1
|
Nair VK, Sharma C, Kumar S, Sengupta M, Ghosh S. Probing the role of ligation and exonuclease digestion towards non-specific amplification in bioanalytical RCA assays. Analyst 2024; 149:5491-5503. [PMID: 39404091 DOI: 10.1039/d4an00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Non-specific amplification (NSA, amplification in the absence of a target analyte) in bioanalytical rolling circle amplification (RCA) assays, especially those involving pre-synthesized circular DNA (cDNA), affects its analytical sensitivity. Despite extensive development of RCA-based bioanalytical methods, the NSA in RCA remains uncharacterized in terms of its magnitude or origin. NSA may originate from inefficient ligation or succeeding cDNA purification steps. This study comprehensively quantifies NSA across several ligation and digestion techniques for the first time since the innovation of RCA. To quantify the NSA in RCA, cDNAs were prepared using self-annealing, splint-padlock, or cohesive end ligations. The cDNAs were then subjected to nine different exonuclease digestion steps and quantified for NSA under linear as well as hyperbranched RCA conditions. We investigated buffer compositions, divalent ion concentrations, single or dual enzyme digestion, cohesive end lengths, and splint lengths. The optimized conditions successfully mitigated absolute NSA by 30-100-fold and relative NSA (normalized against primer-assisted RCA) to ∼5%. Besides understanding the mechanistic origin of NSA, novel aspects of enzyme-substrate selectivity, buffer composition, and the role of divalent ions were discovered. With increasing bioanalytical RCA applications, this study will help standardize NSA-free assays.
Collapse
Affiliation(s)
- Vandana Kuttappan Nair
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Chandrika Sharma
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Shrawan Kumar
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| | - Mrittika Sengupta
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
| | - Souradyuti Ghosh
- Centre for Life Sciences, Mahindra University, Hyderabad, Telangana, India.
- Interdisciplinary Centre for Nanosensors and Nanomedicine, Mahindra University, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Yang T, Li D, Luo Z, Wang J, Xiao F, Xu Y, Lin X. Space-Confined Amplification for In Situ Imaging of Single Nucleic Acid and Single Pathogen on Biological Samples. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407055. [PMID: 39373849 PMCID: PMC11600185 DOI: 10.1002/advs.202407055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Direct in situ imaging of nucleic acids on biological samples is advantageous for rapid analysis without DNA extraction. However, traditional nucleic acid amplification in aqueous solutions tends to lose spatial information because of the high mobility of molecules. Similar to a cellular matrix, hydrogels with biomimetic 3D nanoconfined spaces can limit the free diffusion of nucleic acids, thereby allowing for ultrafast in situ enzymatic reactions. In this study, hydrogel-based in situ space-confined interfacial amplification (iSCIA) is developed for direct imaging of single nucleic acid and single pathogen on biological samples without formaldehyde fixation. With a polyethylene glycol hydrogel coating, nucleic acids on the sample are nanoconfined with restricted movement, while in situ amplification can be successfully performed. As a result, the nucleic acids are lighted-up on the large-scale surface in 20 min, with a detection limit as low as 1 copy/10 cm2. Multiplex imaging with a deep learning model is also established to automatically analyze multiple targets. Furthermore, the iSCIA imaging of pathogens on plant leaves and food is successfully used to monitor plant health and food safety. The proposed technique, a rapid and flexible system for in situ imaging, has great potential for food, environmental, and clinical applications.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Dong Li
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- The Rural Development AcademyZhejiang UniversityHangzhou310058China
| | - Zisheng Luo
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Jingjing Wang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Fangbin Xiao
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Yanqun Xu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Xingyu Lin
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Shin S, Yun HG, Chung H, Cho H, Choi S. Automation of 3D digital rolling circle amplification using a 3D-printed liquid handler. Biosens Bioelectron 2024; 261:116503. [PMID: 38905856 DOI: 10.1016/j.bios.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Automation of liquid handling is indispensable to improve throughput and reproducibility in biochemical assays. However, the incorporation of automated systems into laboratory workflows is often hindered by the high cost and complexity associated with building robotic liquid handlers. Here, we report a 3D-printed liquid handler based on a fluidic manifold, thereby obviating the need for complex robotic mechanisms. The fluidic manifold, termed a dispensing and aspirating (DA) device, comprises parallelized multi-pipette structures connected by distribution and aspiration channels, enabling the precise supply and removal of reagents, respectively. Leveraging the versatility of 3D printing, the DA device can be custom-designed and printed to fit specific applications. As a proof-of-principle, we engineered a 3D-printed liquid handler dedicated for 3D digital rolling circle amplification (4DRCA), an advanced biochemical assay involving multiple sample preparation steps such as antibody incubation, cell fixation, nucleic acid amplification, probe hybridization, and extensive washing. We demonstrate the efficacy of the 3D-printed liquid handler to automate the preparation of clinical samples for the simultaneous, in situ analysis of oncogenic protein and transcript markers in B-cell acute lymphoblastic leukemia cells using 4DRCA. This approach provides an effective and accessible solution for liquid handling automation, offering high throughput and reproducibility in biochemical assays.
Collapse
Affiliation(s)
- Suyeon Shin
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Healthcare Digital Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Liu Y, Chen J, Lin C, Ke R. Multiplexed in situ RNA imaging by combFISH. Anal Bioanal Chem 2024; 416:3765-3774. [PMID: 38775954 DOI: 10.1007/s00216-024-05327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024]
Abstract
Multiplexed in situ RNA imaging offers new opportunities for gene expression profiling by providing high-throughput spatial information. In this work, we present a cyclic combinatorial fluorescent in situ hybridization (combFISH) assay to achieve multiplexed detection of RNA in cell cultures and tissues. Specifically, multiplexing is achieved through cyclic interrogation of barcode sequences on the rolling circle amplicons generated from the padlock probe assay by using sets of combinatorial detection probes. Theoretically, combFISH can detect 64 genes in three hybridization cycles by combinatorial barcoding using 12 fluorescently labeled detection probes. Our method eliminates sequencing-by-ligation (SBL) chemistry in the in situ sequencing protocol and directly uses RNA as targets for ligation, making it more straightforward. We showed that our method works in fresh-frozen and formalin-fixed paraffin-embedded tissue sections. With its straightforward protocols, we expect our method to be adopted by the scientific community and extended to clinical settings.
Collapse
Affiliation(s)
- Yanxiu Liu
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Jiayu Chen
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China.
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, China.
- School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
5
|
Xiong E, Liu P, Deng R, Zhang K, Yang R, Li J. Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay in vitro. Natl Sci Rev 2024; 11:nwae118. [PMID: 38742234 PMCID: PMC11089818 DOI: 10.1093/nsr/nwae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
Single-nucleotide variants (SNVs) are the most common type variation of sequence alterations at a specific location in the genome, thus involving significant clinical and biological information. The assay of SNVs has engaged great awareness, because many genome-wide association studies demonstrated that SNVs are highly associated with serious human diseases. Moreover, the investigation of SNV expression levels in single cells are capable of visualizing genetic information and revealing the complexity and heterogeneity of single-nucleotide mutation-related diseases. Thus, developing SNV assay approaches in vitro, particularly in single cells, is becoming increasingly in demand. In this review, we summarized recent progress in the enzyme-free and enzyme-mediated strategies enabling SNV assay transition from sensing interface to the test tube and single cells, which will potentially delve deeper into the knowledge of SNV functions and disease associations, as well as discovering new pathways to diagnose and treat diseases based on individual genetic profiles. The leap of SNV assay achievements will motivate observation and measurement genetic variations in single cells, even within living organisms, delve into the knowledge of SNV functions and disease associations, as well as open up entirely new avenues in the diagnosis and treatment of diseases based on individual genetic profiles.
Collapse
Affiliation(s)
- Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
6
|
Li D, Huang Q, Wang K. Exonuclease III-propelled DNAzyme walker: an electrochemical strategy for microRNA diagnostics. Mikrochim Acta 2024; 191:173. [PMID: 38436735 DOI: 10.1007/s00604-024-06208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
MicroRNA detection is crucial for early infectious disease diagnosis and rapid cancer screening. However, conventional techniques like reverse transcription-quantitative polymerase chain reaction, requiring specialized training and intricate procedures, are less suitable for point-of-care analyses. To address this, we've developed a straightforward amplifier based on an exonuclease III (exo III)-propelled DNAzyme walker for sensitive and selective microRNA detection. This amplifier employs a specially designed hairpin probe with two exposed segments for strand recognition. Once the target microRNA is identified by the hairpin's extended single-strand DNA, exo III initiates its digestion, allowing microRNA regeneration and subsequent hairpin probe digestion cycles. This cyclical process produces a significant amount of DNAzyme, leading to a marked reduction in electrochemical signals. The biosensor exhibits a detection range from 10 fM to 100 pM and achieves a detection limit of 5 fM (3σ criterion). Importantly, by integrating an "And logic gate," our system gains the capacity for simultaneous diagnosis of multiple microRNAs, enhancing its applicability in RNA-based disease diagnostics.
