1
|
Weng Q, Li H, Fan Z, Dong Y, Qi Y, Wang P, Luo C, Li J, Zhao X, Yu H. Enzyme-free and rapid colorimetric analysis of osteopontin via triple-helix aptamer probe coupled with catalytic hairpin assembly reaction. Anal Chim Acta 2024; 1312:342764. [PMID: 38834269 DOI: 10.1016/j.aca.2024.342764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Osteopontin (OPN) is closely associated with tumorigenesis, growth, invasion, and immune escape and it serves as a plasma biomarker for hepatocellular carcinoma (HCC). Nevertheless, the accurate and rapid detection of low-abundance OPN still poses significant challenges. Currently, the majority of protein detection methods rely heavily on large precision instruments or involve complex procedures. Therefore, developing a simple, enzyme-free, rapid colorimetric analysis method with high sensitivity is imperative. RESULTS In this study, we have developed a portable colorimetric biosensor by integrating the triple-helix aptamer probe (THAP) and catalytic hairpin assembly (CHA) strategy, named as T-CHA. After binding to the OPN, the trigger probe can be released from THAP, then initiates the CHA reaction and outputs the signal through the formation of a G-quadruplex/Hemin DNAzyme with horseradish peroxidase-like activity. Consequently, this colorimetric sensor achieves visual free-labeled detection without additional fluorophore modification and allows for accurate quantification by measuring the optical density of the solution at 650 nm. Under optimal conditions, the logarithmic values of various OPN concentrations exhibit satisfactory linearity in the range of 5 pg mL-1 to 5 ng mL-1, with a detection limit of 2.04 pg mL-1. Compared with the widely used ELISA strategy, the proposed T-CHA strategy is rapid (∼105 min), highly sensitive, and cost-effective. SIGNIFICANCE The T-CHA strategy, leveraging the low background leakage of THAP and the high catalytic efficiency of CHA, has been successfully applied to the detection of OPN in plasma, demonstrating significant promise for the early diagnosis of HCC in point-of-care testing. Given the programmability of DNA and the universality of T-CHA, it can be readily modified for analyzing other useful tumor biomarkers.
Collapse
Affiliation(s)
- Qin Weng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hang Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhichao Fan
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuchen Qi
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peilin Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Hua Yu
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Yu J, Liu Q, Qi L, Fang Q, Shang X, Zhang X, Du Y. Fluorophore and nanozyme-functionalized DNA walking: A dual-mode DNA logic biocomputing platform for microRNA sensing in clinical samples. Biosens Bioelectron 2024; 252:116137. [PMID: 38401282 DOI: 10.1016/j.bios.2024.116137] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Inspired by the programmability and modifiability of nucleic acids, point-of-care (POC) diagnostics for nucleic acid target detection is evolving to become more diversified and intelligent. In this study, we introduce a fluorescent and photothermal dual-mode logic biosensing platform that integrates catalytic hairpin assembly (CHA), toehold-mediated stand displacement reaction (SDR) and a DNA walking machine. Dual identification and signal reporting modules are incorporated into DNA circuits, orchestrated by an AND Boolean logic gate operator and magnetic beads (MBs). In the presence of bispecific microRNAs (miRNAs), the AND logic gate activates, driving the DNA walking machine, and facilitating the collection of hairpin DNA stands modified with FAM fluorescent group and CeO2@Au nanoparticles. The CeO2@Au nanoparticles, served as a nanozyme, can oxidize TMB into oxidation TMB (TMBox), enabling a near-infrared (NIR) laser-driven photothermal effect following the magnetic separation of MBs. This versatile platform was employed to differentiate between plasma samples from breast cancer patients, lung cancer patients, and healthy donors. The thermometer-readout transducers, derived from the CeO2@Au@DNA complexes, provided reliable results, further corroborated by fluorescence assays, enhancing the confidence in the diagnostics compared to singular detection method. The dual-mode logic biosensor can be easily customized to various nucleic acid biomarkers and other POC signal readout modalities by adjusting recognition sequences and modification strategies, heralding a promising future in the development of intelligent, flexible diagnostics for POC testing.
Collapse
Affiliation(s)
- Jingyuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Quanyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Lijuan Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xudong Shang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
3
|
Chen J, Wang X, Lv Y, Chen M, Tong H, Liu C. Intelligent monitoring of the available lead (Pb) and cadmium (Cd) in soil samples based on half adder and half subtractor molecular logic gates. Talanta 2024; 271:125681. [PMID: 38244307 DOI: 10.1016/j.talanta.2024.125681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
The available heavy metals in soil samples can cause the direct toxicity on ecosystems, plants, and human health. Traditional chemical extraction and recombinant bacterial methods for the available heavy metals assay often suffer from inaccuracy and poor specificity. In this work, we construct half adder and half subtractor molecular logic gates with molecular-level biocomputation capabilities for the intelligent sensing of the available lead (Pb) and cadmium (Cd). The available Pb and Cd can cleave DNAzyme sequences to release the trigger DNA, which can activate the hairpin probe assembly in the logic system. This multifunctional logic system can not only achieve the intelligent recognition of the available Pb and Cd according to the truth tables, but also can realize the simultaneous quantification with high sensitivity, with the detection limits of 2.8 pM and 25.6 pM, respectively. The logic biosensor is robust and has been applied to determination of the available Pb and Cd in soil samples with good accuracy and reliability. The relative error (Re) between the logic biosensor and the DTPA + ICP-MS method was from -8.1 % to 7.9 %. With the advantages of programmability, scalability, and multicomputing capacity, the molecular logic system can provide a simple, rapid, and smart method for intelligent monitoring of the available Pb and Cd in environmental samples.
