1
|
Pina-Beltran B, Dimitrov D, McKay N, Giot M, Zdráhal Z, Potěšil D, Pustka V, Peinado-Izaguerri J, Saez-Rodriguez J, Poitevin S, Burtey S. Unveiling the role of sex in the metabolism of indoxyl sulfate and apixaban. Sci Rep 2025; 15:6075. [PMID: 39972038 PMCID: PMC11839926 DOI: 10.1038/s41598-025-90405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Chronic Kidney Disease (CKD) is associated with heightened risk of thrombosis. Prescription of anticoagulants is key to manage it; however, CKD patients have shown an increased risk of bleeding under anticoagulation therapy compared to non-CKD patients. We hypothesized that the sex could modify the metabolism of indoxyl sulfate (IS), a uremic toxin and Apixaban. Our intoxication model shows that higher doses of IS and apixaban accumulate in the plasma of female mice because of expression differences in efflux transporters and cytochromes in the liver, ileum and kidneys, when compared to males. Furthermore, we found that accumulation of apixaban in females contributes to increased bleeding. Transcriptional analysis of liver samples revealed elevated Sult1a1 but reduced Abcg2 and Cyp3a11 in female mice, while in the kidneys the expression rates of Oat1 and Oat3 were respectively lower and higher than those observed in males, potentially affecting drug clearance. Whole proteomics liver analysis confirmed the previous transcriptional results at the protein level and revealed that sex had a major influence in regulating both coagulation and drug metabolism pathways. Thus, our findings underline the need for inclusive clinical and preclinical trials to accurately reflect sex-specific metabolic variations, and to consider CKD-specific changes to optimize dosing, minimize side effects, and improve patient outcomes.
Collapse
Affiliation(s)
- Blanca Pina-Beltran
- Faculté de pharmacie, Aix Marseille Univ, INSERM, INRAE, C2VN, Bd Jean Moulin, Marseille, 13005, France
| | - Daniel Dimitrov
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, BioQuant, Heidelberg, Germany
| | - Nathalie McKay
- Faculté de pharmacie, Aix Marseille Univ, INSERM, INRAE, C2VN, Bd Jean Moulin, Marseille, 13005, France
| | - Matthieu Giot
- Centre de Néphrologie, Medipole Saint-Roch, Cabestany, France
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Václav Pustka
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jorge Peinado-Izaguerri
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Julio Saez-Rodriguez
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg University, BioQuant, Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, UK
| | - Stéphane Poitevin
- Faculté de pharmacie, Aix Marseille Univ, INSERM, INRAE, C2VN, Bd Jean Moulin, Marseille, 13005, France
| | - Stéphane Burtey
- Faculté de pharmacie, Aix Marseille Univ, INSERM, INRAE, C2VN, Bd Jean Moulin, Marseille, 13005, France.
- Centre de Néphrologie et Transplantation Rénale, Aix Marseille Univ, AP-HM Hôpital de la Conception, Marseille, France.
| |
Collapse
|
2
|
Zhang M, Miao Y, Zhang P, Xiao C. Clearance of Protein-Bound Uremic Toxins Using Anion Nanotraps with Record High Uptake. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68426-68436. [PMID: 39614806 DOI: 10.1021/acsami.4c16425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Traditional hemodialysis often fails to remove protein-bound uremic toxins (PBUTs) like p-cresyl sulfate (pCS) and indoxyl sulfate (IS) due to their strong binding to human serum albumin, which is linked to adverse cardiovascular outcomes. Herein, a class of cationic polymeric networks, denoted as CPN-X6-CPN-X9, are reported for the efficient removal of PBUTs. The abundant imidazole-based nanotraps in these cationic polymeric networks confer a highly positive charge density, resulting in CPN-X7 achieving a maximum sorption capacity of 1000.8 mg/g for pCS and CPN-X6 offering a maximum sorption capacity of 1028.4 mg/g for IS, surpassing all previously reported sorbents. Furthermore, CPN-X9, which is relatively hydrophobic, exhibits remarkable selectivity in competitive experiments involving large amount of chloride ions and serum albumin, attaining removal rates of up to 74% for pCS and 93% for IS in the recycling in vitro dialysis mode. Meanwhile, CPN-X9 demonstrates excellent recyclability over five cycles, and the cationic polymeric network materials exhibit satisfactory hemocompatibility. The sorption mechanism of the anion exchange process is fully elucidated and verified by density functional theory (DFT) calculations. This study provides valuable insights into enhancing the removal efficiency of PBUTs and presents broad prospects in the field of clinical blood purification.