Collapse
Affiliation(s)
- Dengke Li
- Department of Rehabilitation Medicine, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China.
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Kun Wang
- Department of Physics, New York University, New York, NY, 10003, USA
| |
Collapse
|
7
|
Shin S, Kim YJ, Yun HG, Chung H, Cho H, Choi S. 3D Amplified Single-Cell RNA and Protein Imaging Identifies Oncogenic Transcript Subtypes in B-Cell Acute Lymphoblastic Leukemia. ACS NANO 2024. [PMID: 38320154 DOI: 10.1021/acsnano.3c10421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Simultaneous in situ detection of transcript and protein markers at the single-cell level is essential for gaining a better understanding of tumor heterogeneity and for predicting and monitoring treatment responses. However, the limited accessibility to advanced 3D imaging techniques has hindered their rapid implementation. Here, we present a 3D single-cell imaging technique, termed 3D digital rolling circle amplification (4DRCA), capable of the multiplexed and amplified simultaneous digital quantification of single-cell RNAs and proteins using standard fluorescence microscopy and off-the-shelf reagents. We generated spectrally distinguishable DNA amplicons from molecular markers through an integrative protocol combining single-cell RNA and protein assays and directly enumerated the amplicons by leveraging an open-source algorithm for 3D deconvolution with a custom-built automatic gating algorithm. With 4DRCA, we were able to simultaneously quantify surface protein markers and cytokine transcripts in T-lymphocytes. We also show that 4DRCA can distinguish BCR-ABL1 fusion transcript positive B-cell acute lymphoblastic leukemia cells with or without CD19 protein expression. The accessibility and extensibility of 4DRCA render it broadly applicable to other cell-based diagnostic workflows, enabling sensitive and accurate single-cell RNA and protein profiling.
Collapse
Affiliation(s)
- Suyeon Shin
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoon-Jin Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyo Geun Yun
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Haerim Chung
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyunsoo Cho
- Division of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungyoung Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Healthcare Digital Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
8
|
Luo Y, Chen J, Liang J, Liu Y, Liu C, Liu Y, Xu T, Zhang X. Ultrasound-enhanced catalytic hairpin assembly capable of ultrasensitive microRNA biosensing for the early screening of Alzheimer's disease. Biosens Bioelectron 2023; 242:115746. [PMID: 37832346 DOI: 10.1016/j.bios.2023.115746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Catalytic hairpin assembly (CHA) is a promising enzyme-free, isothermal signal amplification strategy, but the relatively time-consuming strand replacement limits its application scenarios. Here, we developed an ultrasound-enhanced catalytic hairpin assembly (UECHA) biosensing platform for early screening of Alzheimer's disease by introducing a portable acoustic-drive platform with functionalized microspheres for effective biomarkers enrichment and fluorescence enhancement. By constructing a gradient ultrasonic field in a microcavity, the platform concentrates the functionalized microspheres in a central position, accompanied by an enhanced fluorescence signal with a specific release. In addition, the programmable frequency modulation can also modify the acoustic potential well and effectively promote non-equilibrium chemical reactions such as CHA (25 min). Compared with the conventional catalytic hairpin assembly (CHA), UECHA allows for direct and quantitative measurement of AD miRNAs down to 3.55 × 10-15 M in 1 μL samples. This visual analysis of ultra-trace biomarkers based on acoustic enrichment and promotion provides a new perspective for the rapid and highly sensitive clinical detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Yong Luo
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China; Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jingyu Chen
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Jiahui Liang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong, 518116, PR China.
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China; Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, 518060, China.
| |
Collapse
|
9
|
Yin Z, Li S, Liu X, Yuan R, Xiang Y. A metal ion-coordinated DNA probe for sensitive fluorescence detection of metallothionein via a dual nucleic acid amplification strategy. Dalton Trans 2023; 52:18473-18479. [PMID: 38014455 DOI: 10.1039/d3dt03346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sensitively monitoring metallothionein (MT), a heavy metal-binding protein with substantial cysteine content, is of significance for evaluating heavy metal poisoning in both humans and animals. Based on a new metal ion-coordinated DNA probe and the heavy metal ion binding capability of MT, as well as the substantial signal enhancement of the hybridization chain reaction (HCR) and rolling circle amplification (RCA), we demonstrate a highly sensitive fluorescence MT detection assay. MT binds the metal ions in the hairpin structured, metal ion-coordinated DNA probe to switch its hairpin structure into ssDNA, which triggers subsequent RCA reactions and HCRs to open plenty of fluorescently quenched signal hairpins to exhibit drastically amplified fluorescence recovery for assaying MT down to 0.58 nM within a dynamic range of 1-320 nM. In addition, the investigation of low contents of MT in diluted human serum by such an assay has also been verified, indicating its promising application potential for diagnosing heavy metal poisoning.
Collapse
Affiliation(s)
- Zihao Yin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Xiaoju Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
10
|
Zhang P, Li Y, Zhang D, Zhu X, Guo J, Ma C, Shi C. Real-time detection of SARS-CoV-2 in clinical samples via ultrafast ligation-dependent RNA transcription amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1915-1922. [PMID: 37000537 DOI: 10.1039/d3ay00093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
RNA has been recognized as an important biomarker of many infectious pathogens; thus, sensitive, simple and rapid detection of RNA is urgently required for the control of epidemics. Herein, we report an ultrafast ligation-dependent RNA transcription amplification assay with high sensitivity and specificity for real-time detection of SARS-CoV-2 in real clinical samples, termed splint-based cascade transcription amplification (SCAN). Target RNA is first recognized by two DNA probes, which are then ligated together by SplintR, followed by the binding of the T7 promotor and T7 RNA polymerase to the ligated probe and the start of the transcription process. By introducing a vesicular stomatitis virus (VSV) terminator in the ligated probe, large amounts of RNA transcripts are rapidly produced within 10 min, which then directly hybridize with molecular beacons (MBs) and trigger the conformational switch of the MBs to generate a fluorescence signal that can be monitored in real time. The SCAN assay, which can be completed within 30-50 min, has a limit of detection of 104 copies per mL, while exhibiting high specificity to distinguish the target pathogen from those causing similar syndromes. More importantly, the results of SCAN for SARS-CoV-2 detection in clinical samples display great agreement with the most used qRT-PCR and qRT-LAMP, indicating great potential in the diagnosis of pathogens in clinical practice.
Collapse
Affiliation(s)
- Peng Zhang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Dongmei Zhang
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, PR China
| | - Xinghao Zhu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Jinling Guo
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
11
|
Cao X, Chen F, Xue J, Zhao Y, Bai M, Zhao Y. Hierarchical DNA branch assembly-encoded fluorescent nanoladders for single-cell transcripts imaging. Nucleic Acids Res 2023; 51:e13. [PMID: 36478047 PMCID: PMC9943671 DOI: 10.1093/nar/gkac1138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Spatial visualization of single-cell transcripts is limited by signal specificity and multiplexing. Here, we report hierarchical DNA branch assembly-encoded fluorescent nanoladders, which achieve denoised and highly multiplexed signal amplification for single-molecule transcript imaging. This method first offers independent RNA-primed rolling circle amplification without nonspecific amplification based on circular DNAzyme. It then executes programmable DNA branch assembly on these amplicons to encode virtual signals for visualizing numbers of targets by FISH. In theory, more virtual signals can be encoded via the increase of detection spectral channels and repeats of the same sequences on barcode. Our method almost eliminates nonspecific amplification in fixed cells (reducing nonspecific spots of single cells from 16 to nearly zero), and achieves simultaneous quantitation of nine transcripts by using only two detection spectral channels. We demonstrate accurate RNA profiling in different cancer cells, and reveal diverse localization patterns for spatial regulation of transcripts.
