1
|
Eshun G, Osonga FJ, Sadik OA. Quercetin-Derived Platinum Nanomaterials Influence Particle Stability, Catalytic, and Antimicrobial Performance. ACS OMEGA 2024; 9:38557-38568. [PMID: 39310166 PMCID: PMC11411542 DOI: 10.1021/acsomega.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Quercetin possesses high biological properties but low bioavailability, poor solubility, and rapid body clearance. Its structural modification is imperative for enhanced applications. Herein, we demonstrate the catalytic and antimicrobial characteristics of shape-dependent (cuboidal and peanuts) platinum nanoparticles. Modified quercetin, 4'-QP, was employed as the reducing and stabilizing agent for the aqueous synthesis of PtNPs without extraneous reagents. Monodispersed platinum nanocubes (C-PtNPs) and nanopeanuts (P-PtNPs) were produced by reacting 4'-QP and Pt ions in the ratios of 3:1 and 1:1, respectively. TEM characterization confirmed the formation of Pt nanocubes and Pt nanopeanuts, with their corresponding sizes of 39.1 ± 0.20 and 45.1 ± 0.24 nm. The shape-dependency of PtNPs on the nosocomial-causing bacteria, Citrobacter freundii ATCC 8090 (C. freundii) was determined by the Agar well-diffusion assay. Under the same particle size and dose treatments, C-PtNPs and P-PtNPs exhibited 16.28 ± 0.10 and 4.50 ± 0.15 mm zones of inhibition with minimum inhibitory concentrations of 25 and 45 μg/mL, respectively. SEM analysis of C-PtNPs treated C. freundii showed a damaged cell membrane and confirmed contact-killing as the antibacterial mechanism. The catalytic conversion of 4-nitrophenol (4-NP) to 4-amino phenol (4-AP) was tested using a shape-dependent PtNPs catalyst in the presence of sodium borohydride. The conversion rates (k) of C-PtNPs and P-PtNPs in wastewater samples from New Jersey were 0.0108 and 0.00607 s-1, respectively.
Collapse
Affiliation(s)
- Gaddi
B. Eshun
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| | - Francis J. Osonga
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| | - Omowunmi A. Sadik
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Malla RK, Chandra G. Diospyros montana mediated reduction, stabilization, and characterization of silver nanoparticles and evaluation of their mosquitocidal potentiality against dengue vector Aedes albopictus. Sci Rep 2023; 13:17202. [PMID: 37821538 PMCID: PMC10567741 DOI: 10.1038/s41598-023-44442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Recent research has focused on nanoparticles. Aedes albopictus is a potential vector that transmits fatal diseases. Recently, Phyto-reduced silver nanoparticles (AgNPs) were shown to be mosquito larvicides. This study aimed to synthesize silver nanoparticles using Diospyros montana leaf extract, characterize them, and test their efficacy as larvicide and pupicide against Ae. albopictus mosquitoes, determine their duration of effectiveness as a larvicide, identify plant compounds that help to synthesize nanoparticles, and assess their effects on non-target organisms. Quercetin, luteolin, kaempferol, gallocatechin gallate, epigallocatechin gallate, and capsaicin are among the novel reducing and capping agents found in D. montana leaf through LCMS analysis. The color shift and distinctive peak in UV-Vis spectroscopy made it simple to see how biogenic AgNPs were produced by converting Ag+ ions into Ag0. Substantial negative value (- 19.10 mv) of zeta potential demonstrated the long-term stability of AgNPs. A moderate range (8.72 - 50.75 nm) of particle size distribution pattern was obtained using the DLS technique. SEM and TEM images depicted the quasi-spherical (or polyhedral) and spherical shape of the nanoparticles, having approximately 16.75 nm average size. Synthesized AgNPs had a low LC90 value (< 10 ppm) for all larval instars and pupae of Ae. albopictus and had negligible mal effect on non-target organisms. Regression equations showed dose-dependent mortality by the positive correlation between mortality rate and AgNPs concentration, and each time the regression coefficient (R2) value was larger than zero. This study shows that D. montana leaf extract is an environment-friendly and sustainable source of an effective reducing and capping agent to synthesize highly stable, ecologically acceptable silver nanoparticles and their application as mosquitocide.