Collapse
Affiliation(s)
- Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yujie Miao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ping Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Zhejiang University, Quzhou 324000, China
| |
Collapse
|
3
|
Hou J, Liu M, Gao W, Yan K, Li B, Zheng W, Gong S, Zhang X, Sun W. Understanding the Adsorption and Diffusion Behaviors of PBUT in Biocompatible MOFs. J Phys Chem B 2024; 128:8886-8895. [PMID: 39226469 DOI: 10.1021/acs.jpcb.4c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the increasing incidence of chronic kidney disease, the effective control of protein-bound uremic toxins (PBUTs), which are difficult to remove through dialysis, has become a priority. In this study, the adsorption and diffusion behaviors of several metal-organic frameworks (MOFs) for PBUTs (indoxyl sulfate and p-cresyl sulfate) were studied by molecular dynamics (MD) simulations and umbrella sampling. For the NU series of MOFs, good correlations between the Gibbs free energy (ΔG) and the experimental clearance rates of PBUTs are found. For the adsorption behaviors, in terms of ΔG, DAJWET exhibits the best adsorption effect for indoxyl sulfate (IS), whereas NU-1000 shows the best effect for p-cresyl sulfate (pCS). Similar trends observed in the radial distribution function and mean square displacement results suggest that the π-π stacking interactions play a crucial role in the adsorption and diffusion of PBUTs by MOFs. Furthermore, it can be concluded that MOFs with highly conjugated groups (porphyrin rings and pyrene groups) tend to generate more PBUT attraction, and provide design principles for potential MOF candidates in the removal of PBUTs.
Collapse
Affiliation(s)
- Junyi Hou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengjie Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqun Gao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kexin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bihong Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weizhong Zheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaomin Gong
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Weizhen Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Deng LE, Guo M, Deng Y, Pan Y, Wang X, Maduraiveeran G, Liu J, Lu C. MOF-Based Platform for Kidney Diseases: Advances, Challenges, and Prospects. Pharmaceutics 2024; 16:793. [PMID: 38931914 PMCID: PMC11207304 DOI: 10.3390/pharmaceutics16060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases are important diseases that affect human health worldwide. According to the 2020 World Health Organization (WHO) report, kidney diseases have become the top 10 causes of death. Strengthening the prevention, primary diagnosis, and action of kidney-related diseases is of great significance in maintaining human health and improving the quality of life. It is increasingly challenging to address clinical needs with the present technologies for diagnosing and treating renal illness. Fortunately, metal-organic frameworks (MOFs) have shown great promise in the diagnosis and treatment of kidney diseases. This review summarizes the research progress of MOFs in the diagnosis and treatment of renal disease in recent years. Firstly, we introduce the basic structure and properties of MOFs. Secondly, we focus on the utilization of MOFs in the diagnosis and treatment of kidney diseases. In the diagnosis of kidney disease, MOFs are usually designed as biosensors to detect biomarkers related to kidney disease. In the treatment of kidney disease, MOFs can not only be used as an effective adsorbent for uremic toxins during hemodialysis but also as a precise treatment of intelligent drug delivery carriers. They can also be combined with nano-chelation technology to solve the problem of the imbalance of trace elements in kidney disease. Finally, we describe the current challenges and prospects of MOFs in the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Li-Er Deng
- Department of Nephrology, Dongguan Traditional Chinese Medicine Hospital, Dongguan 523000, China
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India;
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Chengyu Lu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
5
|
Dehghan Niestanak V, Unsworth LD. Detailing Protein-Bound Uremic Toxin Interaction Mechanisms with Human Serum Albumin in the Pursuit of Designing Competitive Binders. Int J Mol Sci 2023; 24:ijms24087452. [PMID: 37108613 PMCID: PMC10139063 DOI: 10.3390/ijms24087452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease is the gradual progression of kidney dysfunction and involves numerous co-morbidities, one of the leading causes of mortality. One of the primary complications of kidney dysfunction is the accumulation of toxins in the bloodstream, particularly protein-bound uremic toxins (PBUTs), which have a high affinity for plasma proteins. The buildup of PBUTs in the blood reduces the effectiveness of conventional treatments, such as hemodialysis. Moreover, PBUTs can bind to blood plasma proteins, such as human serum albumin, alter their conformational structure, block binding sites for other valuable endogenous or exogenous substances, and exacerbate the co-existing medical conditions associated with kidney disease. The inadequacy of hemodialysis in clearing PBUTs underscores the significance of researching the binding mechanisms of these toxins with blood proteins, with a critical analysis of the methods used to obtain this information. Here, we gathered the available data on the binding of indoxyl sulfate, p-cresyl sulfate, indole 3-acetic acid, hippuric acid, 3-carboxyl-4-methyl-5-propyl-2-furan propanoic acid, and phenylacetic acid to human serum albumin and reviewed the common techniques used to investigate the thermodynamics and structure of the PBUT-albumin interaction. These findings can be critical in investigating molecules that can displace toxins on HSA and improve their clearance by standard dialysis or designing adsorbents with greater affinity for PBUTs than HSA.