Collapse
Affiliation(s)
- Junhua Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yiwen Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
4
|
Tajadini H, Cornelissen JJLM, Zadegan R, Ravan H. An approach for state differentiation in nucleic acid circuits: Application to diagnostic DNA computing. Anal Chim Acta 2024; 1294:342266. [PMID: 38336407 DOI: 10.1016/j.aca.2024.342266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Differentiating between different states in nucleic acid circuits is crucial for various biological applications. One approach, there is a requirement for complicated sequential summation, which can be excessive for practical purposes. By selectively labeling biologically significant states, this study tackles the issue and presents a more cost-effective and streamlined solution. The challenge is to efficiently distinguish between different states in a nucleic acid circuit. RESULTS An innovative method is introduced in this study to distinguish between states in a nucleic acid circuit, emphasizing the biologically relevant ones. The circuit comprises four DNA logic gates and two detection modules, one for determining fetal gender and the other for diagnosing X-linked genetic disorders. The primary module generates a G-quadruplex DNAzyme when activated by specific biomarkers, which leads to a distinct colorimetric signal. The secondary module responds to hemophilia and choroideremia biomarkers, generating one or two DNAzymes. The absence of female fetus indicators results in no DNAzyme or color change. The circuit can differentiate various fetal states by producing one to four active DNAzymes in response to male fetus biomarkers. A single-color solution for state differentiation is provided by this approach, which promises significant advancements in DNA computing and diagnostic applications. SIGNIFICANCE The innovative approach used in this study to distinguish states in nucleic acid circuits holds great significance. By selectively labeling biologically relevant states, circuit design is simplified and complexity is reduced. This advancement enables cost-effective and efficient diagnostic applications and contributes to DNA computing, providing a valuable solution to a fundamental problem.
Collapse
Affiliation(s)
- Hanie Tajadini
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, AE, 7500, the Netherlands
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, USA
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, AE, 7500, the Netherlands.
| |
Collapse
|
5
|
Duan C, Yao Y, Cheng W, Chen Y, Jiao J, Xiang Y. Split aptazyme-based signal amplification for AβO analysis. Talanta 2023; 268:125351. [PMID: 39491950 DOI: 10.1016/j.talanta.2023.125351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Aptazyme is a chimera of functional nucleic acids, which integrates recognition and amplification elements to simplify the assay process and improve sensing efficiency. However, its application may be limited by signal leakage. In this work, we innovatively integrate the AβO aptamer and an MNAzyme (multicomponent nucleic acid enzyme) for highly efficient detection of AβO. The aptamer and half of the MNAzyme are positioned at one strand, and the other half of the MNAzyme is integrated with a toehold sequence. These two sequences cannot hybridize to activate the MNAzyme until the target is added. The background signal is significantly reduced by the split format and the secondary structure of DNA probes formed in the absence of the target. The proposed aptazyme can not only achieve amplification through enzymatic catalysis but also greatly improve the efficiency of signal transduction and output. We systematically investigated the influence of different DNA probes on the detection performance, and the optimized aptazyme can detect as low as 26.5 pM targets in 1h. The stability of this method was also investigated by detection targets in real biological samples.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yanheng Yao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Jin Jiao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
6
|
Yang X, Yuan L, Xu Y, He B. Target-catalyzed self-assembled spherical G-quadruplex/hemin DNAzymes for highly sensitive colorimetric detection of microRNA in serum. Anal Chim Acta 2023; 1247:340879. [PMID: 36781247 DOI: 10.1016/j.aca.2023.340879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The accurate and visual detection of circulating microRNA (miRNA) has attracted increasing interest due to its pivotal role in clinical disease diagnosis. Taking advantages of nucleic acid isothermal amplification and enzyme-catalyzed chromogenic reaction, here, a colorimetric sensing strategy was proposed for sensitive miRNA analysis. When the target miRNA was present, local catalytic hairpin assembly (CHA) would be triggered and proceed continuously to form dozens of double-stranded oligonucleotides with G-rich sticky ends on the gold nanoparticle, which could self-assemble into a spherical G-quadruplex (GQ)/hemin DNAzyme by binding with hemin and potassium ions. As a horseradish peroxidase-mimic, GQ/hemin DNAzyme could catalyze the redox reaction and color change of the substrates. Taking miRNA-21 as an example, the developed method exhibited satisfactory specificity as well as high sensitivity with a detection limit of 90.3 fM. Furthermore, the sensing platform has been successfully employed to detect miRNA-21 in spiked serum, providing a promising tool for early diagnosis of cancers.
Collapse
Affiliation(s)
- Xuejiao Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| | - Liquan Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
7
|
Shi L, Tang Q, Yang B, Liu W, Li B, Yang C, Jin Y. Logic-Gates of Gas Pressure for Portable, Intelligent and Multiple Analysis of Metal Ions. Anal Chem 2023; 95:5702-5709. [PMID: 36939344 DOI: 10.1021/acs.analchem.2c05677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
DNA logic gates have shown outstanding magic in intelligent biology applications, but it remains challenging to construct a portable, affordable and convenient DNA logic gate. Herein, logic gates of gas pressure were innovatively developed for multiplex analysis of metal ions. Hg2+ and Ag+ were input to interact specifically with the respective mismatched base pairs, which activated DNA extension reaction by polymerase and led to the enrichment of platinum nanoparticles for catalyzing the decomposition of peroxide hydrogen. Thus, the gas pressure obtained from a sealed well was used as output for detecting or identifying metal ions. Hg2+ and Ag+ were sensitively and selectively detected, and the assay of the real samples was also satisfactory. Based on this, DNA logic gates, including YES, NOT, AND, OR, NAND, NOR, INHIBIT, and XOR were successfully established using a portable and hand-held gas pressure meter as detector. So, the interactions between DNA and metal ions were intelligently transferred into the output of gas pressure, which made metal ions to be detected portably and identified intelligently. Given the remarkable merits of simplicity, logic operation, and portable output, the metal ion-driven DNA logic gate of gas pressure provides a promising way for intelligent and portable biosensing.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
8
|
Liu LS, Leung HM, Morville C, Chu HC, Tee JY, Specht A, Bolze F, Lo PK. Wavelength-Dependent, Orthogonal Photoregulation of DNA Liberation for Logic Operations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1944-1957. [PMID: 36573551 DOI: 10.1021/acsami.2c20757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, we synthesized two phosphoramidites based on 2,7-bis-{4-nitro-8-[3-(2-propyl)-styryl]}-9,9-bis-[1-(3,6-dioxaheptyl)]-fluorene (BNSF) and 4,4'-bis-{8-[4-nitro-3-(2-propyl)-styryl]}-3,3'-di-methoxybiphenyl (BNSMB) structures as visible light-cleavable linkers for oligonucleotide conjugation. In addition to the commercial ultraviolet (UV) photocleavable (PC) linker, the BNSMB linker was further applied as a building component to construct photoregulated DNA devices as duplex structures, which are functionalized with fluorophores and quenchers. Selective cleavage of PC and BNSMB is achieved in response to ultraviolet (UV) and visible light irradiations as two inputs, respectively. This leads to controllable dissociation of pieces of DNA fragments, which is followed by changes of fluorescence emission as signal outputs of the system. By tuning the number and position of the photocleavable molecules, fluorophores, and quenchers, various DNA devices were developed, which mimic the functions of Boolean logic gates and achieve logic operations in AND, OR, NOR, and NAND gates in response to two different wavelengths of light inputs. By sequence design, the photolysis products can be precisely programmed in DNA devices and triggered to release in a selective and/or sequential manner. Thus, this photoregulated DNA device shows potential as a wavelength-dependent drug delivery system for selective control over the release of multiple individual therapeutic oligonucleotide-based drugs. We believe that our work not only enriches the library of photocleavable phosphoramidites available for bioconjugation but also paves the way for developing spatiotemporal-controlled, orthogonal-regulated DNA-based logic devices for a range of applications in materials science, polymers, chemistry, and biology.