Collapse
Affiliation(s)
- Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P.R. China
| |
Collapse
|
12
|
Zeng H, Zhou H, Lin J, Pang Q, Chen S, Lin S, Xue C, Shen Z. Palindrome-Embedded Hairpin Structure and Its Target-Catalyzed Padlock Cyclization for Label-Free MicroRNA-Initiated Rolling Circle Amplification. ACS OMEGA 2023; 8:2253-2261. [PMID: 36687024 PMCID: PMC9850459 DOI: 10.1021/acsomega.2c06532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Highly sensitive detection of microRNAs (miRNAs) is of great significance in early diagnosis of cancers. Here, we develop a palindrome-embedded hairpin structure and its target-catalyzed padlock cyclization for rolling circle amplification, named PHP-RCA for simplicity, which can be applied in label-free ultrasensitive detection of miRNA. PHP-RCA is a facile system that consists of only an oligonucleotide probe with a palindrome-embedded hairpin structure (PHP). The two ends of PHP were extended as overhangs and designed with the complementary sequences of the target. Hence, the phosphorylated PHP can be cyclized by T4 DNA ligase in the presence of the target that serves as the ligation template. This ligation has formed a palindrome-embedded dumbbell-shaped probe (PDP) that allows phi29 polymerase to perform a typical target-primed RCA on PDP by taking miRNA as a primer, resulting in the production of a lengthy tandem repeat. Benefits from the palindromic sequences and hairpin-shaped structure in padlock double-stranded structures can be infinitely produced during the RCA reaction and provide numerous binding sites for SYBR Green I, a double-stranded dye, achieving a sharp response signal for label-free target detection. We have demonstrated that the proposed system exhibits a good linear range from 0.1 fM to 5 nM with a low detection limit of 0.1 fM, and the non-target miRNA can be clearly distinguished. The advantages of high efficiency, label-free signaling, and the use of only one oligonucleotide component make the PHP-RCA suitable for ultrasensitive, economic, and convenient detection of target miRNAs. This simple and powerful system is expected to provide a promising platform for tumor diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Huaiwen Zeng
- Yuhuan
People’s Hospital, Taizhou Zhejiang Province, Taizhou 317600, PR China
| | - Hongyin Zhou
- Key
Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang
Provincial Key Laboratory of Medical Genetics, Department of Cell
Biology and Medical Genetics, College of Laboratory Medicine and Life
Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Junliang Lin
- Yuhuan
People’s Hospital, Taizhou Zhejiang Province, Taizhou 317600, PR China
| | - Qi Pang
- Yuhuan
People’s Hospital, Taizhou Zhejiang Province, Taizhou 317600, PR China
| | - Siqiang Chen
- Yuhuan
People’s Hospital, Taizhou Zhejiang Province, Taizhou 317600, PR China
| | - Shaoqi Lin
- Yuhuan
People’s Hospital, Taizhou Zhejiang Province, Taizhou 317600, PR China
| | - Chang Xue
- Key
Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang
Provincial Key Laboratory of Medical Genetics, Department of Cell
Biology and Medical Genetics, College of Laboratory Medicine and Life
Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zhifa Shen
- Key
Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang
Provincial Key Laboratory of Medical Genetics, Department of Cell
Biology and Medical Genetics, College of Laboratory Medicine and Life
Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
13
|
Kim D, Lee J, Han J, Lim J, Lim EK, Kim E. A highly specific and flexible detection assay using collaborated actions of DNA-processing enzymes for identifying multiple gene expression signatures in breast cancer. Analyst 2023; 148:316-327. [PMID: 36484412 DOI: 10.1039/d2an01672a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most nucleic acid biosensors employ nucleic acid-processing enzymes to bind, degrade, splice, synthesize, and modify nucleic acids. Utilizing their unique substrate preference, binding mode, and catalytic activity is of great importance in designing nucleic acid biosensors. Combination with DNA-processing enzymes enables them to transform into a new generation of molecular diagnostics tools with enhanced selectivity and sensitivity and reduced reaction time. Here, we report an isothermal amplification strategy by coemploying a structure-specific endonuclease (flap endonuclease 1, FEN1) and a strand-displacing DNA polymerase (Bst DNA polymerase) to detect long RNA targets. This approach couples the FEN1-driven invasive cleavage reaction with toehold-mediated rolling circle amplification (iFEN-tRCA), enabling the highly selective and rapid detection of long RNA targets and offering a detection limit below 10 pM within 1 h. We used two targets, such as human epidermal growth factor receptor 2 (HER2, encoded by ERBB2) and dopamine- and cyclic AMP-regulated phosphoprotein (DARPP, encoded by PPP1R1B), associated with prognosis or response to anticancer therapy. We demonstrated the feasibility and quantitative capability of the iFEN-tRCA assay by assessing the expression of two RNA transcripts (ERBB2 and PPP1R1B) with total RNA extracts purified from human breast cancer cells. Therefore, we envision that the developed assay will provide a suitable prognostic and diagnostic tool for identifying appropriate patients for HER2-targeted therapy and predicting the clinical outcome and occurrence of metastasis relapse in breast cancer.
Collapse
Affiliation(s)
- Dain Kim
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.
| | - Jiyoung Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jueun Han
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea. .,Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea.,School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunjung Kim
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
14
|
Wang Y, Cottle WT, Wang H, Gavrilov M, Zou RS, Pham MT, Yegnasubramanian S, Bailey S, Ha T. Achieving single nucleotide sensitivity in direct hybridization genome imaging. Nat Commun 2022; 13:7776. [PMID: 36522352 PMCID: PMC9755149 DOI: 10.1038/s41467-022-35476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Direct visualization of point mutations in situ can be informative for studying genetic diseases and nuclear biology. We describe a direct hybridization genome imaging method with single-nucleotide sensitivity, single guide genome oligopaint via local denaturation fluorescence in situ hybridization (sgGOLDFISH), which leverages the high cleavage specificity of eSpCas9(1.1) variant combined with a rationally designed guide RNA to load a superhelicase and reveal probe binding sites through local denaturation. The guide RNA carries an intentionally introduced mismatch so that while wild-type target DNA sequence can be efficiently cleaved, a mutant sequence with an additional mismatch (e.g., caused by a point mutation) cannot be cleaved. Because sgGOLDFISH relies on genomic DNA being cleaved by Cas9 to reveal probe binding sites, the probes will only label the wild-type sequence but not the mutant sequence. Therefore, sgGOLDFISH has the sensitivity to differentiate the wild-type and mutant sequences differing by only a single base pair. Using sgGOLDFISH, we identify base-editor-modified and unmodified progeroid fibroblasts from a heterogeneous population, validate the identification through progerin immunofluorescence, and demonstrate accurate sub-nuclear localization of point mutations.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - W Taylor Cottle
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Haobo Wang
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Momcilo Gavrilov
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Roger S Zou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minh-Tam Pham
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Scott Bailey
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Howard Hughes Medical Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
ClampFISH 2.0 enables rapid, scalable amplified RNA detection in situ. Nat Methods 2022; 19:1403-1410. [PMID: 36280724 PMCID: PMC9838136 DOI: 10.1038/s41592-022-01653-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
RNA labeling in situ has enormous potential to visualize transcripts and quantify their levels in single cells, but it remains challenging to produce high levels of signal while also enabling multiplexed detection of multiple RNA species simultaneously. Here, we describe clampFISH 2.0, a method that uses an inverted padlock design to efficiently detect many RNA species and exponentially amplify their signals at once, while also reducing the time and cost compared with the prior clampFISH method. We leverage the increased throughput afforded by multiplexed signal amplification and sequential detection to detect 10 different RNA species in more than 1 million cells. We also show that clampFISH 2.0 works in tissue sections. We expect that the advantages offered by clampFISH 2.0 will enable many applications in spatial transcriptomics.
Collapse
|
16
|
Cao G, Long K, Qiu Y, Ma Y, Qin H, Huo D, Yang M, Shen C, Hou C. Inducible positive amplification regulation coupled with the Double-strand Specific Nuclease for FzD5 mRNA assay. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Wang J, Zhang Z, Zhang R, Du H, Zhou T, Wang F. "Willow Branch" DNA Self-Assembly for Cancer Dual-Target and Proliferation Inhibition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11778-11786. [PMID: 36102591 DOI: 10.1021/acs.langmuir.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA nanotechnology is beginning to yield unique advantages in the area of drug delivery. For the dual-targeting and proliferation suppression of cancer cells, a "willow branch" DNA assembly based on rolling circle amplification (RCA) was built. Three single-stranded DNAs, including antibody modified cDNAs, aptamer cDNAs, and simple cDNAs, were employed in the DNA self-assembly, along with the RCA scaffolds (every 63 bases is a repeat unit). "Willow branch" DNA (WB DNA) assembly successfully linked multiple antibodies and aptamers together to achieve dual targeting of cancer cells. Binding of CD44 antibodies and S2.2 aptamers to receptors on the cell membrane inhibits both pathways, β-catenin signaling and nuclear factor-kappa B-specific transcription activity, through feedback regulation. Results demonstrated that WB DNA assembly could effectively exert multivalency clustering cell-surface receptors, modulating signal pathways and inhibiting proliferation. This study proposes a new approach for cancer dual-target and proliferation inhibition by clustering multivalent receptors.