Collapse
Affiliation(s)
- Vida Dehghan Niestanak
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2G4, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
6
|
Liu Y, Li G, Han Q, Lin H, Deng G, Li Q, Liu F. Designing adsorptive membranes for removing protein-bound uremic toxins via π-π and cation-π interaction. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
7
|
Zhang M, Li L, Lei L, Kang K, Xiao C. Effectively Decontaminating Protein-Bound Uremic Toxins in Human Serum Albumin Using Cationic Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55354-55364. [PMID: 36484258 DOI: 10.1021/acsami.2c15864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the field of replacement of conventional dialysis treatment, searching superior materials for removal of protein-bound uremic toxins is a challenge on account of strong interactions between proteins and uremic toxins. Herein, we first adopted cationic metal-organic frameworks (MOFs), ZJU-X6 and ZJU-X7, as sorbents to decontaminate uremic toxins (p-cresyl sulfate and indoxyl sulfate). ZJU-X6 and ZJU-X7 exhibited innate advantage for sequestration of uremic toxins by utilizing a positive charge framework with exchangeable anions. Especially, ZJU-X6 showed a higher sorption capacity and faster sorption kinetics than those of most reported materials. Moreover, the cationic MOF materials could selectively remove uremic toxins even if in the presence of competitive chloride ions and proteins. Meanwhile, pair distribution function (PDF) and density functional theory (DFT) were employed to elucidate the sorption mechanism between uremic toxins and sorbents. This work suggests an attractive avenue for constructing new types of sorbents to eliminate uremic toxins for uremia treatment.
Collapse
Affiliation(s)
- Meiyu Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Lei Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
- Institute of Zhejiang University─Quzhou, 78 Jiuhua Boulevard North, Quzhou324000, China
| |
Collapse
|
8
|
Parray ZA, Ahmad F, Chaudhary AA, Rudayni HA, Al-Zharani M, Hassan MI, Islam A. Size-Dependent Interplay of Volume Exclusion Versus Soft Interactions: Cytochrome c in Macromolecular Crowded Environment. Front Mol Biosci 2022; 9:849683. [PMID: 35693552 PMCID: PMC9174945 DOI: 10.3389/fmolb.2022.849683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Even though there are a great number of possible conformational states, how a protein generated as a linear unfolded polypeptide efficiently folds into its physiologically active form remained a fascinating and unanswered enigma inside crowded conditions of cells. In this study, various spectroscopic techniques have been exploited to know and understand the effect and mechanism of action of two different sizes of polyethylene glycols, or PEGs (molecular mass ∼10 and ∼20 kilo Daltons, kDa), on cytochrome c (cyt c). The outcomes showed that small size of the PEG leads to perturbation of the protein structure, and conversely, large size of the PEG has stabilizing effect on cyt c. Moreover, binding measurements showed that small size of PEG interacts strongly via soft interactions compared to the larger size of PEG, the latter being governed more by excluded volume effect or preferential exclusion from the protein. Overall, this finding suggests that conformations of protein may be influenced in cellular crowded conditions via interactions which depend upon the size of molecule in the environment. This study proposes that both volume exclusion and soft (chemical) interactions governs the protein’s conformation and functional activities. The cellular environment’s internal architecture as evident from crowder size and shape in this study has a significant role.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Asimul Islam,
| |
Collapse
|
9
|
Belal F, Mabrouk M, Hammad S, Barseem A, Ahmed H. Multi-Spectroscopic, thermodynamic and molecular docking studies to investigate the interaction of eplerenone with human serum albumin. LUMINESCENCE 2022; 37:1162-1173. [PMID: 35489089 DOI: 10.1002/bio.4270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/07/2022]
Abstract
The binding of small molecular drugs with human serum albumin (HSA) has a crucial influence on their pharmacokinetics. The binding interaction between the antihypertensive Eplerenone (EPL)and HSA was investigated using multi-spectroscopic techniques for the first time. These techniques include UV-Vis spectroscopy, Fourier Transform Infrared (FT-IR), native fluorescence spectroscopy, synchronous fluorescence spectroscopy and molecular docking approach. The fluorescence spectroscopic study showed that EPL quenched HSA inherent fluorescence. The mechanism for quenching of HSA by EPL has been determined to be static in nature and confirmed by UV absorption and fluorescence spectroscopy. The modified Stern-Volmer equation was used to estimate the binding constant (Kb ) as well as the number of bindings (n). The results indicated that the binding occurs at a single site (Kb;2.238 x 103 L mol-1 at 298 K). The enthalpy and entropy changes (∆H and ∆S) were 58.061 and 0.258 K J mol-1 , respectively, illustrating that the principal intermolecular interactions stabilizing the EPL-HSA system are hydrophobic forces. Synchronous fluorescence spectroscopy revealed that EPL binding to HSA occurred around the tyrosine residue (Tyr) and this agreed with the molecular docking study. The FRET analysis confirmed the static quenching mechanism. The esterase enzyme activity of HSA was also evaluated showing its decrease in the presence of EPL. Furthermore, docking analysis and site-specific markers experiment revealed that EPL binds with HSA at subdomain IB (site III).