Collapse
Affiliation(s)
- Ling Sum Liu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Hoi Man Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Clément Morville
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jing Yi Tee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Alexandre Specht
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Frédéric Bolze
- Conception et Applications des Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, Illkirch 67401, France
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Wang B, Wang M, Peng F, Fu X, Wen M, Shi Y, Chen M, Ke G, Zhang XB. Construction and Application of DNAzyme-based Nanodevices. Chem Res Chin Univ 2023; 39:42-60. [PMID: 36687211 PMCID: PMC9841151 DOI: 10.1007/s40242-023-2334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Menghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaoyi Fu
- Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, 310022 P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Yuyan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
10
|
Xi S, Wang L, Cheng M, Hu M, Liu R, Dong Y. Developing a DNA logic gate nanosensing platform for the detection of acetamiprid. RSC Adv 2022; 12:27421-27430. [PMID: 36276016 PMCID: PMC9513691 DOI: 10.1039/d2ra04794b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
This paper reports a novel fluorescence and colorimetric dual-signal-output DNA aptamer based sensor for the detection of acetamiprid residue. Acetamiprid is a new systemic broad-spectrum insecticide with high insecticidal efficiency that is widely used worldwide, but there is a risk of adverse neurological reactions in humans and animals. The dual-mode output principle designed in this paper, consisting of a fluorescence signal and colorimetric signal, is based on the relevant reaction of the special domain of a G-quadruplex, bidding farewell to a classical single-signal output, with a target-recognition cycle used to complete signal amplification through a hybridization chain reaction. Upgraded detection sensitivity and the qualitative and semi-quantitative detection of acetamiprid are achieved based on the fluorescence signal output and visual discrimination observations during colorimetric experiments. This model was applied to the determination of acetamiprid residue in fruits and vegetables. The dual-detection platform further reduced systematic error, with a detection limit of 27.7 pM. When applied in a comparative detection study using three different pesticides, the system shows excellent discrimination specificity and it performs well in actual sample detection and has a fast response time. Designing DNA logic gates that operate in the presence of targets and molecular-switch-based detection platforms also involves the intersection of biology and computational modeling, providing new ideas for biological platforms.
Collapse
Affiliation(s)
- Sunfan Xi
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Luhui Wang
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Meng Cheng
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| | - Mengyang Hu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Rong Liu
- Department of Computer Science, Shaanxi Normal University Xi'an 710119 China
| | - Yafei Dong
- Department of Life Science, Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
11
|
Wang A, Fan G, Qi H, Li H, Pang C, Zhu Z, Ji S, Liang H, Jiang BP, Shen XC. H 2O 2-activated in situ polymerization of aniline derivative in hydrogel for real-time monitoring and inhibition of wound bacterial infection. Biomaterials 2022; 289:121798. [PMID: 36108582 DOI: 10.1016/j.biomaterials.2022.121798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
Wound is highly susceptible to bacterial infection, which can cause chronic wound and serial complications. However, timely treatment is hampered by the lack of real-time monitoring of wound status and effective therapeutic systems. Herein, in situ biosynthesis of functional conjugated polymer in artificial hydrogel was developed via the utilization of biological microenvironment to realize monitoring in real time of wound infection and inhibition of bacteria for the first time. Specially, an easily polymerizable aniline dimer derivative (N-(3-sulfopropyl) p-aminodiphenylamine, SPA) was artfully in situ polymerized into polySPA (PSPA) in calcium alginate hydrogel, which was initiated via the catalysis of hydrogen peroxide (H2O2) overexpressed in infected wound to produce hydroxyl radical (•OH) by preloaded horseradish peroxidase (HRP). Benefitting from outstanding near infrared (NIR) absorption of PSPA, such polymerization can be ingeniously used for real-time monitoring of H2O2 via naked-eye and photoacoustic signal, as well as NIR light-mediated photothermal inhibition of bacteria. Furthermore, combining the persistent chemodynamic activity of •OH, the in vivo experimental data proved that the wound healing rate was 99.03% on the 11th day after treatment. Therefore, the present work opens the way to manipulate in situ biosynthesis of functional conjugated polymer in artificial hydrogels for overcoming the issues on wound theranostics.
