1
|
Diantoro M, Istiqomah I, Fath YA, Mufti N, Nasikhudin N, Meevasana W, Alias YB. Hierarchical Activated Carbon-MnO 2 Composite for Wide Potential Window Asymmetric Supercapacitor Devices in Organic Electrolyte. MICROMACHINES 2022; 13:1989. [PMID: 36422418 PMCID: PMC9696615 DOI: 10.3390/mi13111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The consumption of electrical energy grows alongside the development of global industry. Generating energy storage has become the primary focus of current research, examining supercapacitors with high power density. The primary raw material used in supercapacitor electrodes is activated carbon (AC). To improve the performance of activated carbon, we used manganese dioxide (MnO2), which has a theoretical capacitance of up to 1370 Fg-1. The composite-based activated carbon with a different mass of 0-20% MnO2 was successfully introduced as the positive electrode. The asymmetric cell supercapacitors based on activated carbon as the anode delivered an excellent gravimetric capacitance, energy density, and power density of 84.28 Fg-1, 14.88 Wh.kg-1, and 96.68 W.kg-1, respectively, at 1 M Et4NBF4, maintaining 88.88% after 1000 test cycles.
Collapse
Affiliation(s)
- Markus Diantoro
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
- Center of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Istiqomah Istiqomah
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Yusril Al Fath
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
- Center of Advanced Materials for Renewable Energy, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Nasikhudin Nasikhudin
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang 65145, Indonesia
| | - Worawat Meevasana
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yatimah Binti Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Nanzumani NM, Agyemang FO, Mensah-Darkwa K, Appiah ES, Arthur EK, Gikunoo E, Koomson B, Jadhav AR, Raji A. Molten salt synthesis of nitrogen-doped hierarchical porous carbon from plantain peels for high-performance supercapacitor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Bhattarai RM, Chhetri K, Natarajan S, Saud S, Kim SJ, Mok YS. Activated carbon derived from cherry flower biowaste with a self-doped heteroatom and large specific surface area for supercapacitor and sodium-ion battery applications. CHEMOSPHERE 2022; 303:135290. [PMID: 35691391 DOI: 10.1016/j.chemosphere.2022.135290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, cherry flower waste-derived activated carbon (CFAC) with self-doped nitrogen is synthesized as a viable energy storage material for green and sustainable energy solutions. The activated carbon derived in this way is examined as an electric double-layer capacitance (EDLC)-type electrode material and sodium-ion battery (NIB) electrode material, and commendable performance is demonstrated for both of these energy storage applications. The specific surface area (SSA) and nitrogen content are observed to play a very delicate role in determining the charge storage ability of the CFAC, and the performance is optimized only by carefully balancing both of these properties. The optimized CFAC electrode supplied an excellent performance with a specific capacitance of 333.8 F g-1 and capacity is maintained to more than 96% even after 38,000 charge-discharge cycles as an EDLC-type supercapacitor electrode material. Likewise, the CFAC/NIB also yielded remarkable performance with an average specific capacity of 150 mAh g-1 and capacity retention of more than 84% after 200 charge-discharge cycles. Furthermore, an electrokinetic study was performed for both supercapacitor and NIB applications to identify the contribution from surface and diffusion type charge storage phenomena, consequently highlighting the role of the SSA and nitrogen content in the CFAC matrix.
Collapse
Affiliation(s)
- Roshan Mangal Bhattarai
- Department of Chemical and Biological Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 561756, Republic of Korea
| | - Subramanian Natarajan
- Nanomaterials & System Laboratory Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Shirjana Saud
- Department of Chemical and Biological Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea
| | - Sang Jae Kim
- Nanomaterials & System Laboratory Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea; R&D Center for Energy New Industry, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea.