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Egypt
| |
Collapse
|
10
|
Zare F, Janeca A, Jokar SM, Faria M, Gonçalves MC. Interaction of Human Serum Albumin with Uremic Toxins: The Need of New Strategies Aiming at Uremic Toxins Removal. MEMBRANES 2022; 12:membranes12030261. [PMID: 35323736 PMCID: PMC8953794 DOI: 10.3390/membranes12030261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
Chronic kidney disease (CKD) is acknowledged worldwide to be a grave threat to public health, with the number of US end-stage kidney disease (ESKD) patients increasing steeply from 10,000 in 1973 to 703,243 in 2015. Protein-bound uremic toxins (PBUTs) are excreted by renal tubular secretion in healthy humans, but hardly removed by traditional haemodialysis (HD) in ESKD patients. The accumulation of these toxins is a major contributor to these sufferers’ morbidity and mortality. As a result, some improvements to dialytic removal have been proposed, each with their own upsides and drawbacks. Longer dialysis sessions and hemodiafiltration, though, have not performed especially well, while larger dialyzers, coupled with a higher dialysate flow, proved to have some efficiency in indoxyl sulfate (IS) clearance, but with reduced impact on patients’ quality of life. More efficient in removing PBUTs was fractionated plasma separation and adsorption, but the risk of occlusive thrombosis was worryingly high. A promising technique for the removal of PBUTs is binding competition, which holds great hopes for future HD. This short review starts by presenting the PBUTs chemistry with emphasis on the chemical interactions with the transport protein, human serum albumin (HSA). Recent membrane-based strategies targeting PBUTs removal are also presented, and their efficiency is discussed.
Collapse
Affiliation(s)
- Fahimeh Zare
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- Centro de Química Estrutural (CQE), 1049-001 Lisboa, Portugal
| | - Adriana Janeca
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (A.J.); (M.F.)
| | - Seyyed M. Jokar
- Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran;
| | - Mónica Faria
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (A.J.); (M.F.)
| | - Maria Clara Gonçalves
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- Centro de Química Estrutural (CQE), 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
11
|
Gao C, Zhang Q, Yang Y, Li Y, Lin W. Recent trends in therapeutic application of engineered blood purification materials for kidney disease. Biomater Res 2022; 26:5. [PMID: 35120554 PMCID: PMC8815201 DOI: 10.1186/s40824-022-00250-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Blood purification is a commonly used method to remove excess metabolic waste in the blood in renal replacement therapy. The sufficient removal of these toxins from blood can reduce complications and improve survival lifetime in dialysis patients. However, the current biological blood purification materials in clinical practice are not ideal, where there is an unmet need for producing novel materials that have better biocompatibility, reduced toxicity, and, in particular, more efficient toxin clearance rates and a lower cost of production. Given this, this review has carefully summarized newly developed engineered different structural biomedical materials for blood purification in terms of types and structure characteristics of blood purification materials, the production process, as well as interfacial chemical adsorption properties or mechanisms. This study may provide a valuable reference for fabricating a user-friendly purification device that is more suitable for clinical blood purification applications in dialysis patients.
Collapse
Affiliation(s)
- Cui Gao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Qian Zhang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Yi Yang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Department of Nephology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
12
|
Parray ZA, Naqvi AAT, Ahmad F, Hassan MI, Islam A. Characterization of different intermediate states in myoglobin induced by polyethylene glycol: A process of spontaneous molecular self-organization foresees the energy landscape theory via in vitro and in silico approaches. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Parray ZA, Ahmad F, Alajmi MF, Hussain A, Hassan MI, Islam A. Interaction of polyethylene glycol with cytochrome c investigated via in vitro and in silico approaches. Sci Rep 2021; 11:6475. [PMID: 33742055 PMCID: PMC7979836 DOI: 10.1038/s41598-021-85792-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the significant proteins that have attracted research groups due to virtue of being a potent selective anticancer drug target and property of triggering apoptosis upon release in cytoplasm is cytochrome c (cyt c). The mechanical transformations due to the macromolecular crowding in membrane in the mammalian cell are proposed to be useful inductors of changes in volume. It is very interesting to know that mitochondrial function were observed to be improved by polyethylene glycol (PEG) interaction, which in turn inhibits the cyt c (a pro-apoptotic cell death factor). In this work, the effect of polyethylene glycol of molecular weight 4 kilo Dalton (PEG 4 kDa) was investigated to highlight the structural transformations (tertiary and secondary structure) in cyt c using a choice of spectroscopic techniques (including UV-Vis absorption, near-UV, far-UV and Soret circular dichroism and fluorescence spectroscopy), which shows noteworthy shifts in the secondary and tertiary structures at higher concentrations of PEG 4 kDa with small changes in the heme-globular interactions. The size distribution changes of native protein treated with various concentrations of the crowder were observed and analyzed by dynamic light scattering (DLS). The interaction studies of the crowder with the protein was observed and analyzed by FTIR, isothermal titration calorimetry, time resolved fluorescence and molecular docking. The investigations suggested that the structural changes in the protein occurred due to soft interactions of PEG 4 kDa, which usually destabilizes proteins. The experimental evidence in this study proposed that crowding could be another approach to mechanical super-competition and free of certain markers that could aid in the identification and control of various diseases. This study suggests that crowders at specific concentrations, which softly interact with proteins, can be exploited as remedy for various diseases.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