Collapse
Affiliation(s)
- Rajesh Kumar Malla
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Goutam Chandra
- Mosquito Microbiology and Nanotechnology Research Units, Parasitology Laboratory, Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
3
|
Hou T, Guo Y, Han W, Zhou Y, Netala VR, Li H, Li H, Zhang Z. Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Perilla frutescens Flavonoid Extract: Antibacterial, Antioxidant, and Cell Toxicity Properties against Colon Cancer Cells. Molecules 2023; 28:6431. [PMID: 37687260 PMCID: PMC10490294 DOI: 10.3390/molecules28176431] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The present study reports the biomimetic synthesis of silver nanoparticles (AgNPs) using a simple, cost effective and eco-friendly method. In this method, the flavonoid extract of Perilla frutescens (PFFE) was used as a bioreduction agent for the reduction of metallic silver into nanosilver, called P. frutescens flavonoid extract silver nanoparticles (PFFE-AgNPs). The Ultraviolet-Visible (UV-Vis) spectrum showed a characteristic absorption peak at 440 nm that confirmed the synthesis of PFFE-AgNPs. A Fourier transform infrared spectroscopic (FTIR) analysis of the PFFE-AgNPs revealed that flavonoids are involved in the bioreduction and capping processes. X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns confirmed the face-centered cubic (FCC) crystal structure of PFFE-AgNPs. A transmission electron microscopic (TEM) analysis indicated that the synthesized PFFE-AgNPs are 20 to 70 nm in size with spherical morphology and without any aggregation. Dynamic light scattering (DLS) studies showed that the average hydrodynamic size was 44 nm. A polydispersity index (PDI) of 0.321 denotes the monodispersed nature of PFFE-AgNPs. Further, a highly negative surface charge or zeta potential value (-30 mV) indicates the repulsion, non-aggregation, and stability of PFFE-AgNPs. PFFE-AgNPs showed cytotoxic effects against cancer cell lines, including human colon carcinoma (COLO205) and mouse melanoma (B16F10), with IC50 concentrations of 59.57 and 69.33 μg/mL, respectively. PFFE-AgNPs showed a significant inhibition of both Gram-positive (Listeria monocytogens and Enterococcus faecalis) and Gram-negative (Salmonella typhi and Acinetobacter baumannii) bacteria pathogens. PFFE-AgNPs exhibited in vitro antioxidant activity by quenching 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) free radicals with IC50 values of 72.81 and 92.48 µg/mL, respectively. In this study, we also explained the plausible mechanisms of the biosynthesis, anticancer, and antibacterial effects of PFFE-AgNPs. Overall, these findings suggest that PFFE-AgNPs have potential as a multi-functional nanomaterial for biomedical applications, particularly in cancer therapy and infection control. However, it is important to note that further research is needed to determine the safety and efficacy of these nanoparticles in vivo, as well as to explore their potential in other areas of medicine.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| | | | | | | | | | | | | | - Zhijun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; (Y.G.); (W.H.); (Y.Z.); (V.R.N.); (H.L.); (H.L.)
| |
Collapse
|
4
|
Kadry AA, El-Antrawy MA, El-Ganiny AM. Impact of short chain fatty acids (SCFAs) on antimicrobial activity of new β-lactam/β-lactamase inhibitor combinations and on virulence of Escherichia coli isolates. J Antibiot (Tokyo) 2023; 76:225-235. [PMID: 36726014 PMCID: PMC10040337 DOI: 10.1038/s41429-023-00595-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 02/03/2023]
Abstract
In a healthy gut microbiota, short chain fatty acids (SCFAs) are produced. The antibacterial action of SCFAs against intestinal pathogens makes them useful for ensuring the safety of food and human health. In this study, we aimed to assess the in vitro inhibitory activity of SCFAs, and to report, for the first time, their impact on the activity of new β-lactam/β-lactamase inhibitor combinations. The minimum inhibitory concentrations of acetic, propionic, and butyric acids were determined against E. coli clinical isolates recovered from gastrointestinal infections. Cefoperazone/sulbactam, ceftazidime/avibactam and cefepime/enmetazobactam are new β-lactam/β-lactamase inhibitor combinations that were studied for their combined therapeutic effects. Also, the effects of pH and concentration of SCFAs were evaluated on in vitro bacterial growth and expression of genes encoding for motility, adhesion, invasion, and biofilm formation. SCFAs were tested at concentrations of 12 mM at pH 7.4 (ileum-conditions), in addition to 60 mM and 123 mM, at pH 6.5 (colon-conditions). The tested SCFAs showed the same MIC (3750 μg ml-1 ≃ 60 mM) against all isolates. Furthermore, the addition of SCFAs to the tested β-lactam/β-lactamase inhibitor combinations greatly restored the susceptibility of the isolates. SCFAs had significant effect on bacterial growth and virulence in a pH and concentration-dependent manner; low ileal concentration potentiated E. coli growth, while higher colonic concentration significantly suppressed growth and down-regulated the expression of virulence genes (fliC, ipaH, FimH, BssS). Therefore, the significant inhibitory effect of colonic SCFAs on β-lactam/β-lactamase inhibitor combinations might lead to the development of promising treatment strategies.