Collapse
Affiliation(s)
- Jiawei Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
18
|
Teng X, Dai Y, Li J. Module Assembly Strategy for Single‐Cell Nucleic Acid Imaging at the Sub‐Molecule Level. Chemistry 2022; 28:e202104628. [DOI: 10.1002/chem.202104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Xucong Teng
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| | - Yicong Dai
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| | - Jinghong Li
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| |
Collapse
|
19
|
Wang H, He Y, Wei J, Wang H, Ma K, Zhou Y, Liu X, Zhou X, Wang F. Construction of an Autocatalytic Hybridization Assembly Circuit for Amplified In Vivo MicroRNA Imaging. Angew Chem Int Ed Engl 2022; 61:e202115489. [PMID: 35076991 DOI: 10.1002/anie.202115489] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 12/15/2022]
Abstract
Lowly expressed analyte in complex cytoplasmic milieu necessitates the development of non-enzymatic autocatalytic DNA circuits with high amplification and anti-interference performance. Herein, we engineered a versatile and robust stimuli-responsive autocatalytic hybridization assembly (AHA) circuit for high-performance in vivo bioanalysis. Under a moderately confined condition, the initiator motivated the autonomous and cooperative cross-activation of cascade hybridization reaction and catalytic DNA assembly for generating an exponentially amplified readout without the parasite steric hindrance and random diffusion side effects. The AHA circuit was systematically investigated by a series of experimental studies and theoretical simulations. The successively guaranteed target recognition and synergistically accelerated signal-amplification enabled the sensitive and selective detection of analyte, and realized the robust miRNA imaging in living cells and mice. This autocatalytic DNA circuit could substantially expand the toolbox for accurate diagnosis and programmable therapeutics.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Jie Wei
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Kang Ma
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Yangjie Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| |
Collapse
|
20
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light-Harvesting Fluorescent Spherical Nucleic Acids Self-Assembled from a DNA-Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202115812. [PMID: 35064628 DOI: 10.1002/anie.202115812] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 01/07/2023]
Abstract
The ultralow concentration of nucleic acids in complex biological samples requires fluorescence probes with high specificity and sensitivity. Herein, a new kind of spherical nucleic acids (SNAs) is developed by using fluorescent π-conjugated polymers (FCPs) as a light-harvesting antenna to enhance the signal transduction of nucleic acid detection. Specifically, amphiphilic DNA-grafted FCPs are synthesized and self-assemble into FCP-SNA structures. Tuning the hydrophobicity of the graft copolymer can adjust the size and light-harvesting capability of the FCP-SNAs. We observe that more efficient signal amplification occurs in larger FCP-SNAs, as more chromophores are involved, and the energy transfer can go beyond the Förster radius. Accordingly, the optimized FCP-SNA shows an antenna effect of up to 37-fold signal amplification and the limit of detection down to 1.7 pM in microRNA detection. Consequently, the FCP-SNA is applied to amplified in situ nucleic acid detecting and imaging at the single-cell level.
Collapse
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Nangang District, Harbin, 150001, Heilongjiang, P. R. China.,Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Hanbing Xue
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yulin Zhu
- Department of Chemistry, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Yan Zhao
- School of Life Science, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and TechnologyInstitution, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Nanshan District, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|
21
|
Chen F, Li G, Wu C, Wang L, Ko CN, Ma DL, Leung CH. Interference Reduction Biosensing Strategy for Highly Sensitive microRNA Detection. Anal Chem 2022; 94:4513-4521. [PMID: 35234447 DOI: 10.1021/acs.analchem.2c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MicroRNAs are potential biomarkers for human cancers and other diseases due to their roles as post-transcriptional regulators for gene expression. However, the detection of miRNAs by conventional methods such as RT-qPCR, in situ hybridization, northern blot-based platforms, and next-generation sequencing is complicated by short length, low abundance, high sequence homology, and susceptibility to degradation of miRNAs. In this study, we developed a nicking endonuclease-mediated interference reduction rolling circle amplification (NEM-IR-RCA) strategy for the ultrasensitive and highly specific detection of miRNA-21. This method exploits the advantages of the optical properties of long-lived iridium(III) probes, in conjunction with time-resolved emission spectroscopy (TRES) and exponential rolling circle amplification (E-RCA). Under the NEM-IR-RCA-based signal enhancement processes, the limit of detection of miRNA-21 was down to 0.0095 fM with a linear range from 0.05 to 100 fM, which is comparable with the conventional RT-qPCR. Unlike RT-qPCR, the strategy was performed at a lower and constant temperature without heating/cooling cycles and reverse transcription. The strategy could clearly discriminate between matched and mismatched targets, demonstrating high specificity. Moreover, the potential application of this method was demonstrated in cancer cells and mouse serum samples, showing good agreement with RT-qPCR results. Apart from miRNA-21 detection, this platform could be also adapted for detecting other miRNAs, such as let-7a and miRNA-22, indicating its excellent potential for biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai 519031, China
| |
Collapse
|
22
|
Wang H, He Y, Wei J, Wang H, Ma K, Zhou Y, Liu X, Zhou X, Wang F. Construction of an Autocatalytic Hybridization Assembly Circuit for Amplified
In Vivo
MicroRNA Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huimin Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University 443002 Yichang P. R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Jie Wei
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Hong Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Kang Ma
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Yangjie Zhou
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
23
|
Chen F, Li G, Wu C, Wang W, Ma DL, Leung CH. A rapid and label-free DNA-based interference reduction nucleic acid amplification strategy for viral RNA detection. Biosens Bioelectron 2022; 198:113829. [PMID: 34840016 DOI: 10.1016/j.bios.2021.113829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
Abstract
Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
24
|
Gabanella F, Barbato C, Corbi N, Fiore M, Petrella C, de Vincentiis M, Greco A, Ferraguti G, Corsi A, Ralli M, Pecorella I, Di Gioia C, Pecorini F, Brunelli R, Passananti C, Minni A, Di Certo MG. Exploring Mitochondrial Localization of SARS-CoV-2 RNA by Padlock Assay: A Pilot Study in Human Placenta. Int J Mol Sci 2022; 23:ijms23042100. [PMID: 35216211 PMCID: PMC8875563 DOI: 10.3390/ijms23042100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
The ongoing COVID-19 pandemic dictated new priorities in biomedicine research. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a single-stranded positive-sense RNA virus. In this pilot study, we optimized our padlock assay to visualize genomic and subgenomic regions using formalin-fixed paraffin-embedded placental samples obtained from a confirmed case of COVID-19. SARS-CoV-2 RNA was localized in trophoblastic cells. We also checked the presence of the virion by immunolocalization of its glycoprotein spike. In addition, we imaged mitochondria of placental villi keeping in mind that the mitochondrion has been suggested as a potential residence of the SARS-CoV-2 genome. We observed a substantial overlapping of SARS-CoV-2 RNA and mitochondria in trophoblastic cells. This intriguing linkage correlated with an aberrant mitochondrial network. Overall, to the best of our knowledge, this is the first study that provides evidence of colocalization of the SARS-CoV-2 genome and mitochondria in SARS-CoV-2 infected tissue. These findings also support the notion that SARS-CoV-2 infection can reprogram mitochondrial activity in the highly specialized maternal–fetal interface.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.G.); (C.B.); (M.F.); (C.P.)
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Christian Barbato
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.G.); (C.B.); (M.F.); (C.P.)
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.G.); (C.B.); (M.F.); (C.P.)
| | - Carla Petrella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.G.); (C.B.); (M.F.); (C.P.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (M.d.V.); (A.G.); (M.R.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (M.d.V.); (A.G.); (M.R.)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (M.d.V.); (A.G.); (M.R.)
| | - Irene Pecorella
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (I.P.); (C.D.G.)
| | - Cira Di Gioia
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (I.P.); (C.D.G.)
| | - Francesco Pecorini
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.P.); (R.B.)
| | - Roberto Brunelli
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.P.); (R.B.)
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: (C.P.); (A.M.); (M.G.D.C.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (M.d.V.); (A.G.); (M.R.)
- Correspondence: (C.P.); (A.M.); (M.G.D.C.)
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (F.G.); (C.B.); (M.F.); (C.P.)
- Correspondence: (C.P.); (A.M.); (M.G.D.C.)
| |
Collapse
|
25
|
Wang X, Tang S, Ye S, Cheng Z, Xu J, Li BW, Chen Z. Ultrasensitive quantitation of circulating miR-195-5p with triple strand displacement amplification cascade. Talanta 2022; 242:123300. [PMID: 35180536 DOI: 10.1016/j.talanta.2022.123300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/14/2023]
Abstract
Circulating miR-195-5p has been proposed as a promising peripheral biomarker for the diagnosis, prognosis and severity assessment of various diseases. However, the demand for its sensitive and convenient quantification has not been met yet. Herein, we proposed a one-pot isothermal approach, in which the target signal acquisition, amplification and conversion (fluorescence read-out) system was integrated by a triple strand displacement amplification (SDA) cascade. Using this triple SDA strategy, miR-195-5p can be at least detected at 1 aM, and the linear dynamic range (from 100 aM to 1 pM) is wide enough to meet the detection needs of clinical miRNA level. A proof-of-principle study, using this novel methodology to directly analyze the spiking serum samples with different levels of miR-195-5p, demonstrated the potential of circulating miR-195-5p detection for clinical point-of-care assay. This one-pot isothermal triple SDA approach, we believe, will be a simple and feasible tool for ultrasensitive quantification of circulating miR-195-5p, and may promote the wide application of this potential biomarker in non-invasive clinical diagnosis.