14
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Understanding the Interaction of Polyelectrolyte Architectures with Proteins and Biosystems. Angew Chem Int Ed Engl 2021; 60:3882-3904. [PMID: 32589355 PMCID: PMC7894192 DOI: 10.1002/anie.202006457] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 02/06/2023]
Abstract
The counterions neutralizing the charges on polyelectrolytes such as DNA or heparin may dissociate in water and greatly influence the interaction of such polyelectrolytes with biomolecules, particularly proteins. In this Review we give an overview of studies on the interaction of proteins with polyelectrolytes and how this knowledge can be used for medical applications. Counterion release was identified as the main driving force for the binding of proteins to polyelectrolytes: Patches of positive charge become multivalent counterions of the polyelectrolyte and lead to the release of counterions from the polyelectrolyte and a concomitant increase in entropy. This is shown from investigations on the interaction of proteins with natural and synthetic polyelectrolytes. Special emphasis is paid to sulfated dendritic polyglycerols (dPGS). The Review demonstrates that we are moving to a better understanding of charge-charge interactions in systems of biological relevance. Research along these lines will aid and promote the design of synthetic polyelectrolytes for medical applications.
Collapse
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinTakustrasse 314195BerlinGermany
- IRIS AdlershofHumboldt Universität zu BerlinZum Grossen Windkanal 612489BerlinGermany
| | - Jens Dernedde
- Charité-Universitätsmedizin BerlinInstitute of Laboratory MedicineClinical Chemistry, and PathobiochemistryCVK Augustenburger Platz 113353BerlinGermany
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood ResearchDepartment of Pathology and Laboratory MedicineLife Science InstituteDepartment of ChemistrySchool of Biomedical EngineeringUniversity of British ColumbiaVancouverV6T 1Z3Canada
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| | - Gerd Multhaup
- Department of Pharmacology and TherapeuticsMcGill UniversityMontrealH3G 1Y6Canada
| |
Collapse
|
15
|
Parray ZA, Ahmad F, Hassan MI, Islam A. Conformational changes in cytochrome c directed by ethylene glycol accompanying complex formation: Protein-solvent preferential interaction or/and kosmotropic effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118788. [PMID: 32810818 DOI: 10.1016/j.saa.2020.118788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
When proteins interact with solvent or co-solutes with a high specificity and affinity, protein-ligand complexes may be formed. Such phenomenon may involve the processes like intra- and intermolecular interactions, which result in interaction based protein folding. In this study, cytochrome c (cyt c) was treated with different concentrations of ethylene glycol (EG) in crowded and confined media to check its structural stability using various spectroscopic techniques at pH 7.0 and 25 °C. The various spectroscopic techniques including circular dichroism (Soret, far- and near-UV regions), Fourier transform infrared (FTIR), absorption (UV and visible) and Trp fluorescence shows both secondary and tertiary structure of cyt c increases when treated with EG. The investigations using dynamic light scattering (DLS), time resolved fluorescence and isothermal titration calorimetry (ITC) for binding studies shows weak interaction between EG and cyt c. Small increase in the structure of the protein and insignificant decrease in hydrodynamic radii of the protein was observed from the studies. Molecular docking studies showed that EG has binding site on the protein and interact with few amino acid residues by weak interactions such as van der Waals and hydrogen bonding. This study helps in understanding the protein-ligand interactions, provides facts and the mechanisms that mediates the recognition of binding site for specific ligand to the receptor protein, which make possible of the discovery, design, and development of drugs at molecular level without affecting proteins within an organism.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
16
|
Achazi K, Haag R, Ballauff M, Dernedde J, Kizhakkedathu JN, Maysinger D, Multhaup G. Wechselwirkung von Polyelektrolyt‐Architekturen mit Proteinen und Biosystemen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katharina Achazi
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Takustraße 3 14195 Berlin Deutschland
- IRIS Adlershof Humboldt-Universität zu Berlin Zum Großen Windkanal 6 12489 Berlin Deutschland
| | - Jens Dernedde
- Charité-Universitätsmedizin Berlin Institut für Laboratoriumsmedizin Klinische Chemie und Pathobiochemie CVK Augustenburger Platz 1 13353 Berlin Deutschland
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research Department of Pathology and Laboratory Medicine Life Science Institute Department of Chemistry School of Biomedical Engineering University of British Columbia Vancouver V6T 1Z3 Kanada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| | - Gerd Multhaup
- Department of Pharmacology and Therapeutics McGill University Montreal H3G 1Y6 Kanada
| |
Collapse
|
17
|
Archer WR, Schulz MD. Isothermal titration calorimetry: practical approaches and current applications in soft matter. SOFT MATTER 2020; 16:8760-8774. [PMID: 32945316 DOI: 10.1039/d0sm01345e] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isothermal Titration Calorimetry (ITC) elucidates the thermodynamic profile (ΔH, ΔS, ΔG, Ka, and stoichiometry) of binding and dissociation reactions in solution. While ITC has primarily been used to investigate the thermodynamics of interactions between biological macromolecules and small molecules, it has become increasingly common for measuring binding interactions between synthetic polymers and small molecules, ions, or nanoparticles. This tutorial review describes applications of ITC in studying synthetic macromolecules and provides experimental guidelines for performing ITC experiments. We also highlight specific examples of using ITC to study soft matter, then discuss the limitations and the future of ITC in this field.