Collapse
Affiliation(s)
- Ashraf A Kadry
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - May A El-Antrawy
- Microbiology and Biotechnology Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Eshun GB, Crapo HA, Yazgan I, Cronmiller L, Sadik OA. Sugar-Lectin Interactions for Direct and Selective Detection of Escherichia coli Bacteria Using QCM Biosensor. BIOSENSORS 2023; 13:337. [PMID: 36979549 PMCID: PMC10046022 DOI: 10.3390/bios13030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pathogenic Escherichia coli (E. coli) remains a safety concern in the preservation and quality of green leafy vegetables. Sugar-lectin interactions provide a reliable, specific, and effective sensing platform for the detection of bacteria as compared to the tedious conventional plate counting technique. Herein, we present the synthesis of 4-(N-mannosyl) benzoic acid (4-NMBA) and 4-thiophenyl-N-mannose (4-TNM) via a two-step reductive amination for the detection of E. coli using a quartz crystal microbalance (QCM) biosensor. The 4-NMBA was synthesized with mannose and para-aminobenzoic (4-PBA), while the 4-TNM was synthesized with mannose and 4-aminophenyl disulfide (4-AHP) using water and acetic acid in a 1:1 ratio. The resultant structure of mannose derivatives (4-NMBA and 4-TNM) was characterized and confirmed using analytical tools, such as Mass Spectrometer, SEM, and FTIR. The choice of ligands (mannose derivatives) is ascribed to the specific recognition of mannose to the FimH lectin of the type 1 pilus of E. coli. Furthermore, the 4-PBA and 4-AHP conjugated to mannose increase the ligand affinity to FimH lectins. The setup of the QCM biosensor was composed of modification of the crystal surface and the covalent attachment of ligands for the detection of E. coli. The piezoelectric effect (frequency shift of the quartz) was proportional to the change in mass added to the gold crystal surface. Both the 4-NMBA- and 4-TNM-coated QCM sensors had a limit of detection of 3.7 CFU/mL and 6.6 CFU/mL with a sensitivity of 2.56 × 103 ng/mL and 8.99 × 10-5 ng/mL, respectively, within the dynamic range of 103 to 106 CFU/mL. This study demonstrates the application of ligand-coated QCM biosensors as a cost-effective, simple, and label-free technology for monitoring pathogenic bacteria via molecular interactions on crystal surfaces.
Collapse
Affiliation(s)
- Gaddi B. Eshun
- Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Heather A. Crapo
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Idris Yazgan
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Lauren Cronmiller
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Omowunmi A. Sadik
- Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Synthesis and characterization of lanthanum-doped curcumin-functionalized antimicrobial copper oxide nanoparticles. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Metryka O, Wasilkowski D, Mrozik A. Evaluation of the Effects of Ag, Cu, ZnO and TiO 2 Nanoparticles on the Expression Level of Oxidative Stress-Related Genes and the Activity of Antioxidant Enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. Int J Mol Sci 2022; 23:4966. [PMID: 35563357 PMCID: PMC9103769 DOI: 10.3390/ijms23094966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022] Open
Abstract
Although the molecular response of bacteria exposed to metal nanoparticles (NPs) is intensively studied, many phenomena related to their survival, metal uptake, gene expression and protein production are not fully understood. Therefore, this work aimed to study Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs-induced alterations in the expression level of selected oxidative stress-related genes in connection with the activity of antioxidant enzymes: catalase (CAT), peroxidase (PER) and superoxide dismutase (SOD) in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. The methodology used included: the extraction of total RNA and cDNA synthesis, the preparation of primers for selected housekeeping and oxidative stress genes, RT-qPCR reaction and the measurements of CAT, PER and SOD activities. It was established that the treatment of E. coli and S. epidermidis with NPs resulted mainly in the down-regulation of targeted genes, whilst the up-regulation of genes was confirmed in B. cereus. The greatest differences in the relative expression levels of tested genes occurred in B. cereus and S. epidermidis treated with TiO2-NPs, while in E. coli, they were observed under ZnO-NPs exposure. The changes found were mostly related to the expression of genes encoding proteins with PER and CAT-like activity. Among NPs, ZnO-NPs and Cu-NPs increased the activity of antioxidants in E. coli and B. cereus. In turn, TiO2-NPs had a major effect on enzymes activity in S. epidermidis. Considering all of the collected results for tested bacteria, it can be emphasised that the impact of NPs on the antioxidant system functioning was dependent on their type and concentration.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland;
| |
Collapse
|
8
|
A Three-Reagent “Green” Paper-Based Analytical Device for Solid-Phase Spectrometric and Colorimetric Determination of Dihydroquercetin. SENSORS 2022; 22:s22082893. [PMID: 35458878 PMCID: PMC9030608 DOI: 10.3390/s22082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022]
Abstract
Microfluidic paper-based analytical devices (µPADs) represent one of the promising green analytical strategies for low-cost and simple determination of various analytes. The actual task is the development of such devices for quantitation of antioxidants, e.g., flavonoids. In this paper, possibilities of a novel three-reagent µPAD including silver nitrate, 4-nitrophenyldiazonium tetrafluoroborate, and iron(III) chloride as reagents are assessed with respect to the determination of dihydroquercetin. It is shown that all the three reagents produce different colorimetric responses that can be detected by a mini-spectrophotometer–monitor calibrator or by a smartphone. The method is applicable to direct measuring high contents of dihydroquercetin (the linearity range is 0.026–1 mg mL−1, and the limit of detection is 7.7 µg mL−1), which is favorable for many dietary supplements. The analysis of a food supplement was possible with the relative standard deviations of 9–26%, which is satisfactory for quantitative and semiquantitative determinations. It was found that plotting a calibration graph in 3D space of the three reagents’ responses allows us to distinguish dihydroquercetin from its close structural analogue, quercetin.