Collapse
Affiliation(s)
- Xuzhi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuzhi Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengnan Ye
- Department of Otorhinolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhou Cheng
- Breast Cancer Institute, Department of Breast Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Jianhua Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Bo-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Xiao F, Fang X, Li H, Xue H, Wei Z, Zhang W, Zhu Y, Lin L, Zhao Y, Wu C, Tian L. Light‐Harvesting Fluorescent Spherical Nucleic Acids Self‐Assembled from a DNA‐Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fan Xiao
- School of Materials Science and Engineering Harbin Institute of Technology, Nangang District Harbin 150001 Heilongjiang P. R. China
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Xiaofeng Fang
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hongyan Li
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Hanbing Xue
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Zixiang Wei
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Wenkang Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yulin Zhu
- Department of Chemistry Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Li Lin
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Yan Zhao
- School of Life Science Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and TechnologyInstitution, Nanshan District Shenzhen 518055 Guangdong P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering Southern University of Science and Technology, Nanshan District Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
27
|
Li X, Yang F, Gan C, Yuan R, Xiang Y. Sustainable and cascaded catalytic hairpin assembly for amplified sensing of microRNA biomarkers in living cells. Biosens Bioelectron 2022; 197:113809. [PMID: 34814030 DOI: 10.1016/j.bios.2021.113809] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Abstract
The sensing of intracellular microRNAs (miRNAs) is of significance for early-stage disease diagnosis and therapeutic monitoring. DNA is an interesting building material that can be programed into assemblies with rigid and branched structures, especially suitable for imaging intracellular biomolecules or therapeutic drug delivery. Here, by introducing the palindromic sequences into the programmable DNA hairpins, we describe an endogenous target-responsive three-way branched and palindrome-assisted catalytic hairpin assembly (3W-pCHA) approach for imaging miRNA-155 of living tumor cells with high sensitivity. The miRNA-155 triggers autonomous assembly of the fluorescently quenched signal hairpin and two hairpin dimers formed via hybridization of their respective palindromic sequences to yield branched DNA junctions, which carry the unopened hairpins and thus provide addressable substrates for continuous assembly formation of DNA nanostructures. During the formation of the DNA nanostructures, the miRNA-155 is cyclically reused and many signal probes are unfolded to show highly intensified fluorescence for detecting miRNA-155 down to 6.9 pM in vitro with high selectivity. More importantly, these probes can be transfected into live cancer cells to initiate the assembly process triggered by intracellular miRNA-155, which provides a new way for imaging highly under-expressed miRNAs in cells. Besides, this approach can also be employed to differentiate miRNA-155 expression variations in different cells, indicating its promising potentials for early-stage disease diagnosis and biological studies in cells.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
28
|
Christopher JA, Geladaki A, Dawson CS, Vennard OL, Lilley KS. Subcellular Transcriptomics and Proteomics: A Comparative Methods Review. Mol Cell Proteomics 2022; 21:100186. [PMID: 34922010 PMCID: PMC8864473 DOI: 10.1016/j.mcpro.2021.100186] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The internal environment of cells is molecularly crowded, which requires spatial organization via subcellular compartmentalization. These compartments harbor specific conditions for molecules to perform their biological functions, such as coordination of the cell cycle, cell survival, and growth. This compartmentalization is also not static, with molecules trafficking between these subcellular neighborhoods to carry out their functions. For example, some biomolecules are multifunctional, requiring an environment with differing conditions or interacting partners, and others traffic to export such molecules. Aberrant localization of proteins or RNA species has been linked to many pathological conditions, such as neurological, cancer, and pulmonary diseases. Differential expression studies in transcriptomics and proteomics are relatively common, but the majority have overlooked the importance of subcellular information. In addition, subcellular transcriptomics and proteomics data do not always colocate because of the biochemical processes that occur during and after translation, highlighting the complementary nature of these fields. In this review, we discuss and directly compare the current methods in spatial proteomics and transcriptomics, which include sequencing- and imaging-based strategies, to give the reader an overview of the current tools available. We also discuss current limitations of these strategies as well as future developments in the field of spatial -omics.
Collapse
Affiliation(s)
- Josie A Christopher
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Aikaterini Geladaki
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Department of Genetics, University of Cambridge, Cambridge, UK
| | - Charlotte S Dawson
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Owen L Vennard
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK; Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
29
|
Xu T, Sun Y, Yu S, Wu S, Su Y, Tian Y, Zhou Y, Zhu JJ. A fluorogenic RNA aptamer nanodevice for the low background imaging of mRNA in living cells. Chem Commun (Camb) 2022; 58:1354-1357. [PMID: 34988573 DOI: 10.1039/d1cc06582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorogenic RNA aptamer nanodevice integrating an entropy-driven RNA amplifier with near-infrared (NIR) light control was developed, affording high contrast and sensitivity for imaging low-abundance mRNA in living cells. The design principle offers a new approach for developing low-background imaging systems for live-cell studies and manipulation.
Collapse
Affiliation(s)
- Tingting Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
30
|
Zhu X, Yang H, Wang M, Wu M, Khan MR, Luo A, Deng S, Busquets R, He G, Deng R. Label-Free Detection of Transgenic Crops Using an Isothermal Amplification Reporting CRISPR/Cas12 Assay. ACS Synth Biol 2022; 11:317-324. [PMID: 34915706 DOI: 10.1021/acssynbio.1c00428] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Current tools for detecting transgenic crops, such as polymerase chain reaction (PCR), require professional equipment and complex operation. Herein, we introduce a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system to analyze transgenes by designing an isothermal amplification to serve as the amplified reporter, allowing an isothermal and label-free detection of transgenic crops. The use of Cas12a allowed direct and specific recognition of transgenes. To enhance the sensitivity of the assay, we used rolling circle amplification (RCA) to monitor the recognition of transgenes by designing the RCA primer as the cleavage substrate of Cas12a. The presence of transgenes can be detected by monitoring the G-quadruplex in RCA amplicon using a G-quadruplex binding dye, N-methyl mesoporphyrin IX (NMM). We termed the assay as isoCRISPR and showed that the assay allowed distinguishing transgenic corn cultivars ("Bt11" and "MON89034") from nontransgenic corn cultivars ("yellow", "shenyu", "xianyu", and "jingke"). The isoCRISPR assay will enrich the toolbox for transgenic crop identification and broaden the application of CRISPR/Cas in food authenticity and safety.
Collapse
Affiliation(s)
- Xiaoying Zhu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Mian Wang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Minghua Wu
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aimin Luo
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Road, Kingston Upon Thames KT1 2EE, United Kingdom
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center and Key Laboratory of Food Science and Technology of Ministry of Education of Sichuan Province, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Ma F, Li CC, Zhang CY. Nucleic acid amplification-integrated single-molecule fluorescence imaging for in vitro and in vivo biosensing. Chem Commun (Camb) 2021; 57:13415-13428. [PMID: 34796887 DOI: 10.1039/d1cc04799j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule fluorescence imaging is among the most advanced analytical technologies and has been widely adopted for biosensing due to its distinct advantages of simplicity, rapidity, high sensitivity, low sample consumption, and visualization capability. Recently, a variety of nucleic acid amplification approaches have been developed to provide a straightforward and highly efficient way for amplifying low abundance target signals. The integration of single-molecule fluorescence imaging with nucleic acid amplification has greatly facilitated the construction of various fluorescent biosensors for in vitro and in vivo detection of DNAs, RNAs, enzymes, and live cells with high sensitivity and good selectivity. Herein, we review the advances in the development of fluorescent biosensors by integrating single-molecule fluorescence imaging with nucleic acid amplification based on enzyme (e.g., DNA polymerase, RNA polymerase, exonuclease, and endonuclease)-assisted and enzyme-free (e.g., catalytic hairpin assembly, entropy-driven DNA amplification, ligation chain reaction, and hybridization chain reaction) strategies, and summarize the principles, features, and in vitro and in vivo applications of the emerging biosensors. Moreover, we discuss the remaining challenges and future directions in this area. This review may inspire the development of new signal-amplified single-molecule biosensors and promote their practical applications in fundamental and clinical research.
Collapse
Affiliation(s)
- Fei Ma
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chen-Chen Li
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China. .,Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chun-Yang Zhang
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
32
|
Hong C, Wang Q, Chen Y, Gao Y, Shang J, Weng X, Liu X, Wang F. Intelligent demethylase-driven DNAzyme sensor for highly reliable metal-ion imaging in living cells. Chem Sci 2021; 12:15339-15346. [PMID: 34976354 PMCID: PMC8635203 DOI: 10.1039/d1sc05370a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
The accurate intracellular imaging of metal ions requires an exquisite site-specific activation of metal-ion sensors, for which the pervasive epigenetic regulation strategy can serve as an ideal alternative thanks to its orthogonal control feature and endogenous cell/tissue-specific expression pattern. Herein, a simple yet versatile demethylation strategy was proposed for on-site repairing-to-activating the metal-ion-targeting DNAzyme and for achieving the accurate site-specific imaging of metal ions in live cells. This endogenous epigenetic demethylation-regulating DNAzyme system was prepared by modifying the DNAzyme with an m6A methylation group that incapacitates the DNAzyme probe, thus eliminating possible off-site signal leakage, while the cell-specific demethylase-mediated removal of methylation modification could efficiently restore the initial catalytic DNAzyme for sensing metal ions, thus allowing a high-contrast bioimaging in live cells. This epigenetic repair-to-activate DNAzyme strategy may facilitate the robust visualization of disease-specific biomarkers for in-depth exploration of their biological functions.