Collapse
Affiliation(s)
- William R Archer
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Michael D Schulz
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
18
|
Ahmadpoor P, Aglae C, Cariou S, Pambrun E, Renaud S, Garo F, Darmon R, Schultz C, Prelipcean C, Reboul P, Moranne O. Physiological role of plasma and its components and the clinical implications of different methods of apheresis: A narrative review. Ther Apher Dial 2020; 25:262-272. [PMID: 32710797 DOI: 10.1111/1744-9987.13567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/17/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
Abstract
Nowadays, therapeutic plasmapheresis (TP) is accepted as part of the treatment for specific groups of diseases. The availability of different methods, including double filtration and adsorption, increases selectivity for the removal of substances. However, the use of these techniques requires a thorough understanding of the characteristics and components of plasma. By considering pivotal papers from several databases, the aim of this narrative review is to describe the characteristics of plasma related to apheresis techniques. We have tried to cover the clinical implications including physiology, estimation of plasma volume, viscosity, and a description of its components including the size, volume of distribution, and half-lives of the different substances to be removed or maintained depending on the clinical situation and applied apheresis technique. Applying this knowledge will help us to choose the right method and dosage and improve the efficacy of the procedure by preventing or addressing any complications.
Collapse
Affiliation(s)
- Pedram Ahmadpoor
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Cedric Aglae
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Sylvain Cariou
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Emilie Pambrun
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Sophie Renaud
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Florian Garo
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Ruben Darmon
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Celine Schultz
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Camelia Prelipcean
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Pascal Reboul
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France
| | - Olivier Moranne
- Service Nephrologie-Dialyse-Aphérèse, CHU Carémeau, Université de Montpellier-Nîmes, Nîmes, France.,EA2415, Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Mohos V, Fliszár-Nyúl E, Lemli B, Zsidó BZ, Hetényi C, Mladěnka P, Horký P, Pour M, Poór M. Testing the Pharmacokinetic Interactions of 24 Colonic Flavonoid Metabolites with Human Serum Albumin and Cytochrome P450 Enzymes. Biomolecules 2020; 10:E409. [PMID: 32155912 PMCID: PMC7175153 DOI: 10.3390/biom10030409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are abundant polyphenols in nature. They are extensively biotransformed in enterocytes and hepatocytes, where conjugated (methyl, sulfate, and glucuronide) metabolites are formed. However, bacterial microflora in the human intestines also metabolize flavonoids, resulting in the production of smaller phenolic fragments (e.g., hydroxybenzoic, hydroxyacetic and hydroxycinnamic acids, and hydroxybenzenes). Despite the fact that several colonic metabolites appear in the circulation at high concentrations, we have only limited information regarding their pharmacodynamic effects and pharmacokinetic interactions. Therefore, in this in vitro study, we investigated the interactions of 24 microbial flavonoid metabolites with human serum albumin and cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes. Our results demonstrated that some metabolites (e.g., 2,4-dihydroxyacetophenone, pyrogallol, O-desmethylangolensin, and 2-hydroxy-4-methoxybenzoic acid) form stable complexes with albumin. However, the compounds tested did not considerably displace Site I and II marker drugs from albumin. All CYP isoforms examined were significantly inhibited by O-desmethylangolensin; nevertheless, only its effect on CYP2C9 seems to be relevant. Furthermore, resorcinol and phloroglucinol showed strong inhibitory effects on CYP3A4. Our results demonstrate that, besides flavonoid aglycones and their conjugated derivatives, some colonic metabolites are also able to interact with proteins involved in the pharmacokinetics of drugs.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (V.M.); (E.F.-N.)