Collapse
|
9
|
Chahardoli A, Hajmomeni P, Ghowsi M, Qalekhani F, Shokoohinia Y, Fattahi A. Optimization of Quercetin-Assisted Silver Nanoparticles Synthesis and Evaluation of Their Hemocompatibility, Antioxidant, Anti-Inflammatory, and Antibacterial effects. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100075. [PMID: 34938575 PMCID: PMC8671616 DOI: 10.1002/gch2.202100075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/23/2021] [Indexed: 06/14/2023]
Abstract
In the present study, different effective parameters (temperature, reaction time, and pH) on the synthesis of quercetin-assisted silver nanoparticles (QE-AgNPs) are optimized. These biogenic NPs are characterized by different physico-chemical analyses, including transmission electron microscopy, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and UV-visible spectroscopy. In addition, the biological properties of QE-AgNPs are evaluated through antioxidant, antimicrobial, anti-inflammatory, hemolysis, and coagulation time assays. The formation of QE-AgNPs is affected by different parameters. The optimum condition for the synthesis of QE-AgNPs is attained at 70 °C and pH 7. Prepared QE-AgNPs show a spherical shape with a crystalline nature and an average particle size of 20 ± 3.6 nm. The role of QE as a reducing and capping agent in the preparation process of QE-AgNPs is demonstrated using FTIR analysis. These NPs with excellent antioxidant activity (82.3% at a concentration of 400 µg mL-1) and anti-inflammatory properties (82.5% and 100% at concentrations of 37.25 and 500 µg mL-1, respectively), show good antimicrobial effects, particularly against Staphylococcus aureus. Furthermore, the results of the hemolytic and coagulation assay of QE-AgNPs indicate their hemo-compatibility. Therefore, hemo/bio-compatible QE-AgNPs with excellent and unique properties can be employed in different medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of BiologyFaculty of ScienceRazi UniversityKermanshah6714414971Iran
| | - Pouria Hajmomeni
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| | - Mahnaz Ghowsi
- Department of BiologyFaculty of ScienceRazi UniversityKermanshah6714414971Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
- Ric Scalzo Institute for Botanical ResearchSouthwest College of Naturopathic MedicineTempeAZ85282USA
| | - Ali Fattahi
- Pharmaceutical Sciences Research CenterHealth InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
- Medical Biology Research CenterHealth Technologies InstituteKermanshah University of Medical SciencesKermanshah6734667149Iran
| |
Collapse
|
10
|
Thammawithan S, Srichaiyapol O, Siritongsuk P, Daduang S, Klaynongsruang S, Prapasarakul N, Patramanon R. Anisotropic Silver Nanoparticles Gel Exhibits Antibacterial Action and Reduced Scar Formation on Wounds Contaminated with Methicillin-Resistant Staphylococcus pseudintermedius (MRSP) in a Mice Model. Animals (Basel) 2021; 11:ani11123412. [PMID: 34944189 PMCID: PMC8697910 DOI: 10.3390/ani11123412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Wound infection in animals with antimicrobial resistant bacteria, especially Staphylococcus pseudintermedius, plays an important role in the delay of wound healing. In this work, the antimicrobial and wound healing activities of gels containing anisotropic AgNPs were evaluated on wounds contaminated with Methicillin-resistant Staphylococcus pseudintermedius in a mice model. The results show that anisotropic AgNPs gel is effective in eliminating bacteria and preventing pus formation. Furthermore, anisotropic AgNPs gel exhibits improved collagen alignment that supports scar disappearance. Abstract Staphylococcus pseudintermedius (S. pseudintermedius) infected wounds can cause seriously delayed wound healing processes in animals. Antimicrobial agents that have antimicrobial and wound healing efficacy have become an essential tool for overcoming this problem. In our previous study, anisotropic AgNPs have been reported to have antimicrobial efficiency against animal and human pathogens, and could be suitable as antimicrobial agents for infected wounds. Here, antimicrobial and wound healing activities of anisotropic AgNPs gels were assessed in vivo. BALB/cAJcl mice wounds were infected by Methicillin-resistant Staphylococcus pseudintermedius (MRSP). Then, antibacterial and wound healing activities were evaluated by bacterial cell count, wound contraction, digital capture, and histology. The results show that anisotropic AgNPs gels could eliminate all bacterial cell infected wounds within 7 days, the same as povidone iodine. Wound healing activity was evaluated by wound contraction (%). The results showed 100% wound contraction in groups treated with anisotropic AgNPs gels within 14 days that was not significantly different from povidone iodine and control gel without AgNPs. However, the digital capture of wounds on day 4 showed that anisotropic AgNPs gel prevented pus formation and reduced scar appearance within 21 days. The histology results exhibit improved collagen fiber alignment that supports scar disappearance. In conclusion, these results indicate that anisotropic AgNPs gels are suitable for treating infected wounds. The gel is effective in eliminating bacteria that supports the natural process of wound repair and also causes reduced scar formation.