Collapse
Affiliation(s)
- Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
33
|
Gabanella F, Barbato C, Fiore M, Petrella C, de Vincentiis M, Greco A, Minni A, Corbi N, Passananti C, Di Certo MG. Fine-Tuning of mTOR mRNA and Nucleolin Complexes by SMN. Cells 2021; 10:3015. [PMID: 34831238 PMCID: PMC8616268 DOI: 10.3390/cells10113015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence points to the Survival Motor Neuron (SMN) protein as a key determinant of translation pathway. Besides its role in RNA processing and sorting, several works support a critical implication of SMN in ribosome biogenesis. We previously showed that SMN binds ribosomal proteins (RPs) as well as their encoding transcripts, ensuring an appropriate level of locally synthesized RPs. SMN impacts the translation machinery in both neural and non-neural cells, in agreement with the concept that SMN is an essential protein in all cell types. Here, we further assessed the relationship between SMN and translation-related factors in immortalized human fibroblasts. We focused on SMN-nucleolin interaction, keeping in mind that nucleolin is an RNA-binding protein, highly abundant within the nucleolus, that exhibits a central role in ribosomes production. Nucleolin may also affects translation network by binding the mammalian target of rapamycin (mTOR) mRNA and promoting its local synthesis. In this regard, for the first time we provided evidence that SMN protein itself associates with mTOR transcript. Collectively, we found that: (1) SMN coexists with nucleolin-mTOR mRNA complexes at subcellular level; (2) SMN deficiency impairs nucleolar compartmentalization of nucleolin, and (3) this event correlates with the nuclear retention of mTOR mRNA. These findings suggest that SMN may regulate not only structural components of translation machinery, but also their upstream regulating factors.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Christian Barbato
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Carla Petrella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| |
Collapse
|
34
|
Gao X, Teng X, Dai Y, Li J. Rolling Circle Amplification-Assisted Flow Cytometry Approach for Simultaneous Profiling of Exosomal Surface Proteins. ACS Sens 2021; 6:3611-3620. [PMID: 34632781 DOI: 10.1021/acssensors.1c01163] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exosomes that carry multiple proteins from the originating cells are known as emerging biomarkers for tumor diagnostics. However, it is still technically challenging to accurately evaluate subtle differences of exosomal membrane proteins. Here, we developed a rolling circle amplification (RCA)-assisted flow cytometry approach (FCA) to simultaneously profile surface proteins and quantify exosomes. In this work, specific anti-CD63 antibody-conjugated magnetic beads were first utilized to capture exosomes. Then, the captured exosomes were bound with DNA primers, which comprise exosomal surface protein-specific recognition aptamers. The RCA reaction generates repeat DNA sequences for fluorescent probe hybridization. Finally, a conventional flow cytometer was introduced to phenotype exosomal protein markers. Such a sensitive RCA-assisted FCA displays an excellent detection limit of 1.3 × 105 exosome/mL. The variable composition of four protein markers on different cell-derived exosomes was sensitively detected through changing the protein-recognition sequence of the DNA primer, which reveals a heterogeneous pattern. Exosomes from different cell sources could be distinguished by the abundance difference of multiple surface proteins. Furthermore, the developed RCA-assisted FCA enabled quantitative analysis of blood samples from lung cancer patients, indicating its potential for early clinical diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Xiaoyi Gao
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yicong Dai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Gao P, Wei R, Chen Y, Liu X, Zhang J, Pan W, Li N, Tang B. Multicolor Covalent Organic Framework-DNA Nanoprobe for Fluorescence Imaging of Biomarkers with Different Locations in Living Cells. Anal Chem 2021; 93:13734-13741. [PMID: 34605236 DOI: 10.1021/acs.analchem.1c03545] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precisely detecting biomarkers in living systems holds tremendous promise for disease diagnosis and monitoring. Herein, we developed a covalent organic framework (COF)-based tricolor fluorescent nanoprobe for simultaneously imaging biomarkers with different spatial locations in living cells. Briefly, a TAMRA-labeled survivin mRNA antisense nucleotide and a Cy5-labeled transmembrane glycoprotein mucin 1 (MUC1) aptamer were adsorbed on a nanoscale fluorescent COF. To enhance the interactions between COF nanoparticles (NPs) and nucleic acid molecules, a freezing method was employed for improving the nucleic acid loading density and ensuring detection performance. The fluorescence signals of dyes on DNAs were first quenched by the COF NPs. Internalization and distribution of the nanoprobes can be real-time visualized by the autofluorescence of COF NPs. In living cells, recognition between MUC1 with MUC1 aptamers causes fluorescence signal recovery of Cy5, while hybridization between survivin mRNA and its antisense DNA induces the signal recovery of TAMRA. Therefore, this COF-based multicolor nanoprobe could be employed for visualizing MUC1 on the cell membrane and survivin mRNA in the cytoplasm. Cancer cell-specific diagnostic imaging and monitoring of the process of cancer cell exosomes infecting normal cells using the nanoprobe were achieved. This work not only offers a versatile nanoprobe for bioanalysis but also provides new insights for developing novel COF-based nanoprobes.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
36
|
Ren X, Deng R, Zhang K, Sun Y, Li Y, Li J. Single‐Cell Imaging of m
6
A Modified RNA Using m
6
A‐Specific In Situ Hybridization Mediated Proximity Ligation Assay (m
6
AISH‐PLA). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojun Ren
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
- Department of Chemistry and Biology Faculty of Environment and Life Science Beijing University of Technology Beijing 100124 China
| | - Ruijie Deng
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Kaixiang Zhang
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Yupeng Sun
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Yue Li
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jinghong Li
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
37
|
Yang H, Chen J, Yang S, Zhang T, Xia X, Zhang K, Deng S, He G, Gao H, He Q, Deng R. CRISPR/Cas14a-Based Isothermal Amplification for Profiling Plant MicroRNAs. Anal Chem 2021; 93:12602-12608. [PMID: 34506121 DOI: 10.1021/acs.analchem.1c02137] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) play key roles in biological processes in plants, such as stress resistance, yet can hardly be quantified by an enzyme-involved terminal polymerization process due to their 2'-O-methyl modifications at the 3'-terminal. Herein, we proposed a CRISPR/Cas14a-based rolling circle amplification (termed Cas14R) assay, allowing reverse transcription-free and demethylation-free detection of plant miRNAs with single-nucleotide resolution. The employment of target-templated rolling circle amplification circumvents the extension of the unaccessible 2'-O-methyl group at the 3'-terminal. Particularly, the activated Cas14a confers the trans-cleavage activity for identifying target single-stranded DNA sequences without the necessity of the protospacer adjacent motif, generalizing the detection of miRNA sequences and the integration of different isothermal amplification techniques. Ultimately, the Cas14R assay has been applied to profile miR156a to evaluate the ripeness process of banana, indicating its feasibility in analyzing the roles of miRNAs in biological processes of plants.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Sen Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ting Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Guiping He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Qiang He
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
38
|
Yin J, Lin C, Jiang M, Tang X, Xie D, Chen J, Ke R. CENPL, ISG20L2, LSM4, MRPL3 are four novel hub genes and may serve as diagnostic and prognostic markers in breast cancer. Sci Rep 2021; 11:15610. [PMID: 34341433 PMCID: PMC8328991 DOI: 10.1038/s41598-021-95068-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
As a highly prevalent disease among women worldwide, breast cancer remains in urgent need of further elucidation its molecular mechanisms to improve the patient outcomes. Identifying hub genes involved in the pathogenesis and progression of breast cancer can potentially help to unveil mechanism and also provide novel diagnostic and prognostic markers. In this study, we integrated multiple bioinformatic methods and RNA in situ detection technology to identify and validate hub genes. EZH2 was recognized as a key gene by PPI network analysis. CENPL, ISG20L2, LSM4, MRPL3 were identified as four novel hub genes through the WGCNA analysis and literate search. Among these, many studies on EZH2 in breast cancer have been reported, but no studies are related to the roles of CENPL, ISG20L2, MRPL3 and LSM4 in breast cancer. These four novel hub genes were up-regulated in tumor tissues and associated with cancer progression. The receiver operating characteristic analysis and Kaplan-Meier survival analysis indicated that these four hub genes are promising candidate genes that can serve as diagnostic and prognostic biomarkers for breast cancer. Moreover, these four newly identified hub genes as aberrant molecules in the maintenance of breast cancer development, their exact functional mechanisms deserve further in-depth study.