Collapse
Affiliation(s)
- Aihui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Guishi Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hongli Qi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hongyan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Congcong Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Zhongkai Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
12
|
Ye S, Ma L, Zhang J, Li R, Cheng H. Amplified Drug Delivery System with a Pair of Master Keys Triggering Precise Drug Release for Chemo-Photothermal Therapy. Anal Chem 2022; 94:11538-11548. [PMID: 35960864 DOI: 10.1021/acs.analchem.2c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A versatile drug delivery system (DDS) enabling highly effective and targeting oncotherapy has always been of great significance in medical research. In the development of a stimuli-responsive DDS, compared with a single-factor stimulation DDS, a multifactor activation DDS has higher therapeutic specificity between diseased and normal tissue, but there are challenges in drug-release efficiency and united targeting cancer therapy. Herein, a novel dual-microRNA (dual-miRNA)-mediated 1:N-amplified DDS is fabricated. The gold nanocage (AuNC) was synthesized and used as a carrier. A DNA bridge motif as a nanolock (DNA bridge nanolock) was designed and modified on the surface of AuNCs, which could seal the holes of AuNCs. Using the dual-miRNAs as a pair of master keys, through DNA strand migration and DNAzyme self-assembly, a cell endogenous substance Mg2+-dependent DNAzyme cyclic shear reaction could perform the function of the master keys to open multiple locks for the enhanced release of doxorubicin from the AuNCs. In addition, under near-infrared irradiation, via absorption of light and heat release, the AuNC is activated to perform the function of photothermal therapy. Thereby, the system achieves precise chemo-photothermal therapy. Using the in vitro and in vivo anti-tumor analysis, the DDS could be proved to present a novel design of enhanced and targeted drug-release system for highly effective cancer therapy.
Collapse
Affiliation(s)
- Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Longfei Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jihua Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Ronghua Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huanong Cheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
13
|
Song X, Yang C, Yuan R, Xiang Y. Electrochemical label-free biomolecular logic gates regulated by distinct inputs. Biosens Bioelectron 2022; 202:114000. [DOI: 10.1016/j.bios.2022.114000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
|
14
|
Liu X, Zhang Q, Zhang X, Liu Y, Yao Y, Kasabov N. Construction of Multiple Logic Circuits Based on Allosteric DNAzymes. Biomolecules 2022; 12:biom12040495. [PMID: 35454084 PMCID: PMC9032175 DOI: 10.3390/biom12040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
In DNA computing, the implementation of complex and stable logic operations in a universal system is a critical challenge. It is necessary to develop a system with complex logic functions based on a simple mechanism. Here, the strategy to control the secondary structure of assembled DNAzymes’ conserved domain is adopted to regulate the activity of DNAzymes and avoid the generation of four-way junctions, and makes it possible to implement basic logic gates and their cascade circuits in the same system. In addition, the purpose of threshold control achieved by the allosteric secondary structure implements a three-input DNA voter with one-vote veto function. The scalability of the system can be remarkably improved by adjusting the threshold to implement a DNA voter with 2n + 1 inputs. The proposed strategy provides a feasible idea for constructing more complex DNA circuits and a highly integrated computing system.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China; (X.L.); (X.Z.); (Y.L.); (Y.Y.)
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China; (X.L.); (X.Z.); (Y.L.); (Y.Y.)
- Correspondence: ; Tel.: +86-0411-84708470
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China; (X.L.); (X.Z.); (Y.L.); (Y.Y.)
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China; (X.L.); (X.Z.); (Y.L.); (Y.Y.)
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China; (X.L.); (X.Z.); (Y.L.); (Y.Y.)
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand;
- Intelligent Systems Research Center, Ulster University, Londonderry BT52 1SA, UK
| |
Collapse
|
15
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022; 61:e202115561. [PMID: 34989066 DOI: 10.1002/anie.202115561] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 02/04/2023]
Abstract
Sensitive sensing is critical when developing new calculation systems with weak input signals (ISs). In this work, a "weak-inputs-strong-outputs" strategy was proposed to guide the construction of sensitive logic nanodevices by coupling an input-induced reversible DNA computing platform with a hybridization chain reaction-based signal amplifier. By rational design of the sequence of computing elements (CEs) so as to avoid cross-talking between ISs and signal amplifier, the newly formed logic nanodevices have good sensitivity to the weak ISs even at low concentrations of CEs, and are able to perform YES, OR, NAND, NOR, INHIBIT, INHIBIT-OR and number classifier operation, showing that the DNA calculation proceeds in dilute solution medium that greatly improves the calculation proficiency of logic nanodevices without the confinement of the lithography process in nanotechnology.
Collapse
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
16
|
Lv WY, Li CH, Yang FF, Li YF, Zhen SJ, Huang CZ. Sensitive Logic Nanodevices with Strong Response for Weak Inputs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen Yi Lv
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Chun Hong Li
- Southwest University College of Pharmaceutical Sciences CHINA
| | - Fei Fan Yang
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Yuan Fang Li
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Shu Jun Zhen
- Southwest University College of Chemistry and Chemical Engineering Tiansheng Road, BeiBei 400715 Chongqing CHINA
| | - Cheng Zhi Huang
- Southwest University College of Pharmaceutical Sciences CHINA
| |
Collapse
|
17
|
Chen J, Shi G, Yan C. Visual Test Paper for on-Site Polychlorinated Biphenyls Detection and Its Logic Gate Applications. Anal Chem 2021; 93:15438-15444. [PMID: 34763426 DOI: 10.1021/acs.analchem.1c03309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visual detection method was proposed for polychlorinated biphenyls (PCBs) detection using lateral flow test paper as the sensing platform. The aptamer sequence was used to recognize the target 3,3',4,4'-tetrachlorobiphenyl (PCB77). The integration of Zn2+-dependent DNAzyme with toehold-mediated strand displacement reaction significantly improved the response signals. Gold nanoparticles were utilized as the signal tracers in the test paper, making the results visible directly by the naked eye. Under optimal conditions, the paper enables the visual detection of PCB77 as low as 10 pM without additional instrumentation. The assay displays a high selectivity for PCB77 against potential interfering molecules. The visual test paper is robust and has been applied to the detection of PCB77 in milk samples with good recovery and satisfactory accuracy. Using two different PCBs (PCB77 and PCB72) as inputs, we further fabricated OR and AND logic gates, which is conducive to the development of an intelligent detection strategy for PCBs monitoring. Given the attractive characteristics of disposability, low cost, logic operation, and intuitive output, the test paper shows great promise for on-site screening of PCBs in resource-limited areas.