| |
Collapse
|
4
|
Jalalah M, Rudra S, Aljafari B, Irfan M, Almasabi SS, Alsuwian T, Patil AA, Nayak AK, Harraz FA. Novel porous heteroatom-doped biomass activated carbon nanoflakes for efficient solid-state symmetric supercapacitor devices. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Li X, Ding D, Liu Z, Hui L, Guo T, You T, Cao Y, Zhao Y. Synthesis of P, S, N, triple‐doped porous carbon from steam explosion pretreated peanut shell as electrode material applied on supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Li
- Tianjin University of Science and Technology School of light science and engineering No29, 13th Avenue, TEDA 300457 Tianjin CHINA
| | - Dayong Ding
- Tianjin University of Science and Technology school of light industry science and engineering No. 9, 13th Avenue, TEDA 300457 Tianjin CHINA
| | - Zhong Liu
- Tianjin University of Science and Technology school of light science and engineering No. 9, 13th street, TEDA 300457 Tianjin CHINA
| | - Lanfeng Hui
- Tianjin University of Science and Technology school of light industry science and engineering CHINA
| | - Taoli Guo
- Tianjin University of Science and Technology school of light industry science and engineering CHINA
| | - Tingting You
- Beijing Forestry University College of Materials Science and Technology CHINA
| | - Yunpeng Cao
- Tianjin University of Science and Technology College of chemical engineering and materials science CHINA
| | - Yumeng Zhao
- CNPPRI: China National Pulp and Paper Research Institute Natian engineering laboratory for pulp and paper CHINA
| |
Collapse
|
6
|
Kwiatkowski M, Hu X. Analysis of the Effect of Conditions of Preparation of Nitrogen-Doped Activated Carbons Derived from Lotus Leaves by Activation with Sodium Amide on the Formation of Their Porous Structure. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1540. [PMID: 33801121 PMCID: PMC8004089 DOI: 10.3390/ma14061540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
This paper presents results of the analysis of the impact of activation temperature and mass ratio of activator to carbonized precursor R on the porous structure of nitrogen-doped activated carbons derived from lotus leaves by carbonization and chemical activation with sodium amide NaNH2. The analyses were carried out via the new numerical clustering-based adsorption analysis (LBET) method applied to nitrogen adsorption isotherms at -195.8 °C. On the basis of the results obtained it was shown that the amount of activator, as compared to activation temperatures, has a significantly greater influence on the formation of the porous structure of activated carbons. As shown in the study, the optimum values of the porous structure parameters are obtained for a mass ratio of R = 2. At a mass ratio of R = 3, a significant decrease in the values of the porous structure parameters was observed, indicating uncontrolled wall firing between adjacent micropores. The conducted analyses confirmed the validity of the new numerical clustering-based adsorption analysis (LBET) method, as it turned out that nitrogen-doped activated carbons prepared from lotus leaves are characterized by a high share of micropores and a significant degree of surface heterogeneity in most of the samples studied, which may, to some extent, undermine the reliability of the results obtained using classical methods of structure analysis that assume only a homogeneous pore structure.
Collapse
Affiliation(s)
- Mirosław Kwiatkowski
- Department of Fuel Technology, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Xin Hu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China;
| |
Collapse
|
7
|
dos Reis GS, de Oliveira HP, Larsson SH, Thyrel M, Claudio Lima E. A Short Review on the Electrochemical Performance of Hierarchical and Nitrogen-Doped Activated Biocarbon-Based Electrodes for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:424. [PMID: 33562379 PMCID: PMC7914838 DOI: 10.3390/nano11020424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Cheap and efficient carbon electrodes (CEs) for energy storage systems (ESS) such as supercapacitors (SCs) and batteries are an increasing priority issue, among other things, due to a globally increasing share of intermittent electricity production (solar and wind) and electrification of transport. The increasing consumption of portable and non-portable electronic devices justifies research that enables environmentally and economically sustainable production (materials, processing techniques, and product design) of products with a high electrochemical performance at an acceptable cost. Among all the currently explored CEs materials, biomass-based activated carbons (AC) present enormous potential due to their availability and low-cost, easy processing methods, physicochemical stability, and methods for self-doping. Nitrogen doping methods in CEs for SCs have been demonstrated to enhance its conductivities, surface wettability, and induced pseudocapacitance effect, thereby delivering improved energy/power densities with versatile properties. Herein, a short review is presented, focusing on the different types of natural carbon sources for preparing CEs towards the fabrication of SCs with high electrochemical performance. The influences of ACs' pore characteristics (micro and mesoporosity) and nitrogen doping on the overall electrochemical performance (EP) are addressed.
Collapse
Affiliation(s)
- Glaydson Simões dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | | | - Sylvia H. Larsson
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Biomass Technology Centre, SE-901 83 Umeå, Sweden; (S.H.L.); (M.T.)
| | - Eder Claudio Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil;
| |
Collapse
|
8
|
Kim J, Jeong JH, Ahn H, Lee JS, Roh KC. Nitrogen‐Immobilized, Ionic Liquid‐Derived, Nitrogen‐Doped, Activated Carbon for Supercapacitors. ChemElectroChem 2020. [DOI: 10.1002/celc.202000168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Juyeon Kim
- Energy and Environmental DivisionKorea Institute of Ceramic Engineering and Technology 101 Soho-ro, Jinju-si Gyeongsangnam-do 52851 Republic of Korea
- Department of Materials and EngineeringGyeongsang National University Jinju-si Gyeongsangnam-do 52828 Republic of Korea
| | - Jun Hui Jeong
- Energy and Environmental DivisionKorea Institute of Ceramic Engineering and Technology 101 Soho-ro, Jinju-si Gyeongsangnam-do 52851 Republic of Korea
| | - Hyo‐Jun Ahn
- Department of Materials and EngineeringGyeongsang National University Jinju-si Gyeongsangnam-do 52828 Republic of Korea
| | - Je Seung Lee
- Department of Chemistry and Research Institute of Basic SciencesKyung Hee University 26 Kyungheedaero, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Kwang Chul Roh
- Energy and Environmental DivisionKorea Institute of Ceramic Engineering and Technology 101 Soho-ro, Jinju-si Gyeongsangnam-do 52851 Republic of Korea
| |
Collapse
|
9
|
Hsiao C, Lee C, Tai N. Biomass-derived three-dimensional carbon framework for a flexible fibrous supercapacitor and its application as a wearable smart textile. RSC Adv 2020; 10:6960-6972. [PMID: 35493907 PMCID: PMC9049747 DOI: 10.1039/c9ra07441d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/26/2020] [Indexed: 11/21/2022] Open
Abstract
High electrochemical performance and mechanical reliability are two important properties of the flexible fibrous supercapacitors (FFSCs) used in portable and wearable electronics.
