078776 DOI: 10.1021/acs.langmuir.0c00061] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid marbles are water droplets coated with solid particles that prevent coalescence and allow storage, transport, and handling of liquids in the form of a powder. Here, we report on the formation of liquid marbles that are stabilized entirely by a single monolayer of solid particles and thus minimize the amount of required solid material. As stabilizing particles, we synthesize relatively monodisperse, 80 μm-sized polystyrene (PS) particles coated with heptadecafluorooctanesulfonic acid-doped polypyrrole (PPy-C8F) shell (PS/PPy-C8F particles) by aqueous chemical oxidative seeded polymerization of pyrrole using FeCl3 as an oxidant and heptadecafluorooctanesulfonic acid as a hydrophobic dopant. We characterize the physicochemical properties of the particles as a function of the PPy-C8F loading. Laser diffraction particle size analyses of dilute aqueous suspensions indicate that the polymer particles disperse stably in water medium before and after coating with the PPy-C8F shell. X-ray photoelectron spectroscopy studies indicate the formation of a PPy-C8F shell around the PS seed particles, which was further supported by deflated morphologies observed by scanning electron microscopy after extraction of the PS component from the PS/PPy-C8F particles. We investigate the performance of the dried PS/PPy-C8F particles to stabilize liquid marbles. Stereo- and laser microscope observations, as well as gravimetric studies, confirm that the PS/PPy-C8F particles adsorb to the water droplet surface in the form of a particle monolayer with the characteristic hexagonal close-packed structure expected for spherical (colloidal) particles. Mechanical integrity of the liquid marble increases with an increase of PPy-C8F loading of the PS/PPy-C8F particles. The water contact angle of the PS/PPy-C8F particles at air-water interface increases from 82 ± 12° to 102 ± 17° with an increase of PPy-C8F loading. This increase in water contact angle directly correlates with the shape of the LM, with higher contact angles giving more spherical LMs. Furthermore, the broadband light absorption properties of the PPy coating was used to control evaporation rate of the enclosed water phase on demand by irradiation with a near-infrared laser. The evaporation rate could be finely controlled by the thickness of the PPy-C8F shell of the particles stabilizing the liquid marbles.
Collapse
Affiliation(s)
| | - Marcel Rey
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | | | | |
Collapse
|
33
|
Šišáková M, Asaumi Y, Uda M, Seike M, Oyama K, Higashimoto S, Hirai T, Nakamura Y, Fujii S. Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer. Polym J 2020. [DOI: 10.1038/s41428-020-0307-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Fujii S. Stimulus-responsive soft dispersed systems developed based on functional polymer particles: bubbles and liquid marbles. Polym J 2019. [DOI: 10.1038/s41428-019-0233-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Singha P, Swaminathan S, Yadav AS, Varanakkottu SN. Surfactant-Mediated Collapse of Liquid Marbles and Directed Assembly of Particles at the Liquid Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4566-4576. [PMID: 30829489 DOI: 10.1021/acs.langmuir.8b03821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extensive research is being devoted to both the fundamental and applied aspects of liquid marbles (LMs). However, influence of the surface tension of the liquid substrate on the stability of the LMs and LM-mediated capillary interaction remains unexplored. In this work, we unveil the role of the surface tension of the liquid substrate on the collapse of multilayered LMs and apply this knowledge for realizing a dense planar assembly of microparticles triggered by LM-mediated capillary interactions. Experiments and analysis show that the required surface tension for the collapse is dependent on the volume of the LMs. The larger LMs are less stable, and thus collapse at a higher surface tension than that required for smaller LMs. The results are explained on the basis of the balance between surface tension forces acting on the LM ( Fs) and its weight ( Fw). Force analysis reveals that the collapse of the LM on the liquid substrate occurs when the surface tension force approaches to its weight, that is, when Fs ≈ Fw. This has been verified for LMs having volume in the range 6-10 μL. The experiments with different surfactants (an anionic and a cationic) lead to similar results which indicate that the collapse condition of the LMs is mainly dependent on their weight and the surface tension of the liquid substrate. Further, we demonstrate the LM-mediated assembly of particles at the liquid surface, and interestingly, the LM can be collapsed once the assembly is completed, leading to a denser well-packed assembled structure. We believe that the presented results could provide new insights in the fields of microfluidics, particle patterning, and assembly.