Collapse
Affiliation(s)
- Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
18
|
Sun Y, Fang L, Zhang Z, Yi Y, Liu S, Chen Q, Zhang J, Zhang C, He L, Zhang K. A Multitargeted Electrochemiluminescent Biosensor Coupling DNAzyme with Cascading Amplification for Analyzing Myocardial miRNAs. Anal Chem 2021; 93:7516-7522. [DOI: 10.1021/acs.analchem.1c01051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - La Fang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Zhe Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Yang Yi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Shengjun Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Cheng Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Lifang He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma’anshan, Anhui 243032, P. R. China
| |
Collapse
|
19
|
Yang H, Wang C, Xu E, Wei W, Liu Y, Liu S. Dual-Mode FEN1 Activity Detection Based on Nt.BstNBI-Induced Tandem Signal Amplification. Anal Chem 2021; 93:6567-6572. [PMID: 33847477 DOI: 10.1021/acs.analchem.1c00829] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that cleaves the 5' single-stranded protrusion (also known as 5' flap) during Okazaki fragment processing. It is overexpressed in various types of human cancer cells and has been considered as an important biomarker for cancer diagnosis. However, conventional methods for FEN1 assay usually suffer from complicated platform and laborious procedures with a limited sensitivity. Here, we developed a dual-signal method for sensitive detection of FEN1 on the basis of duplex-specific nuclease actuated cyclic enzymatic repairing-mediated signal amplification. Once the 5' flap of the double-flap DNA substrate was cleaved by target FEN1, the cleaved 5' flap initiated strand-displacement amplification to produce plenty of G-rich DNA (G) sequences. These G sequences that self-assembled into G-quadruplexes in the presence of hemin revealed horseradish-peroxidase-like catalytic activities as well as fluorescence enhancement of thioflavin T. The UV-vis signal showed a good linear relationship with the logarithm of FEN1 activity ranging from 0.03 to 1.5 U with a detection limit of 0.01 U. The fluorescence signal correlated linearly with the logarithm of FEN1 activity ranging from 0.001 to 1.5 U with a detection limit of 0.75 mU. In addition, FEN1 can be visualized not only by colorimetry but also by fluorescence (under ice-water mixture conditions). This reliable, accurate, and convenient method would be a potential powerful tool in point-of-care testing applications and therapeutic response assessment.
Collapse
Affiliation(s)
- Haitang Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ensheng Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
20
|
Bollella P, Kadambar VK, Melman A, Katz E. Reconfigurable Implication and Inhibition Boolean logic gates based on NAD
+
‐dependent enzymes: Application to signal‐controlled biofuel cells and molecule release. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” 70125 Bari Italy
| | | | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| |
Collapse
|
21
|
Shi G, Yan C, Chen J. Scalable Logic Circuits with Multiple Outputs and an Automatic Reset Function Based on DNAzyme-Mediated Branch Migration. Anal Chem 2021; 93:3273-3279. [PMID: 33528992 DOI: 10.1021/acs.analchem.0c05173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A scalable logic platform made up of multilayer DNA circuits was constructed using Pb2+, Cu2+, and Zn2+ as the three inputs and three different fluorescent signals as the outputs. DNAzyme-guided cyclic cleavage reactions and DNA toehold-mediated strand branch migration were utilized to organize and connect nucleic acid probes for building the high-level logic architecture. The sequence communications between each circuit enable the logic network to work as a keypad lock, which is an information protection model at the molecular level. The multi-output mode was used to monitor the gradual unlocking process of the security system, from which one can determine which password is correct or not immediately. The autocatalytic cleavage of DNAzyme makes the biocomputing circuit feasible to realize the reset function automatically without external stimuli. Importantly, the logic platform is robust and can work effectively even in complex environmental samples.
Collapse
Affiliation(s)
- Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
22
|
Pan J, He Y, Liu Z, Chen J. Dual recognition element-controlled logic DNA circuit for COVID-19 detection based on exonuclease III and DNAzyme. Chem Commun (Camb) 2021; 57:1125-1128. [PMID: 33410447 DOI: 10.1039/d0cc06799g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two fragments of the COVID-19 genome (specific and homologous) were used as two inputs to construct an AND logic gate for COVID-19 detection based on exonuclease III and DNAzyme. The detection sensitivity of the assay can reach fM levels. Satisfactory recovery values were obtained in real sample analysis.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
23
|
Pan J, Liu Z, Chen J. An amplifying DNA circuit coupled with Mg 2+-dependent DNAzyme for bisphenol A detection in milk samples. Food Chem 2021; 346:128975. [PMID: 33429296 DOI: 10.1016/j.foodchem.2020.128975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
As bisphenol A (BPA) is harmful to human health, it is of great significance to develop a new method for BPA detection. Herein, we designed a BPA biosensor by integrating an amplifying DNA circuit with Mg2+-dependent DNAzyme into the sensing system. The BPA-aptamer binding activated a DNA circuit for signal amplification based on toehold-mediated strand displacement. A catalytic Mg2+-dependent DNAzyme was formed through synergistically DNA hybridization, which can cleave the dual-labeled substrate DNA into two segments. The separation of the fluorophore and quencher produces a high fluorescence response for BPA detection. This biosensor exhibited a superior sensitivity with a detection limit of 50 fM. The method is selective and robust, which can work even in milk samples with satisfactory accuracy. The biosensor analytical results were also verified by liquid chromatography coupled with mass spectrometry (LC-MS) and no obvious difference existed between the two methods.