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; (B.L.)
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (V.M.); (E.F.-N.)
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; (B.L.)
| | - Beáta Lemli
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; (B.L.)
- Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.Z.Z.); (C.H.)
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (B.Z.Z.); (C.H.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.M.)
| | - Pavel Horký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.H.)
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, Zborovská 2089, 500 05 Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (P.H.)
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary; (V.M.); (E.F.-N.)
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary; (B.L.)
| |
Collapse
|
20
|
Parray ZA, Ahmad F, Alajmi MF, Hussain A, Hassan MI, Islam A. Formation of molten globule state in horse heart cytochrome c under physiological conditions: Importance of soft interactions and spectroscopic approach in crowded milieu. Int J Biol Macromol 2020; 148:192-200. [PMID: 31945437 DOI: 10.1016/j.ijbiomac.2020.01.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 11/17/2022]
Abstract
To understand protein folding problem under physiological condition, usually taken as dilute aqueous buffer at pH 7.0 and 25 °C, knowledge of properties of folding intermediates is important, such as molten globule (MG). We observed that polyethylene glycol 400 Da (PEG 400) induces molten globule state conformation in cytochrome c at pH 7.0 and 25 °C. This PEG-induced MG state has: (i) native tertiary structure partially perturbed, (ii) unperturbed native secondary structure, (iii) newly exposed hydrophobic patches, and (iv) has 1.58 times more hydrodynamic volume than that of the native protein. Isothermal titration calorimetry and docking studies showed specific binding between PEG 400 and cytochrome c. The study delineates that PEG-protein interactions are more complex than the excluded-volume. The soft interactions need to be seriously studied in crowding milieu that leads to destabilization of protein and overcome stabilizing exclusion volume effect. This study not only can help in unraveling the mystery of steps involved in the proper folding of proteins to solve the massively complicated problems of protein folding but also provides novel insights towards importance of structural change in proteins inside cell where intermediate states of protein import-export easily via membranes rather than native form of proteins.
Collapse
Affiliation(s)
- Zahoor Ahmad Parray
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
21
|
Walkowiak J, Lu Y, Gradzielski M, Zauscher S, Ballauff M. Thermodynamic Analysis of the Uptake of a Protein in a Spherical Polyelectrolyte Brush. Macromol Rapid Commun 2019; 41:e1900421. [DOI: 10.1002/marc.201900421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jacek Walkowiak
- Institut für Chemie und BiochemieFreie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Yan Lu
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
- Institute of ChemistryUniversity of Potsdam 14467 Potsdam Germany
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische ChemieInstitut für ChemieStraße des 17. Juni 124Sekr. TC7Technische Universität Berlin D‐10623 Berlin Germany
| | - Stefan Zauscher
- Mechanical Engineering and Material ScienceDuke University Durham NC 27708 USA
| | - Matthias Ballauff
- Soft Matter and Functional MaterialsHelmholtz‐Zentrum Berlin für Materialen und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany
| |
Collapse
|
22
|
Crystal structure, Hirshfeld analysis and HSA interaction studies of N'-[(E)-(5-bromothiophen-2-yl)methylidene]-3-hydroxynaphthalene-2-carbohydrazide. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Rahman S, Rehman MT, Rabbani G, Khan P, AlAjmi MF, Hassan MI, Muteeb G, Kim J. Insight of the Interaction between 2,4-thiazolidinedione and Human Serum Albumin: A Spectroscopic, Thermodynamic and Molecular Docking Study. Int J Mol Sci 2019; 20:E2727. [PMID: 31163649 PMCID: PMC6600547 DOI: 10.3390/ijms20112727] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Thiazolidinedione derivatives (TZDs) have attracted attention because of their pharmacological effects. For example, certain TZDs have been reported to ameliorate type II diabetes by binding and activating PPARs (peroxisome proliferator-activated receptors). Nonetheless, no information is available on the interaction between the heterocyclic 2, 4-thiazolidinedione (2,4-TZD) moiety and serum albumin, which could affect the pharmacokinetics and pharmacodynamics of TZDs. In this study, we investigated the binding of 2,4-TZD to human serum albumin (HSA). Intrinsic fluorescence spectroscopy revealed a 1:1 binding stoichiometry between 2,4-TZD and HSA with a binding constant (Kb) of 1.69 ± 0.15 × 103 M-1 at 298 K. Isothermal titration calorimetry studies showed that 2,4-TZD/HSA binding was an exothermic and spontaneous reaction. Molecular docking analysis revealed that 2,4-TZD binds to HSA subdomain IB and that the complex formed is stabilized by van der Waal's interactions and hydrogen bonds. Molecular dynamics simulation confirmed the stability of the HSA-TZD complex. Further, circular dichroism and 3D fluorescence studies showed that the global conformation of HSA was slightly altered by 2,4-TZD binding, enhancing its stability. The results obtained herein further help in understanding the pharmacokinetic properties of thiazolidinedione.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea.