Collapse
Affiliation(s)
- Jinbao Yin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
- Department of Pathology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Meng Jiang
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Xinbin Tang
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Danlin Xie
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Jingwen Chen
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China.
| |
Collapse
|
39
|
Hasegawa T, Hapsari D, Iwahashi H. RNase H-dependent amplification improves the accuracy of rolling circle amplification combined with loop-mediated isothermal amplification (RCA-LAMP). PeerJ 2021; 9:e11851. [PMID: 34395086 PMCID: PMC8327969 DOI: 10.7717/peerj.11851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/03/2021] [Indexed: 11/20/2022] Open
Abstract
The hybrid method upon combining rolling circle amplification and loop-mediated isothermal amplification (RCA-LAMP) was developed to quantify very small amount of different type of RNAs, such as miRNAs. RCA-LAMP can help detect short sequences through padlock probe (PLP) circularization and exhibit powerful DNA amplification. However, one of the factors that determines the detection limit of RCA-LAMP is non-specific amplification. In this study, we improved the accuracy of RCA-LAMP through applying RNase H-dependent PCR (rhPCR) technology. In this method, the non-specific amplification was suppressed by using the rh primer, which is designed through blocking the modification at the 3'end to stop DNA polymerase reaction and replacing the 6th DNA molecule from the end with RNA using RNase H2 enzyme. Traditional RCA-LAMP amplified the non-specific amplicons from linear PLP without a targeting reaction, while RCA-LAMP with rh primer and RNase H2 suppressed the non-specific amplification. Conversely, we identified the risk posed upon conducting PLP cyclization reaction using Splint R ligase in the RNA-targeting step that occurred even in the RNA-negative condition, which is another factor determining the detection limit of RCA-LAMP. Therefore, this study contributes in improving the accuracy of RNA quantification using RCA-LAMP.
Collapse
Affiliation(s)
- Takema Hasegawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu, Japan.,Current affiliation: Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Diana Hapsari
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Gifu, Japan
| | - Hitoshi Iwahashi
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| |
Collapse
|
40
|
Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection. Biosens Bioelectron 2021; 192:113507. [PMID: 34330037 DOI: 10.1016/j.bios.2021.113507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle amplification (RCA) had the prospect of assisting clinic diagnosis with advantage in in situ mRNA detection at single cell level. However, for direct mRNA detection, RCA had relatively low detection specificity and efficiency. Here, we introduced 4-(10, 15, 20-Triphenylporphyrin-5-yl)phenylamine (TPP) modified Au nanoparticle (Au-TPP) to improve the specificity of in-situ RCA. Through photothermal effect, Au-TPP acted as the specific heat source upon irradiation of 635 nm laser. The photothermal mediated RCA would be initiated only when the Au-TPP as well as the padlock anchored adjacently on the same target mRNA. Furthermore, we introduced 'C' form target-specific oligonucleotide linker probes to make generic padlock and Au-TPP for different mRNA targets, so that for a new mRNA target one does not have to redesign the padlock and the Au-TPP probe. By these strategies, we successfully developed a specific and photothermal mediated hyperbranched rolling circle amplification for direct in situ mRNA detection, suitable for both formalin-fixed paraffin-embedded (FFPE) tissue section and frozen tissue section.
Collapse
|
41
|
Ren X, Deng R, Zhang K, Sun Y, Li Y, Li J. Single-Cell Imaging of m 6 A Modified RNA Using m 6 A-Specific In Situ Hybridization Mediated Proximity Ligation Assay (m 6 AISH-PLA). Angew Chem Int Ed Engl 2021; 60:22646-22651. [PMID: 34291539 DOI: 10.1002/anie.202109118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/31/2022]
Abstract
N6 -methyladenosine (m6 A) modification-the most prevalent mammalian RNA internal modification-plays key regulatory roles in mRNA metabolism. Current approaches for m6 A modified RNA analysis limit at bulk-population level, resulting in a loss of spatiotemporal and cell-to-cell variability information. Here we proposed a m6 A-specific in situ hybridization mediated proximity ligation assay (m6 AISH-PLA) for cellular imaging of m6 A RNA, allowing to identify m6 A modification at specific location in RNAs and image m6 A RNA with single-cell and single-molecule resolution. Using m6 AISH-PLA, we investigated the m6 A level and subcellular location of HSP70 RNA103-m6 A in response to heat shock stress, and found an increased m6 A modified ratio and an increased distribution ratio in cytoplasm under heat shock. m6 AISH-PLA can serve in the study of m6 A RNA in single cells for deciphering epitranscriptomic mechanisms and assisting clinical diagnosis.
Collapse
Affiliation(s)
- Xiaojun Ren
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Kaixiang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yupeng Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yue Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal Biochem 2021; 631:114260. [PMID: 34023274 DOI: 10.1016/j.ab.2021.114260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
A comparative review of the most common isothermal methods is provided. In the last two decades, the challenge of using isothermal amplification systems as an alternate to the most extensive and long-standing nucleic acids-amplifying method-the polymerase chain reaction-has arisen. The main advantage of isothermal amplification is no requirement for expensive laboratory equipment for thermal cycling. Considerable efforts have been made to improve the current techniques of nucleic acid amplification and the development of new approaches based on the main drawbacks of each method. The most important and challenging goal was to achieve a low-cost, straightforward system that is rapid, specific, accurate, and sensitive.
Collapse
|
43
|
Chang J, Zhang Y, Li Y, Han Z, Tian F, Liu C, Feng Q, Wang Y, Sun J, Zhang L. Multilayer Ratiometric Fluorescent Nanomachines for Imaging mRNA in Live Cells. SMALL METHODS 2021; 5:e2001047. [PMID: 34927842 DOI: 10.1002/smtd.202001047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Indexed: 06/14/2023]
Abstract
Detection of mRNA expression in live cells during treatment is a challenging task, despite its importance in tumor biology and potential therapeutic leads. Here a multilayer ratiometric fluorescent nanomachine for live-cell perturbation and imaging of mRNA at single cell resolution is reported. The nanomachines fabricated by microfluidic approaches consist of fluorescent polymeric cores and multiple lipid layers, which can efficiently deliver siRNA and molecular beacons (MBs) to cytosol and then release the cargo in a sequential way. The siRNA molecules released from the outer lipid layers lead to silencing of multidrug resistance 1 (MDR1) gene, and the MBs from the middle lipid layers detect the presence of MDR1 mRNA. The fluorescent ratio of MBs to fluorescent polymeric cores positively correlates with the expression level of MDR1 mRNA in MCF-7/ADR cells during siRNA treatment. The nanomachines provide comparable results with traditional qPCR for quantifying mRNA, showing great potential for modulation and imaging of intratumoral mRNA in vitro and in vivo.
Collapse
Affiliation(s)
- Jianqiao Chang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yu Zhang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Yike Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Ziwei Han
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Fei Tian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Qiang Feng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
44
|
Chen J, Zhang Y, Chen D, Wang T, Yin W, Yang HH, Xu Y, Chen JX, Dai Z, Zou X. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells. Anal Chim Acta 2021; 1160:338463. [PMID: 33894961 DOI: 10.1016/j.aca.2021.338463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 11/27/2022]
Abstract
In situ analysis of tumor-related messenger RNAs (mRNAs) is significant in identifying cancer cells at the genetic level in the early stage. Rolling circle amplification (RCA)-based methods are primary tools for in situ mRNA assay, however, the necessary ligation reaction not only shows low ligation efficiency, but also greatly prolongs the assay time that increases the risk of cells losing and mRNAs leakage. In this work, we propose a novel toehold-mediated ligation-free RCA (TMLFRCA) on a designed structure-switchable dumbbell-shaped probe (SDP). Target mRNA can specifically activate SDP from its circular form by toehold strand displacement, thereby initiates in situ RCA for mRNA imaging with the help of a short DNA primer. For the proof-of-concept demonstration, the TK1 mRNA was sensitively detected by TMLFRCA in less than 3.5 h with a limit of detection (LOD) of 0.39 fM (corresponds to 2.39×108copiesL-1), and significantly improved specificity capable for distinguishing single base difference. The sensitivity of the TMLFRCA for TK1 mRNA in situ assay is ∼29-fold and ∼7-fold higher than that of FISH and ligase-assisted RCA method, respectively, which enables the TMLFRCA method capability of highly sensitive and specific distinction mRNA expression levels between cancer cells and normal cells. We believe this TMLFRCA strategy would be of great value in both basic research and clinical diagnosis.
Collapse
Affiliation(s)
- Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Danping Chen
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Tianchen Wang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Hui-Hui Yang
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Yuzhi Xu
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| | - Jin-Xiang Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zong Dai
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 511400, PR China.
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou, 510275, PR China
| |
Collapse
|
45
|
Rolling Circle Replication for Biosensing, Bioimaging, and Biomedicine. Trends Biotechnol 2021; 39:1160-1172. [PMID: 33715868 DOI: 10.1016/j.tibtech.2021.02.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Rolling circle replication (RCR), including rolling circle amplification (RCA) and rolling circle transcription (RCT), is an isothermal enzymatic reaction. Because of its high amplification efficiency, RCR is a powerful biosensing tool for detecting biomolecules. In recent years, RCR has also been extended to the field of bioimaging to better understand biological pathways. Furthermore, RCR provides a simple technique to design and generate DNA/RNA structures with unique advantages in delivering drugs and enhanced targeting ability. In this review, we introduce the fundamentals of RCR and describe the most recent advances in RCR-based detection methods and delivery vehicles for biosensing, bioimaging, and biomedicine. Finally, some challenges and further opportunities of RCR-based biotechnology are discussed.