Collapse
Affiliation(s)
- Jiafeng Pan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
24
|
Molden TA, Grillo MC, Kolpashchikov DM. Manufacturing Reusable NAND Logic Gates and Their Initial Circuits for DNA Nanoprocessors. Chemistry 2020; 27:2421-2426. [DOI: 10.1002/chem.202003959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Tatiana A. Molden
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| | - Marcella C. Grillo
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| | - Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| |
Collapse
|
25
|
Bollella P, Guo Z, Edwardraja S, Krishna Kadambar V, Alexandrov K, Melman A, Katz E. Self-powered molecule release systems activated with chemical signals processed through reconfigurable Implication or Inhibition Boolean logic gates. Bioelectrochemistry 2020; 138:107735. [PMID: 33482577 DOI: 10.1016/j.bioelechem.2020.107735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
The Implication (IMPLY) and Inhibition (INHIB) Boolean logic gates were realized using switchable chimeric pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH-Clamp) containing a fused affinity clamp unit recognizing a signal-peptide. The second component of the logic gate was the wild-type PQQ-glucose dehydrogenase working cooperatively with the PQQ-GDH-Clamp enzyme. The IMPLY and INHIB gates were realized using the same enzyme composition activated with differently defined input signals, thus representing reconfigurable logic systems. The logic gates were first tested while operating in a solution with optical analysis of the output signals. Then, the enzymes were immobilized on a buckypaper electrode for electrochemical transduction of the output signals. The switchable modified electrodes mimicking the IMPLY or INHIB logic gates were integrated with an oxygen-reducing electrode modified with bilirubin oxidase to operate as a biofuel cell activated/inhibited by various input signal combinations processed either by IMPLY or INHIB logic gates. The switchable biofuel cell was used as a self-powered device triggering molecule release function controlled by the logically processed molecule signals.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4001, QLD, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Vasantha Krishna Kadambar
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane 4001, QLD, Australia.
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Fangfei Yin
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
- University of Chinese Academy of Sciences Beijing China
| | - Fei Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai China
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai China
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
27
|
Kaniewska K, Bollella P, Katz E. Implication and Inhibition Boolean Logic Gates Mimicked with Enzyme Reactions. Chemphyschem 2020; 21:2150-2154. [DOI: 10.1002/cphc.202000653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Klaudia Kaniewska
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
- Faculty of Chemistry Biological and Chemical Research Center University of Warsaw 101 Żwirki i Wigury Av. 02-089 Warsaw Poland
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| |
Collapse
|
28
|
Methylated Eu(III) metal-organic framework as a fluorescent probe for constructing molecular logic gates and monitoring of F−, I−, and S2−. Mikrochim Acta 2020; 187:434. [DOI: 10.1007/s00604-020-04417-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
|
29
|
|
30
|
Sun X, Zheng X, Zhao S, Liu Y, Wang B. DNA circuits driven by conformational changes in DNAzyme recognition arms. RSC Adv 2020; 10:7956-7966. [PMID: 35492184 PMCID: PMC9049901 DOI: 10.1039/d0ra00115e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
DNA computing plays an important role in nanotechnology due to the unique programmability and parallelism of DNA molecules. As an important tool to realize DNA computation, various logic computing devices have great application potential. The application of DNAzyme makes the achievements in the field of logical computing more diverse. In order to improve the efficiency of the logical units run by DNAzyme, we proposed a strategy to regulate the DNA circuit by the conformational change of the E6-type DNAzyme recognition arms driven by Mg2+. This strategy changes the single mode of DNAzyme signal transmission, extends the functions of E6-type DNAzyme, and saves the time of signal transmission in the molecular scale. To verify the feasibility of this strategy, first, we constructed DNA logic gates (YES, OR, and AND). Second, we cascade different logic gates (YES-YES, YES-AND) to prove the scalability. Finally, a self-catalytic DNA circuit is established. Through the experimental results, we verified that this DNAzyme regulation strategy relatively reduces the cost of logic circuits to some extent and significantly increases the reaction rate, and can also be used to indicate the range of Mg2+ concentrations. This research strategy provides new thinking for logical computing and explores new directions for detection and biosensors.
Collapse
Affiliation(s)
- Xinyi Sun
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University Shenyang 110136 China
| | - Sue Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Yuan Liu
- School of Computer Scicence and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| |
Collapse
|
31
|
Zhou C, Geng H, Wang P, Guo C. Ten-Input Cube Root Logic Computation with Rational Designed DNA Nanoswitches Coupled with DNA Strand Displacement Process. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2601-2606. [PMID: 31867943 DOI: 10.1021/acsami.9b15180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The predictability of Watson-Crick base-pairing provides a unique structural programmability to DNAs, promoting a facile design of bimolecular reactions that perform computation. However, most of the current architectures could only implement limited logical circuits and are incapable of handling more complex mathematical operations, thus limiting computing devices from advancing to the next-stage functional complexity. Here, by designing a multifunctional DNA-based reaction platform coupled with multiple fluorescent substrates as output reporters, we construct, for the first time, a logic circuit that can compute the cube root of a 10-bit binary number (within the decimal number 1000). This relatively large-scale logic system with 10 inputs and four outputs showcases the power of DNAs in the field of biological computing and will potentially open up a new horizon for designing novel functional devices and complex computing circuits and bringing breakthroughs in biocomputing.
Collapse
Affiliation(s)
- Chunyang Zhou
- The Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun , Jilin 130033 , China
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Hongmei Geng
- The Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun , Jilin 130033 , China
| | - Pengfei Wang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai 200127 , China
| | - Chunlei Guo
- The Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun , Jilin 130033 , China
- The Institute of Optics , University of Rochester , Rochester , New York 14627 , United States
| |
Collapse
|
32
|
Shi L, Sun Y, Mi L, Li T. Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection. ACS Sens 2019; 4:3219-3226. [PMID: 31763826 DOI: 10.1021/acssensors.9b01655] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Portable chemiluminescence (CL) imaging with a smartphone has shown a great promise for point-of-care testing of diseases, especially for acute myocardial infarction (AMI), which may occur abruptly. A challenge remains how to improve the imaging sensitivity that usually is several orders of magnitude lower than those of counterpart methodologies using the sophisticated equipment. Toward this goal, here, we report the target-triggered in situ growth of AuNP@hairpin-DNA nanoprobes into spherical nucleic acid enzymes (SNAzymes), which serve as both nanolabels and amplifiers for portable CL imaging of microRNAs (miRNAs) with an ultrahigh sensitivity comparable to that of the instrumental measurement under same conditions. A G-quadruplex (G4) DNA dense layer is dynamically produced on the gold nanocore via a DNAzyme machine-driven hairpin cleaving and captures the cofactor hemin to form the SNAzymes with higher peroxidase activity and stronger nuclease resistance than the commonly used G4 DNAzymes. The matured SNAzymes are then utilized as catalytic labels in a luminol-artesunate CL system for miRNA imaging with a smartphone as the portable detector. In this way, two AMI-related miRNAs, miRNA-499 and miRNA-133a, are successfully detected in real patients' serum with a naked eye-visualized CL change at 10 fM, showing a 5 order of magnitude improvement on the sensitivity of visualizing the same disease markers in clinical circulating blood as compared to the reported strategy. In addition, a good selectivity of our developed CL imaging platform is demonstrated. These unique features make it promising to employ this portable imaging platform for clinical AMI diagnosis.