Collapse
Affiliation(s)
- Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Oranee Srichaiyapol
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (O.S.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence: ; Tel.: +66-84599-9123
| |
Collapse
|
11
|
Green Biosynthesis, Antioxidant, Antibacterial, and Anticancer Activities of Silver Nanoparticles of Luffa acutangula Leaf Extract. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5125681. [PMID: 34631882 PMCID: PMC8494549 DOI: 10.1155/2021/5125681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.
Collapse
|
12
|
Thammawithan S, Siritongsuk P, Nasompag S, Daduang S, Klaynongsruang S, Prapasarakul N, Patramanon R. A Biological Study of Anisotropic Silver Nanoparticles and Their Antimicrobial Application for Topical Use. Vet Sci 2021; 8:vetsci8090177. [PMID: 34564571 PMCID: PMC8471216 DOI: 10.3390/vetsci8090177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
The excessive use of antibiotics in both human and veterinary medicine has contributed to the development and rapid spread of drug resistance in bacteria. Silver nanoparticles (AgNPs) have become a tool of choice that can be used to treat these resistant bacteria. Several studies have shown that AgNPs have antibacterial and wound healing properties. In this study, we evaluated the biological activity of anisotropic AgNPs to develop an antimicrobial gel formulation for treating wound infections. We showed that some anisotropic AgNPs (S2) have an effective antibacterial activity against bacterial pathogens and low cytotoxicity to keratinocytes and fibroblasts in vitro. The MIC and MBC values were in the range of 2-32 µg/mL, and cytotoxicity had IC50 values of 68.20 ± 9.71 µg/mL and 68.65 ± 10.97 µg/mL against human keratinocyte and normal human dermal fibroblast cells, respectively. The anisotropic AgNPs (S2) were used as a gel component and tested for antibacterial activity, including long-term protection, compared with povidone iodine, a common antiseptic agent. The results show that the anisotropic AgNPs can inhibit the growth of most tested bacterial pathogens and provide protection longer than 48 h, whereas povidone iodine only inhibits the growth of some bacteria. This study suggests that anisotropic AgNPs could be used as an alternative antimicrobial agent for treating bacterial skin infection and as a wound healing formulation.
Collapse
Affiliation(s)
- Saengrawee Thammawithan
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Pawinee Siritongsuk
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Sawinee Nasompag
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nuvee Prapasarakul
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.T.); (P.S.); (S.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence: ; Tel.: +668-4599-9123
| |
Collapse
|
13
|
Das S, Langbang L, Haque M, Belwal VK, Aguan K, Singha Roy A. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J Pharm Anal 2021; 11:422-434. [PMID: 34513118 PMCID: PMC8424387 DOI: 10.1016/j.jpha.2020.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) has garnered tremendous interest as conventional methods include the use and production of toxic chemicals, products, by-products and reagents. In this regard, the synthesis of AgNPs using green tea (GT) extract and two of its components, (-)-epigallocatechin gallate (EGCG) and (+)-catechin (Ct) as capping/stabilizing agents, is reported. The synthesized AgNPs showed antibacterial activity against the bacterial strains Staphylococcus aureus and Escherichia coli, along with anticancer activity against HeLa cells. After administering nanoparticles to the body, they come in contact with proteins and results in the formation of a protein corona; hence we studied the interactions of these biocompatible AgNPs with hen egg white lysozyme (HEWL) as a carrier protein. Static quenching mechanism was accountable for the quenching of HEWL fluorescence by the AgNPs. The binding constant (K b) was found to be higher for EGCG-AgNPs ((2.309 ± 0.018) × 104 M-1) than for GT-AgNPs and Ct-AgNPs towards HEWL. EGCG-AgNPs increased the polarity near the binding site while Ct-AgNPs caused the opposite effect, but GT-AgNPs had no such observable effects. Circular dichroism studies indicated that the AgNPs had no such appreciable impact on the secondary structure of HEWL. The key findings of this research included the synthesis of AgNPs using GT extract and its constituent polyphenols, and showed significant antibacterial, anticancer and protein-binding properties. The -OH groups of the polyphenols drive the in situ capping/stabilization of the AgNPs during synthesis, which might offer new opportunities having implications for nanomedicine and nanodiagnostics.