Collapse
|
46
|
Luo F, Lu Y, Geng X, Li Z, Dai G, Chu Z, Zhang J, Zhang F, He P, Wang Q. Study on Defective T Junction-Mediated Strand Displacement Amplification and Its Application in Microchip Electrophoretic Detection of Longer Bacterial 16S rDNA. Anal Chem 2021; 93:3551-3558. [PMID: 33570925 DOI: 10.1021/acs.analchem.0c04991] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current strand displacement amplification (SDA)-based nucleic acid sensing methods generally rely on a ssDNA template that involves complementary bases to the endonuclease recognition sequence, which has the limitation of detecting only short nucleic acids. Herein, a new SDA method in which the defective T junction structure is first used to support SDA (dT-SDA) was proposed and applied in longer DNA detection. In dT-SDA, an auxiliary probe and a primer were designed to specifically identify the target gene, following the formation of a stable defective T junction structure through proximity hybridization, and the formation of defective T junctions could further trigger cascade SDA cycling to produce numerous ssDNA products. The quantity of these ssDNA products was detected through microchip electrophoresis (MCE) and could be transformed to the concentration of the target gene. Moreover, the applicability of this developed strategy in detecting long genomic DNA was verified by detecting bacterial 16S rDNA. This proposed dT-SDA strategy consumes less time and has satisfactory sensitivity, which has great potential for effective bacterial screening and infection diagnosis.
Collapse
Affiliation(s)
- Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Xing Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Zhi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Ge Dai
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Jingwen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
47
|
Pu J, Liu M, Li H, Liao Z, Zhao W, Wang S, Zhang Y, Yu R. One-step enzyme-free detection of the miRNA let-7a via twin-stage signal amplification. Talanta 2021; 230:122158. [PMID: 33934803 DOI: 10.1016/j.talanta.2021.122158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) play a significant role in diverse biological processes. The abnormal expression of miRNAs is related to the development of cancers and various diseases. It is of great importance to sensitively and accurately detect miRNAs for early disease diagnosis and treatment. Here, a new fluorescence strategy was initially proposed for the enzyme-free sensing of let-7a by combining the strand displacement reaction (SDR) with the hybridization chain reaction (HCR). The sensor was successfully applied to the detection of the let-7a gene with a wide linear range from 25 pM to 250 nM and a limit of detection (LOD) of 9.01 pM. The fluorescence intensity has a good linear relationship with the logarithm of the target concentration. In addition, the biosensor allowed for the highly sensitive detection of the target genes even in complex human serum samples. With simple operation yet improved detection capability for let-7a, the developed fluorescent biosensor thus shows great potential for early clinical diagnosis as well as biological research.
Collapse
Affiliation(s)
- Jiamei Pu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Mingbin Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Hongbo Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | | | - Weihua Zhao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Suqin Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Yun Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
48
|
Li H, Tang Y, Song D, Lu B, Guo L, Li B. Establishment of Dual Hairpin Ligation-Induced Isothermal Amplification for Universal, Accurate, and Flexible Nucleic Acid Detection. Anal Chem 2021; 93:3315-3323. [PMID: 33538577 DOI: 10.1021/acs.analchem.1c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isothermal amplifications have found their potentials in applications of portable nucleic acid diagnostics. However, there are still several certain deficiencies existing in the current amplification methods, including high false-positive signals, limited range of targets, difficult primer design, and so forth. Here, we report an effective solution via the development of dual hairpin ligation-induced isothermal amplification (DHLA) consisting of (1) the formation of a dual hairpin probe (DHP) based on sequence specific hybridization and ligation and (2) exponential isothermal amplification of DHP in the presence of polymerase and primers. Taking both microRNA and virus RNA as model targets, DHLA is proven to be accurate, flexible, and applicable to most deoxyribonucleic acid and ribonucleic acid targets ranging from ∼20 to hundreds of nt. The detection limit is down to the ∼aM level without a false-positive signal. More importantly, the whole detection can be directly applied to a new target via a slight change in the DHP sequence, without redesigning the primer set. This unique property not only simplifies the process for new reaction development but also enables flexible multiprobe strategies to achieve antidegradation analysis.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yidan Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Defeng Song
- Department of General Surgery, China-Japan Union Hospital of JiLin University, Changchun, Jilin 130021, P. R. China
| | - Baiyang Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Lulu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
49
|
Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F, Daugharthy ER, Bando Y, Kajita A, Xue AG, Marrett K, Prior R, Cui Y, Payne AC, Yao CC, Suk HJ, Wang R, Yu CCJ, Tillberg P, Reginato P, Pak N, Liu S, Punthambaker S, Iyer EPR, Kohman RE, Miller JA, Lein ES, Lako A, Cullen N, Rodig S, Helvie K, Abravanel DL, Wagle N, Johnson BE, Klughammer J, Slyper M, Waldman J, Jané-Valbuena J, Rozenblatt-Rosen O, Regev A, Church GM, Marblestone AH, Boyden ES. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science 2021; 371:eaax2656. [PMID: 33509999 PMCID: PMC7900882 DOI: 10.1126/science.aax2656] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Methods for highly multiplexed RNA imaging are limited in spatial resolution and thus in their ability to localize transcripts to nanoscale and subcellular compartments. We adapt expansion microscopy, which physically expands biological specimens, for long-read untargeted and targeted in situ RNA sequencing. We applied untargeted expansion sequencing (ExSeq) to the mouse brain, which yielded the readout of thousands of genes, including splice variants. Targeted ExSeq yielded nanoscale-resolution maps of RNAs throughout dendrites and spines in the neurons of the mouse hippocampus, revealing patterns across multiple cell types, layer-specific cell types across the mouse visual cortex, and the organization and position-dependent states of tumor and immune cells in a human metastatic breast cancer biopsy. Thus, ExSeq enables highly multiplexed mapping of RNAs from nanoscale to system scale.
Collapse
Affiliation(s)
- Shahar Alon
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Faculty of Engineering, Gonda Brain Research Center and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Daniel R Goodwin
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Anubhav Sinha
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Asmamaw T Wassie
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Fei Chen
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan R Daugharthy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Yosuke Bando
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Kioxia Corporation, Minato-ku, Tokyo, Japan
| | | | - Andrew G Xue
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | | | | | - Yi Cui
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Andrew C Payne
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chun-Chen Yao
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ho-Jun Suk
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Ru Wang
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chih-Chieh Jay Yu
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Paul Tillberg
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
| | - Paul Reginato
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nikita Pak
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Eswar P R Iyer
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Ana Lako
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicole Cullen
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott Rodig
- Center for Immuno-Oncology (CIO), Dana-Farber Cancer Institute, Boston, MA, USA
| | - Karla Helvie
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel L Abravanel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nikhil Wagle
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bruce E Johnson
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Michal Slyper
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | - Edward S Boyden
- Department of Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Department of Biology, MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
50
|
Pisani C, Onori A, Gabanella F, Di Certo MG, Passananti C, Corbi N. Identification of protein/mRNA network involving the PSORS1 locus gene CCHCR1 and the PSORS4 locus gene HAX1. Exp Cell Res 2021; 399:112471. [PMID: 33417922 DOI: 10.1016/j.yexcr.2021.112471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
CCHCR1 (Coiled-Coil alpha-Helical Rod 1), maps to chromosomal region 6p21.3, within the major psoriasis susceptibility locus PSORS1. CCHCR1 itself is a plausible psoriasis candidate gene, however its role in psoriasis pathogenesis remains unclear. We previously demonstrated that CCHCR1 protein acts as a cytoplasmic docking site for RNA polymerase II core subunit 3 (RPB3) in cycling cells, suggesting a role for CCHCR1 in vesicular trafficking between cellular compartments. Here, we report a novel interaction between CCHCR1 and the RNA binding protein HAX1. HAX1 maps to chromosomal region 1q21.3 within the PSORS4 locus and is over-expressed in psoriasis. Both CCHCR1 and HAX1 share subcellular co-localization with mitochondria, nuclei and cytoplasmic vesicles as P-bodies. By a series of ribonucleoprotein immunoprecipitation (RIP) assays, we isolated a pool of mRNAs complexed with HAX1 and/or CCHCR1 proteins. Among the mRNAs complexed with both CCHCR1 and HAX1 proteins, there are Vimentin mRNA, previously described to be bound by HAX1, and CAMP/LL37 mRNA, whose gene product is over-expressed in psoriasis.
Collapse
Affiliation(s)
- Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Francesca Gabanella
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy; CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Italy.
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Italy.
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|