Collapse
Affiliation(s)
- Lin Shi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Yudie Sun
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Lan Mi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Wu J, Zeng L, Li N, Liu C, Chen J. A wash-free and label-free colorimetric biosensor for naked-eye detection of aflatoxin B1 using G-quadruplex as the signal reporter. Food Chem 2019; 298:125034. [DOI: 10.1016/j.foodchem.2019.125034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022]
|
34
|
G-triplex/hemin DNAzyme: An ideal signal generator for isothermal exponential amplification reaction-based biosensing platform. Anal Chim Acta 2019; 1079:139-145. [DOI: 10.1016/j.aca.2019.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/11/2019] [Accepted: 06/01/2019] [Indexed: 12/22/2022]
|
35
|
Pan J, Zeng L, Chen J. An enzyme-free DNA circuit for the amplified detection of Cd 2+ based on hairpin probe-mediated toehold binding and branch migration. Chem Commun (Camb) 2019; 55:11932-11935. [PMID: 31531427 DOI: 10.1039/c9cc06311k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An enzyme-free DNA circuit was designed for the amplified detection of Cd2+ based on hairpin probe-mediated toehold binding and branch migration. A Cd2+-specific aptamer was used to recognize Cd2+ and a G-quadruplex was used to report the detection signal. The assay is sensitive, with a detection limit of 5 pM.
Collapse
Affiliation(s)
- Jiafeng Pan
- School of Food Science and Engineering, Foshan University, Foshan 528000, China and Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528000, China
| | - Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| |
Collapse
|
36
|
Xiang L, Zhang F, Chen C, Cai C. A general scheme for fluorometric detection of multiple oligonucleotides by using RNA-cleaving DNAzymes: application to the determination of microRNA-141 and H5N1 virus DNA. Mikrochim Acta 2019; 186:511. [PMID: 31280365 DOI: 10.1007/s00604-019-3595-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
Abstract
A widely applicably method is described for fluorometric determination of targets such as microRNA and viral DNA. It is making use of a Mg(II)-dependent DNAzyme and a G-quadruplex. In the absence of analyte, an inactive DNAzyme is formed by the hybridization of split DNAzymes and substrate. On addition of target analyte, the end of each strand of the split DNAzymes bind the analyte. This leads to the generation of an active DNAzyme. In the presence of Mg(II), the activated DNAzyme is formed and can cleave the substrate strand. Hence, the caged G-quadruplex sequences will be released. These released G-quadruplexes combine with thioflavin T to generate a G-quadruplex/thioflavin T complex and thereby cause amplified fluorescence. The method shows a 70 pM detection limit for H5N1 and works over a wide linear range 1 nM to 400 nM. Conceivably, this detection scheme has a wide scope in that it may be applied to other assays for microRNAs and DNAs by variation of the type of DNAzyme. Graphical abstract Schematic presentation of target detection: the DNAzyme cannot cleave the substrate strand when target is absent. Once the target is added, the active DNAzyme can cleave the substrate strand in the presence of Mg2+, resulting in significant fluorescence enhancement when the release of the caged G-quadruplex sequences binding with 2-[4-(dimethylamino)phenyl]-3,6-dimethylbenzothiazolium chloride (ThT).
Collapse
Affiliation(s)
- Ling Xiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Feng Zhang
- College of Science, Hunan Agricultural University, Changsha, 410128, China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
37
|
Zhang Y, Yan B. MIL-61 and Eu 3+@MIL-61 as Signal Transducers To Construct an Intelligent Boolean Logical Library Based on Visualized Luminescent Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20125-20133. [PMID: 31088052 DOI: 10.1021/acsami.9b00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MIL-61 and its postsynthesis product (Eu3+@MIL-61) are employed as signal transducers to construct a series of basic logic gates (NOT, NAND, INHIBIT, and XNOR) on account of their simple synthetic process and fascinating luminescent properties. Also, a two-output combinational logic gate and a cascaded logic gate can be constructed on these two signal transducers by changing the inputs. In this logic gate library system, the fluorescence of MIL-61 (λ395nm) or Eu3+@MIL-61 (λ615nm) is used as outputs with a threshold of 0.5. The advantage of this boolean logical library is that the two signal transducers are readily available and cost effective. In addition, the luminescence change is visible to the naked eye under a UV lamp, which is more convenient in application. More importantly, it presents a new route for the design of a molecular logic gate library based on luminescent metal-organic frameworks. And for further application, we experimentally construct two logic devices (a 4-to-2 encoder and a parity checker) based on Eu3+@MIL-61 to perform nonarithmetic information.