Collapse
Affiliation(s)
- Sourav Das
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| | - Leader Langbang
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| | - Vinay Kumar Belwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, 793003, India
| |
Collapse
|
14
|
Isika D, Çeşme M, Osonga FJ, Sadik OA. Novel quercetin and apigenin-acetamide derivatives: design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Adv 2020; 10:25046-25058. [PMID: 35517443 PMCID: PMC9055277 DOI: 10.1039/d0ra04559d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Flavonoids exhibit essential but limited biological properties which can be enhanced through chemical modifications. In this study, we designed, synthesized, and characterized two novel flavonoid derivatives, quercetin penta-acetamide (1S3) and apigenin tri-acetamide (2S3). These compounds were confirmed using (1H, 13C) NMR, UV-Vis, and FT-IR characterizations. Their interaction with fish sperm DNA (FS-DNA) at physiological pH was investigated by UV-Vis and fluorescence spectrophotometry. The binding constant (K b) for the UV-Vis experiment was found to be 1.43 ± 0.3 × 104 M-1 for 1S3 and 2.08 ± 0.2 × 104 M-1 for 2S3. The binding constants (K SV) for the fluorescence quenching experiment were 1.83 × 104 M-1 and 1.96 × 104 M-1 for 1S3 and 2S3, respectively. Based on molecular modeling and docking studies, the binding affinities were found to be -7.9 and -9.1 kcal mol-1, for 1S3 and 2S3, respectively. The compound-DNA docked model correlated with our experimental results, and they are groove binders. Furthermore, mutagenicity potential was examined. 1S3 and its metabolites showed no mutagenic activity for both TA98 and TA100 strains. 2S3 did not show any mutagenic activity for the strain TA 98, while its metabolites were only active at high doses. Both 2S3 and its metabolites showed mutagenic activity in the TA100 strain.
Collapse
Affiliation(s)
- Daniel Isika
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| | - Mustafa Çeşme
- Department of Chemistry, Faculty of Art and Sciences, Kahramanmaras Sutcu Imam University Kahramanmaras 46040 Turkey
| | - Francis J Osonga
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Science, Sensors Mechanisms Research & Technology (The SMART Center), New Jersey Institute of Technology 161 Warren Street, University Heights Newark NJ 07102 USA
| |
Collapse
|
15
|
Osonga FJ, Akgul A, Yazgan I, Akgul A, Eshun GB, Sakhaee L, Sadik OA. Size and Shape-Dependent Antimicrobial Activities of Silver and Gold Nanoparticles: A Model Study as Potential Fungicides. Molecules 2020; 25:E2682. [PMID: 32527041 PMCID: PMC7321160 DOI: 10.3390/molecules25112682] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
Plant-based pathogenic microbes hinder the yield and quality of food production. Plant diseases have caused an increase in food costs due to crop destruction. There is a need to develop novel methods that can target and mitigate pathogenic microbes. This study focuses on investigating the effects of luteolin tetraphosphate derived silver nanoparticles (LTP-AgNPs) and gold nanoparticles (LTP-AuNPs) as a therapeutic agent on the growth and expression of plant-based bacteria and fungi. In this study, the silver and gold nanoparticles were synthesized at room temperature using luteolin tetraphosphate (LTP) as the reducing and capping agents. The synthesis of LTP-AgNPs and LTP-AuNP was characterized by Transmission Electron Microscopy (TEM) and size distribution. The TEM images of both LTP-AgNPs and LTP-AuNPs showed different sizes and shapes (spherical, quasi-spherical, and cuboidal). The antimicrobial test was conducted using fungi: Aspergillus nidulans, Trichaptum biforme, Penicillium italicum, Fusarium oxysporum, and Colletotrichum gloeosporioides, while the class of bacteria employed include Pseudomonas aeruginosa, Aeromonas hydrophila, Escherichia coli, and Citrobacter freundii as Gram (-) bacteria, and Listeria monocytogenes and Staphylococcus epidermidis as Gram (+) bacterium. The antifungal study demonstrated the selective size and shape-dependent capabilities in which smaller sized spherical (9 nm) and quasi-spherical (21 nm) AgNPs exhibited 100% inhibition of the tested fungi and bacteria. The LTP-AgNPs exhibited a higher antimicrobial activity than LTP-AuNPs. We have demonstrated that smaller sized AgNPs showed excellent inhibition of A. nidulans growth compared to the larger size nanoparticles. These results suggest that LTP-AuNP and LTP-AgNPs could be used to address the detection and remediation of pathogenic fungi, respectively.
Collapse
Affiliation(s)
- Francis J. Osonga
- Sensors Mechanisms Research and Technology Center (The SMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, NJ 07102, USA; (F.J.O.); (G.B.E.)
| | - Ali Akgul
- Department of Sustainable Bioproducts, College of Forest Resources, Mississippi State University, Starkville, MS 39759, USA;
| | - Idris Yazgan
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, P.O. Box 6000 Binghamton, NY 13902, USA; (I.Y.); (L.S.)
| | - Ayfer Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA;
| | - Gaddi B. Eshun
- Sensors Mechanisms Research and Technology Center (The SMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, NJ 07102, USA; (F.J.O.); (G.B.E.)
| | - Laura Sakhaee
- Department of Chemistry, Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES), State University of New York at Binghamton, P.O. Box 6000 Binghamton, NY 13902, USA; (I.Y.); (L.S.)