Collapse
|
36
|
Hydrophobic poly(3,4-ethylenedioxythiophene) particles synthesized by aqueous oxidative coupling polymerization and their use as near-infrared-responsive liquid marble stabilizer. Polym J 2019. [DOI: 10.1038/s41428-019-0189-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Inoue H, Hirai T, Hanochi H, Oyama K, Mayama H, Nakamura Y, Fujii S. Poly(3-hexylthiophene) Grains Synthesized by Solvent-Free Oxidative Coupling Polymerization and Their Use as Light-Responsive Liquid Marble Stabilizer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | | | | | | | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | | | | |
Collapse
|
38
|
Kawashima H, Shioi A, Archer RJ, Ebbens SJ, Nakamura Y, Fujii S. Light-driven locomotion of a centimeter-sized object at the air–water interface: effect of fluid resistance. RSC Adv 2019; 9:8333-8339. [PMID: 35518708 PMCID: PMC9061706 DOI: 10.1039/c9ra01417a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
Centimeter-sized flat-headed push pin with photothermal properties can be moved on a water surface by a simple near-infrared laser.
Collapse
Affiliation(s)
- Hisato Kawashima
- Division of Applied Chemistry
- Graduate School of Engineering
- Osaka Institute of Technology
- Osaka
- Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science
- Doshisha University
- Kyoto 610-0321
- Japan
| | - Richard J. Archer
- Department of Chemical and Biological Engineering
- The University of Sheffield
- Sheffield S1 3JD
- UK
| | - Stephen J. Ebbens
- Department of Chemical and Biological Engineering
- The University of Sheffield
- Sheffield S1 3JD
- UK
| | - Yoshinobu Nakamura
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka Institute of Technology
- Osaka
- Japan
| | - Syuji Fujii
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka Institute of Technology
- Osaka
- Japan
| |
Collapse
|
39
|
|
40
|
Electrostatic formation of polymer particle stabilised liquid marbles and metastable droplets – Effect of latex shell conductivity. J Colloid Interface Sci 2018; 529:486-495. [DOI: 10.1016/j.jcis.2018.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
|
41
|
Frenkel M, Dombrovsky L, Multanen V, Danchuk V, Legchenkova I, Shoval S, Bormashenko Y, Binks BP, Bormashenko E. Self-Propulsion of Water-Supported Liquid Marbles Filled with Sulfuric Acid. J Phys Chem B 2018; 122:7936-7942. [DOI: 10.1021/acs.jpcb.8b06136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mark Frenkel
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Leonid Dombrovsky
- University of Tyumen, Tyumen, 625003, Russia
- Joint Institute for High Temperatures, Moscow, 111116, Russia
| | - Victor Multanen
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
- Nanoprobe Lab for Bio- & Nanotechnology & Biomimetics, Ohio, College of Engineering, The Ohio State University, Columbus, Ohio 43210-1142, United States
| | - Viktor Danchuk
- Department of Physics, Exact Sciences Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Irina Legchenkova
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Shraga Shoval
- Industrial Engineering and Management, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Yelena Bormashenko
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| | - Bernard P. Binks
- School of Mathematics and Physical Sciences, University of Hull, Hull, HU6 7RX, U.K
| | - Edward Bormashenko
- Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, P.O.B. 3, 40700, Ariel, Israel
| |
Collapse
|
42
|
|
43
|
Kawashima H, Paven M, Mayama H, Butt HJ, Nakamura Y, Fujii S. Transfer of Materials from Water to Solid Surfaces Using Liquid Marbles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33351-33359. [PMID: 28879765 DOI: 10.1021/acsami.7b11375] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Remotely controlling the movement of small objects is desirable, especially for the transportation and selection of materials. Transfer of objects between liquid and solid surfaces and triggering their release would allow for development of novel material transportation technology. Here, we describe the remote transport of a material from a water film surface to a solid surface using quasispherical liquid marbles (LMs). A light-induced Marangoni flow or an air stream is used to propel the LMs on water. As the LMs approach the rim of the water film, gravity forces them to slide down the water rim and roll onto the solid surface. Through this method, LMs can be efficiently moved on water and placed on a solid surface. The materials encapsulated within LMs can be released at a specific time by an external stimulus. We analyzed the velocity, acceleration, and force of the LMs on the liquid and solid surfaces. On water, the sliding friction due to the drag force resists the movement of the LMs. On a solid surface, the rolling distance is affected by the surface roughness of the LMs.
Collapse
Affiliation(s)
| | - Maxime Paven
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Hiroyuki Mayama
- Department of Chemistry, Asahikawa Medical University , 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | | | | |
Collapse
|