Collapse
Affiliation(s)
- Yu Zhang
- China-Australia Joint Laboratory of Functional Molecules and Ordered Matters, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Bing Yan
- China-Australia Joint Laboratory of Functional Molecules and Ordered Matters, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| |
Collapse
|
38
|
Yang S, Yang C, Huang D, Song L, Chen J, Yang Q. Recent Progress in Fluorescence Signal Design for DNA-Based Logic Circuits. Chemistry 2019; 25:5389-5405. [PMID: 30328639 DOI: 10.1002/chem.201804420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Indexed: 01/06/2023]
Abstract
DNA-based logic circuits, encoding algorithms in DNA and processing information, are pushing the frontiers of molecular computers forward, owing to DNA's advantages of stability, accessibility, manipulability, and especially inherent biological significance and potential medical application. In recent years, numerous logic functions, from arithmetic to nonarithmetic, have been realized based on DNA. However, DNA can barely provide a detectable signal by itself, so that the DNA-based circuits depend on extrinsic signal actuators. The signal strategy of carrying out a response is becoming one of the design focuses in DNA-based logic circuit construction. Although work on sequence and structure design for DNA-based circuits has been well reviewed, the strategy on signal production lacks comprehensive summary. In this review, we focused on the latest designs of fluorescent output for DNA-based logic circuits. Several basic strategies are summarized and a few designs for developing multi-output systems are provided. Finally, some current difficulties and possible opportunities were also discussed.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chunrong Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Dan Huang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lingbo Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jianchi Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Qianfan Yang
- College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
39
|
Liu S, Ding J, Qin W. Dual-Analyte Chronopotentiometric Aptasensing Platform Based on a G-Quadruplex/Hemin DNAzyme and Logic Gate Operations. Anal Chem 2019; 91:3170-3176. [PMID: 30648390 DOI: 10.1021/acs.analchem.8b05971] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conventional potentiometric ion sensors that rely on a specific ion carrier in a polymeric membrane can hardly achieve multianalyte detection. Inspired by the remarkable ability of built-in logic gate sensors for multianalyte detection, herein we report a potentiometric aptasensing platform based on a G-quadruplex/hemin DNAzyme and logic gate operations for determination of two analytes using a single membrane electrode. A bifunctional probe with two aptamer units and a signal reporter oligonucleotide with a DNAzyme sequence are assembled on the magnetic beads to form a DNA hybrid structure. The "OR" and "INHIBIT" logic functions can be performed by using the two aptamers and their targets as inputs, and using the chronopotentiometric response based on the G-quadruplex/hemin DNAzyme-H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine as output. Kanamycin and oxytetracycline, as commonly used antibiotics, have been employed as the models and successfully measured.
Collapse
Affiliation(s)
- Shuwen Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , P. R. China.,University of the Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , P. R. China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , P. R. China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , P. R. China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , P. R. China
| |
Collapse
|
40
|
Masaki Y, Inde T, Maruyama A, Seio K. Tolerance of N 2-heteroaryl modifications on guanine bases in a DNA G-quadruplex. Org Biomol Chem 2019; 17:859-866. [DOI: 10.1039/c8ob03100b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To systematically determine the effect of N2-heteroaryl modification on the stability of G-quadruplex structures, six types of N2-heteroarylated deoxyguanosines were incorporated into oligonucleotides with intramolecular quadruplex-forming sequences obtained from the human telomere sequence.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Takeshi Inde
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Atsuya Maruyama
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kohji Seio
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
41
|
Side effects-avoided theranostics achieved by biodegradable magnetic silica-sealed mesoporous polymer-drug with ultralow leakage. Biomaterials 2018; 186:1-7. [DOI: 10.1016/j.biomaterials.2018.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/31/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
|
42
|
Construction of Multiple Switchable Sensors and Logic Gates Based on Carboxylated Multi-Walled Carbon Nanotubes/Poly( N, N-Diethylacrylamide). SENSORS 2018; 18:s18103358. [PMID: 30297654 PMCID: PMC6211007 DOI: 10.3390/s18103358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
In this work, binary hydrogel films based on carboxylated multi-walled carbon nanotubes/poly(N,N-diethylacrylamide) (c-MWCNTs/PDEA) were successfully polymerized and assembled on a glassy carbon (GC) electrode surface. The electroactive drug probes matrine and sophoridine in solution showed reversible thermal-, salt-, methanol- and pH-responsive switchable cyclic voltammetric (CV) behaviors at the film electrodes. The control experiments showed that the pH-responsive property of the system could be ascribed to the drug components of the solutions, whereas the thermal-, salt- and methanol-sensitive behaviors were attributed to the PDEA constituent of the films. The CV signals particularly, of matrine and sophoridine were significantly amplified by the electrocatalysis of c-MWCNTs in the films at 1.02 V and 0.91 V, respectively. Moreover, the addition of esterase, urease, ethyl butyrate, and urea to the solution also changed the pH of the system, and produced similar CV peaks as with dilution by HCl or NaOH. Based on these experiments, a 6-input/5-output logic gate system and 2-to-1 encoder were successfully constructed. The present system may lead to the development of novel types of molecular computing systems.
Collapse
|
43
|
Wang H, Zheng J, Sun Y, Li T. Cellular environment-responsive intelligent DNA logic circuits for controllable molecular sensing. Biosens Bioelectron 2018; 117:729-735. [DOI: 10.1016/j.bios.2018.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
|
44
|
Chen J, Chen S, Li F. DNA Probes for Implementation of Multiple Molecular Computations Using a Lateral Flow Strip Biosensor as the Sensing Platform. Anal Chem 2018; 90:10311-10317. [DOI: 10.1021/acs.analchem.8b02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junhua Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Shu Chen
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Fengling Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
45
|
Wang S, Sun J, Zhao J, Lu S, Yang X. Photo-Induced Electron Transfer-Based Versatile Platform with G-Quadruplex/Hemin Complex as Quencher for Construction of DNA Logic Circuits. Anal Chem 2018; 90:3437-3442. [PMID: 29425022 DOI: 10.1021/acs.analchem.7b05145] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
G-quadruplex has been developed as an innovator for analytical chemistry and biomedicine due to its vibrant binding activity, structural polymorphism, and critical roles in biological regulation. Herein, a simple but versatile platform was obtained by integrating split G-quadruplex and fluorophore into a molecular beacon, where the photoinduced electron transfer could occur when the fluorophore approached the preformed G-quadruplex/hemin complexes. Such design subtly combined the G4 disruption-induced fluorescent turn-on strategy and the photoinduced electron transfer property into one platform for constructing the logic circuits. On the basis of such a universal platform, a series of binary logic gates (OR, INHIBIT, AND, and XOR), a combinatorial gate (INHIBIT-OR), and even a complex logic operation for discrimination of multiples of three from natural numbers less than ten have been successfully achieved only by employing such platform as work unit and single-strand DNAs as inputs. The set-reset function of this platform could be realized by alternatively introducing blocking and releasing strands. In addition, this platform could operate in a biological matrix stably and precisely. Therefore, such a universal platform lays the foundation for complicating the logic systems, realizing the biocomputing and also points out a new direction for target detection.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
| | - Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China.,University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Changchun , Jilin 130022 , China
| |
Collapse
|