| | - Omowunmi A. Sadik
- Sensors Mechanisms Research and Technology Center (The SMART Center), Chemistry and Environmental Science Department, New Jersey Institute of Technology, University Heights, 161 Warren Street, Newark, NJ 07102, USA; (F.J.O.); (G.B.E.)
| |
Collapse
|
16
|
Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A. One-step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci Rep 2020; 10:1762. [PMID: 32020015 PMCID: PMC7000682 DOI: 10.1038/s41598-020-58697-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
In the current study, isoimperatorin, a natural furanocoumarin, is used as a reducing reagent to synthesize isoimperatorin mediated silver nanoparticles (Iso-AgNPs), and photocatalytic and electrocatalytic activities of Iso-AgNPs are evaluated. Iso-AgNPs consisted of spherically shaped particles with a size range of 79-200 nm and showed catalytic activity for the degradation (in high yields) of New Fuchsine (NF), Methylene Blue (MB), Erythrosine B (ER) and 4-chlorophenol (4-CP) under sunlight irradiation. Based on obtained results, Iso-AgNPs exhibited 96.5%, 96.0%, 92%, and 95% degradation rates for MB, NF, ER, and 4-CP, respectively. The electrochemical performance showed that the as-prepared Iso-AgNPs exhibited excellent electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. It is worth noticing that the Iso-AgNPs were used as electrode materials without any binder. The sensor-based on binder-free Iso-AgNPs showed linearity from 0.1 µM to 4 mM with a detection limit of 0.036 μM for H2O2. This binder-free and straightforward strategy for electrode preparation by silver nanoparticles may provide an alternative technique for the development of other nanomaterials based on isoimperatorin under green conditions. Altogether, the application of isoimpratorin in the synthesis of nano-metallic electro and photocatalysts, especially silver nanoparticles, is a simple, cost-effective and efficient approach.
Collapse
Affiliation(s)
- Maryamosadat Mavaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Chahardoli
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, USA
| | - Alireza Khoshroo
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Alavi M, Karimi N, Valadbeigi T. Antibacterial, Antibiofilm, Antiquorum Sensing, Antimotility, and Antioxidant Activities of Green Fabricated Ag, Cu, TiO 2, ZnO, and Fe 3O 4 NPs via Protoparmeliopsis muralis Lichen Aqueous Extract against Multi-Drug-Resistant Bacteria. ACS Biomater Sci Eng 2019; 5:4228-4243. [PMID: 33417780 DOI: 10.1021/acsbiomaterials.9b00274] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Consideration of lichen organisms as the ecofriendly source of metal nanoparticles (MNPs) and metal oxide NPs (MONPs) synthesis is seldom. In this study, Ag and Cu MNPs as well as TiO2, ZnO, and Fe3O4 MONPs were green synthesized by Protoparmeliopsis muralis lichen aqueous extract. First, physicochemical characterization by UV-vis spectroscopy, XRD, FT-IR, FESEM, and TEM techniques demonstrated the presence possibility of secondary metabolites around formed MNPs/MONPs with different diameters and shapes (spherical, triangular, polyhedral, and cubic). The antibacterial, antibiofilm, antiquorum sensing, and antioxidant abilities of these MNPs/MONPs against multi drug resistant (MDR) bacterium (Staphylococcus aureus ATCC 43300) and reference bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853) were then evaluated by in vitro tests. Results of disc diffusion and MIC/MBC assays of Ag NPs as an effective antibacterial agent illustrated a higher sensitivity of the P. aeruginosa pathogen than E. coli and S. aureus. In next steps, a significant reduction was observed in the biofilm formation of each bacterium and pyocyanin synthesis by P. aeruginosa under Ag NPs. This investigation presents novel clean production of five MNPs/MONPs with prominent advantages of being ecofriendly and cost-effective and having antipathogen properties.
Collapse
|
18
|
Raji P, Samrot AV, Keerthana D, Karishma S. Antibacterial Activity of Alkaloids, Flavonoids, Saponins and Tannins Mediated Green Synthesised Silver Nanoparticles Against Pseudomonas aeruginosa and Bacillus subtilis. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01547-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Kim M, Jee SC, Shinde SK, Mistry BM, Saratale RG, Saratale GD, Ghodake GS, Kim DY, Sung JS, Kadam AA. Green-Synthesis of Anisotropic Peptone-Silver Nanoparticles and Its Potential Application as Anti-Bacterial Agent. Polymers (Basel) 2019; 11:E271. [PMID: 30960255 PMCID: PMC6419017 DOI: 10.3390/polym11020271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
This study demonstrates a green-route-based synthesis of high-concentration suspensions of anisotropic silver nanoparticles (AgNPs) by peptone (Pep), a soluble protein hydrolysate and an abundantly used nutrient source in microbial-media. The transformation of Ag ions from solution into a high-concentration suspension of anisotropic Pep-AgNPs, at an extremely low concentration of peptone (0.02%), indicates that the present green-route synthesis method follows "low volume high concentration nano-synthesis", and, hence, enhances the economic significance of the process. Process optimization with different concentrations of AgNPs (1⁻5 mM), NaOH solution (5⁻40 mM), and peptone (0.004%⁻0.12%) gave the optimized Pep-AgNPs synthesis at 3 mM of AgNO₃, 20 mM of NaOH, and 0.02% of the peptone concentrations. The green-route synthesized Pep-AgNPs were structurally characterized by the TEM, XPS, FT-IR, and XRD analyses. The Pep-AgNPs against the clinically relevant bacteria Escherichia coli and Staphylococcus aureus gave significant anti-bacterial properties, with a MIC (minimum inhibitory concentration) of 100 ppm. The colony counting and morphological observation of the bacterial cell under SEM corroborated an anti-bacterial potential of the Pep-AgNPs. Therefore, Pep-AgNPs are green-route synthesized, anisotropic, and have a significant anti-bacterial potential that can be used in many relevant applications.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Sciences, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Seung-Cheol Jee
- Department of Life Sciences, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Surendra K Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Biomedical Campus, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Bhupendra M Mistry
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Biomedi Campus, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Biomedical Campus, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Biomedical Campus, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Jung-Suk Sung
- Department of Life Sciences, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| | - Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Biomedi Campus, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea.