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Gulam Rabbani
- Nano Diagnostics; Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk 39253, Korea.
| | - Parvez Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, 31982 Al-Ahsa, Saudi Arabia.
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea.
| |
Collapse
|
24
|
Xu X, Angioletti-Uberti S, Lu Y, Dzubiella J, Ballauff M. Interaction of Proteins with Polyelectrolytes: Comparison of Theory to Experiment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5373-5391. [PMID: 30095921 DOI: 10.1021/acs.langmuir.8b01802] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We discuss recent investigations of the interaction of polyelectrolytes with proteins. In particular, we review our recent studies on the interaction of simple proteins such as human serum albumin (HSA) and lysozyme with linear polyelectrolytes, charged dendrimers, charged networks, and polyelectrolyte brushes. In all cases discussed here, we combined experimental work with molecular dynamics (MD) simulations and mean-field theories. In particular, isothermal titration calorimetry (ITC) has been employed to obtain the respective binding constants Kb and the Gibbs free energy of binding. MD simulations with explicit counterions but implicit water demonstrate that counterion release is the main driving force for the binding of proteins to strongly charged polyelectrolytes: patches of positive charges located on the surface of the protein become multivalent counterions of the polyelectrolyte, thereby releasing a number of counterions condensed on the polyelectrolyte. The binding Gibbs free energy due to counterion release is predicted to scale with the logarithm of the salt concentration in the system, which is verified by both simulations and experiment. In several cases, namely, for the interaction of proteins with linear polyelectrolytes and highly charged hydrophilic dendrimers, the binding constant could be calculated from simulations to very good approximation. This finding demonstrated that in these cases explicit hydration effects do not contribute to the Gibbs free energy of binding. The Gibbs free energy can also be used to predict the kinetics of protein uptake by microgels for a given system by applying dynamic density functional theory. The entire discussion demonstrates that the direct comparison of theory with experiments can lead to a full understanding of the interaction of proteins with charged polymers. Possible implications for applications, such as drug design, are discussed.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei , Nanjing 210094 , P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials , Imperial College London , London SW7 2AZ - UK , U.K
- International Research Centre for Soft Matter , Beijing University of Chemical Technology , 100099 Beijing , PR China
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Joachim Dzubiella
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Physikalisches Institut , Albert-Ludwigs-Universität , 79104 Freiburg , Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institut für Physik , Humboldt-Universität zu Berlin , 12489 Berlin , Germany
| |
Collapse
|
25
|
Kato S, Otake KI, Chen H, Akpinar I, Buru CT, Islamoglu T, Snurr RQ, Farha OK. Zirconium-Based Metal-Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. J Am Chem Soc 2019; 141:2568-2576. [PMID: 30707010 DOI: 10.1021/jacs.8b12525] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Uremic toxins often accumulate in patients with compromised kidney function, like those with chronic kidney disease (CKD), leading to major clinical complications including serious illness and death. Sufficient removal of these toxins from the blood increases the efficacy of hemodialysis, as well as the survival rate, in CKD patients. Understanding the interactions between an adsorbent and the uremic toxins is critical for designing effective materials to remove these toxic compounds. Herein, we study the adsorption behavior of the uremic toxins, p-cresyl sulfate, indoxyl sulfate, and hippuric acid, in a series of zirconium-based metal-organic frameworks (MOFs). The pyrene-based MOF, NU-1000, offers the highest toxin removal efficiency of all the MOFs in this study. Other Zr-based MOFs possessing comparable surface areas and pore sizes to NU-1000 while lacking an extended aromatic system have much lower toxin removal efficiency. From single-crystal X-ray diffraction analyses assisted by density functional theory calculations, we determined that the high adsorption capacity of NU-1000 can be attributed to the highly hydrophobic adsorption sites sandwiched by two pyrene linkers and the hydroxyls and water molecules on the Zr6 nodes, which are capable of hydrogen bonding with polar functional groups of guest molecules. Further, NU-1000 almost completely removes p-cresyl sulfate from human serum albumin, a protein that these uremic toxins bind to in the body. These results offer design principles for potential MOFs candidates for uremic toxin removal.
Collapse
Affiliation(s)
- Satoshi Kato
- Department of Chemistry and International Institute of Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Ken-Ichi Otake
- Department of Chemistry and International Institute of Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Haoyuan Chen
- Department of Chemical and Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Isil Akpinar
- Department of Chemistry and International Institute of Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Cassandra T Buru
- Department of Chemistry and International Institute of Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Department of Chemical and Biological Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
26
|
Yu S, Kent B, Jafta CJ, Petzold A, Radulescu A, Schuchardt M, Tölle M, van der Giet M, Zidek W, Ballauff M. Stability of human serum albumin structure upon toxin uptake explored by small angle neutron scattering. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|