Collapse
Affiliation(s)
- Chunghsuan Hsiao
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Chiyoung Lee
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Republic of China
| | - Nyanhwa Tai
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Republic of China
| |
Collapse
|
10
|
Kasturi PR, Ramasamy H, Meyrick D, Sung Lee Y, Kalai Selvan R. Preparation of starch-based porous carbon electrode and biopolymer electrolyte for all solid-state electric double layer capacitor. J Colloid Interface Sci 2019; 554:142-156. [DOI: 10.1016/j.jcis.2019.06.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 01/06/2023]
|
11
|
Liu S, Rao Z, Wu R, Sun Z, Yuan Z, Bai L, Wang W, Yang H, Chen H. Fabrication of Microcapsules by the Combination of Biomass Porous Carbon and Polydopamine for Dual Self-Healing Hydrogels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1061-1071. [PMID: 30614698 DOI: 10.1021/acs.jafc.8b06241] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Artificial development of smart materials from agricultural waste or food residues is particularly desirable for green chemistry. In this paper, dual-network self-healing hydrogels were successfully fabricated by using functional microcapsules. These microcapsules were established by biomass porous carbon (PC) after recycling of apple residues. Glutaraldehyde (GA) as the healing agent was embedded in the porous carbon, and the outer surface was coated with polydopamine (PDA). After the microcapsules were added, modifying guar gum-type hydrogels were successfully obtained with dual self-healing performance by the combination of a healing agent and metal-ligand coordination. The self-healing efficiency was about 89.9% from the tension test, and the fracture strength was measured as 7.68 MPa. These results not only highlight a new idea for the utilization of apple residues but also provide a new method for the preparation of excellent self-healing hydrogels.
Collapse
Affiliation(s)
- Shumin Liu
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Zhilu Rao
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Ruiyue Wu
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Zhixiang Sun
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Zhiru Yuan
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Liangjiu Bai
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Wenxiang Wang
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Huawei Yang
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| | - Hou Chen
- School of Chemistry and Materials Science , Ludong University , Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025 , China
| |
Collapse
|
12
|
Jiang Y, Zhang Z, Zhang Y, Zhou X, Wang L, Yasin A, Zhang L. Bioresource derived porous carbon from cottonseed hull for removal of triclosan and electrochemical application. RSC Adv 2018; 8:42405-42414. [PMID: 35558399 PMCID: PMC9092051 DOI: 10.1039/c8ra08332k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/14/2018] [Indexed: 11/25/2022] Open
Abstract
Biomass-derived porous carbon materials have drawn considerable attention due to their natural abundance and low cost. In this work, nitrogen enriched porous carbons (NRPCs) with large surface areas were designed and prepared from cottonseed hull via simultaneous carbonization and activation with a facile one-pot approach. The NRPCs were tunable in terms of pore structure, nitrogen content and morphology by adjusting the ratio of the carbon precursor (cottonseed hull), nitrogen source (urea), and activation agent (KOH). The as-synthesized NRPCs exhibited three-dimensional oriented and interlinked porous structure, high specific surface area (1160–2573 m2 g−1) and a high level of nitrogen-doping (6.02–10.7%). In a three electrode system, NRPCs prepared at 800 °C with the ratio (cottonseed hull : KOH : urea) of 1 : 1 : 2 (NRPC-112) showed a high specific capacitance of 340 F g−1 at a current density of 0.5 A g−1 and good rate capability (∼80% retention at a current density of 10 A g−1) with 6 M KOH as electrolyte. In a two electrode cell, NRPC-112 demonstrated a high specific capacitance of 304 F g−1 at 0.5 A g−1 and an excellent rate capacity (∼71% retention at current density of 10 A g−1) as well as excellent cycling stability (∼91% retention at 5 A g−1) after 5000 cycles. Furthermore, the NRPCs exhibited an extraordinary adsorption capacity up to 205 mg g−1 for emerging pollutant triclosan. The work provided a sustainable approach to prepare functional carbon materials from biomass-based resource for environment remediation and electrochemical applications. Biomass derived nitrogen-enriched porous carbon materials from cottonseed hull for emerging pollutant triclosan removal and electrochemical application.![]()
Collapse
Affiliation(s)
- Yingfang Jiang
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| | - Zhengwei Zhang
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| | - Xin Zhou
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| | - Lulu Wang
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
- University of Chinese Academy of Sciences
| |
Collapse
|