| |
Collapse
|
20
|
Fahimirad S, Ajalloueian F, Ghorbanpour M. Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:260-278. [PMID: 30388544 DOI: 10.1016/j.ecoenv.2018.10.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles (AgNPs) have attracted a great deal of attention in the recent years. It is mostly due to their availability, chemical stability, catalytic activity, conductivity, biocompatibility, antimicrobial activity and intrinsic therapeutic properties. There are three major approaches for AgNPs synthesis; i.e., chemical, physical, and biological methods. Today, many of chemical and physical methods have become less popular due to using hazardous chemicals or their high costs, respectively. The biological method has introduced an appropriate substitute synthesis strategy for the traditional physical and chemical approaches. The utilization of the plant extracts as reducing, stabilizing and coating agent of AgNPs is an interesting eco-friendly approach leading to high efficiency. The antimicrobial and anticancer synergistic effects among the AgNPs and phytochemicals will enhance their therapeutic potentials. Surprisingly, although many studies have demonstrated the significant enhancement in cytotoxic activities of plant-mediated AgNPs toward cancerous cells, these nanoparticles have been found nontoxic to normal human cells in their therapeutic concentrations. This review provides a comprehensive insight into the mechanism of plant-mediated AgNPs synthesis, their antimicrobial and cytotoxic activities as well as their applications.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran.
| | - Fatemeh Ajalloueian
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Kemitorvet, B 202, 2800 Kgs. Lyngby, Denmark
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; Institute of Nanoscience and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
21
|
Wu P, Hu F, Wang R, Gao L, Huang T, Xin Y, He H. Colorimetric chiral recognition of D/L-phenylalanine based on triangular silver nanoplates. Amino Acids 2018; 50:1269-1278. [PMID: 29961142 DOI: 10.1007/s00726-018-2604-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
A new colorimetric analysis approach for chiral recognition of D- and L-forms of phenylalanine (phe) was developed based on triangular silver nanoplates (TAg-NPs). The TAg-NPs could be used as chiral colorimetric probes for D- and L-forms of phe. Upon addition of D-phe to TAg-NPs solution, a color change from blue to purple to pink could be observed, while no obvious color change was found on addition of L-phe. L-phe could prevent the TAg-NPs from being etched to small size particles while the protective effect of D-phe was weak. Moreover, the enantiomeric excess of D-phe could be determined using the proposed chiral assay in the percentage of L-phe from 0 to 100% with a correlation coefficient of 0.9855. The phenomenon could be monitored by bare eyes and quantified analysis by UV-Vis spectrophotometry. The developed approach had several advantages, such as simplicity, visualization, short analysis time and low cost. This study presented a fast visualization analysis method of chiral D/L-phenylalanine and may lay the foundation for the development of visualization chiral recognition of other target analytes.
Collapse
Affiliation(s)
- Pinping Wu
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Fan Hu
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Ruya Wang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Lingxuan Gao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Tao Huang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Yufu Xin
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, 211198, Jiangsu, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China. .,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
22
|
Osonga FJ, Le P, Luther D, Sakhaee L, Sadik OA. Water-based synthesis of gold and silver nanoparticles with cuboidal and spherical shapes using luteolin tetraphosphate at room temperature. ENVIRONMENTAL SCIENCE: NANO 2018; 5:917-932. [DOI: 10.1039/c8en00042e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The demand for eco-friendly synthetic methods of metal nanoparticles is on the rise.
Collapse
Affiliation(s)
- Francis J. Osonga
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- Binghamton
- USA
| | - Phuong Le
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- Binghamton
- USA
| | - David Luther
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- Binghamton
- USA
| | - Laura Sakhaee
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- Binghamton
- USA
| | - Omowunmi A. Sadik
- Department of Chemistry
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability (CREATES)
- State University of New York at Binghamton
- Binghamton
- USA
| |
Collapse
|