1
|
Jara-Cortés J, Resendiz-Pérez A, Hernández-Trujillo J, Peón J. Relaxation and Photochemistry of Nitroaromatic Compounds: Intersystem Crossing through 1ππ* to Higher 3ππ* States, and NO • Dissociation in 9-Nitroanthracene─A Theoretical Study. J Phys Chem A 2025; 129:3220-3230. [PMID: 40138542 DOI: 10.1021/acs.jpca.4c08534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Determination of the photodegradation pathways of nitroaromatic compounds, known for their mutagenic properties and toxicity, is a relevant topic in atmospheric chemistry. In the present theoretical study, mechanisms for the photophysical relaxation and NO• dissociation of 9-nitroanthracene (9-NA) are proposed that challenge the commonly assumed pathways based on the El-Sayed rules. The analysis of the stationary points on the potential energy surfaces obtained with multiconfigurational methods indicates that after light absorption and subsequent relaxation of the S1 state, the system undergoes ultrafast intersystem crossing to T2, which serves as a gate-state to the triplet manifold due to favorable energetic couplings. This occurs despite the nature of the singlet and triplet states being 1ππ* and 3ππ*, where the receiver triplet involves NO2 orbitals that are tilted from the polyaromatic plane, with no involvement of the 3nπ state in the process. After the singlet to triplet manifold crossing, the system evolves along two possible trajectories. One leads to the global minimum of T1 (phosphorescent end state) and the other involves the dissociation into antryloxy and NO• radicals. Overall, the information obtained is in agreement with steady-state and time-resolved spectroscopic data reported for 9-NA. Furthermore, it suggests that the deactivation mechanism of nitroaromatic compounds can take place between 1ππ* and 3ππ* states, which opens a new landscape for the rationalization of the photophysics of these and other systems.
Collapse
Affiliation(s)
- Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Antonio Resendiz-Pérez
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, México
| | - Jorge Peón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
2
|
Lao JY, Li T, Jing L, Qin X, Su W, Lin H, Ruan Y, Ruan T, Zeng EY, Leung KMY, Lam PKS. Unveiling emerging polycyclic aromatic compounds in the urban atmospheric particulate matter. ENVIRONMENT INTERNATIONAL 2025; 195:109263. [PMID: 39824025 DOI: 10.1016/j.envint.2025.109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Despite the ubiquity and complexity of atmospheric polycyclic aromatic compounds (PACs), many of these compounds are largely unknown and lack sufficient toxicity data for comprehensive risk assessments. In this study, nontarget screening assisted by in-house and self-developed spectra databases was, therefore, employed to identify PACs in atmospheric particulate matter collected from multiple outdoor settings. Additionally, absorption, distribution, metabolism, excretion, and toxicity properties were evaluated to indicate PAC's overall abilities to cause adverse outcomes and incorporated into a novel health risk assessment model to assess their inhalation risks. Here, except for target PACs, 98 PAC analogues across eight categories were identified in the outdoor samples of atmospheric particulate matter. Their concentrations were source-specific and correlated to that of the total 16 priority polycyclic aromatic hydrocarbons (PAHs). Virtual high-throughput screening results suggested that metabolism disruption and endocrine disruption might be significant non-carcinogenic effects caused by the PACs. However, PAHs and oxygenated PAHs exhibited stronger overall abilities to induce non-carcinogenic adverse outcomes in human body when compared to the other PACs. Among PACs, total PAHs exhibited the highest carcinogenic and non-carcinogenic risks, while emerging PAHs accounted for 47% and 27% of total carcinogenic and non-carcinogenic risks, respectively. This study advances our understanding of the potential harmful effects of PACs and provides insights into mitigating the inhalation risks from complex PAC exposures based on classified risk levels.
Collapse
Affiliation(s)
- Jia-Yong Lao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Le Jing
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Wenyuan Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China; Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, China
| |
Collapse
|
3
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
4
|
Chen W, Ge P, Lu Z, Liu X, Cao M, Yan Z, Chen M. Acute exposure to seasonal PM 2.5 induces toxicological responses in A549 cells cultured at the air-liquid interface mediated by oxidative stress and endoplasmic reticulum stress. ENVIRONMENTAL RESEARCH 2024; 248:118283. [PMID: 38253190 DOI: 10.1016/j.envres.2024.118283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) enters the human body through respiration and poses a threat to human health. This is not only dependent on its mass concentration in the atmosphere, but also related to seasonal variations in its chemical components, which makes it important to study the cytotoxicity of PM2.5 in different seasons. Traditional immersion exposure cannot simulate the living environment of human epithelial cells in the human body, making this method unsuitable for evaluating the inhalation toxicity of PM2.5. In this study, a novel air-liquid interface (ALI) particulate matter exposure device (VITROCELL Cloud 12 system) was used to evaluate the toxic effects and potential mechanisms of human lung epithelial cells (A549) after exposure to seasonal PM2.5. PM2.5 samples from four seasons were collected and analyzed for chemical components. After 6 h of exposure to seasonal PM2.5, winter PM2.5 exhibited the highest cytotoxicity among most toxicity indicators, especially apoptosis rate, reactive oxygen species (ROS), inflammatory responses and DNA damage (γ-H2AX). The effect of autumn PM2.5 on apoptosis rate was significantly higher than that in spring, and there was no significant difference in other toxicity indicators between spring and autumn. The cytotoxicity of summer PM2.5 was the lowest among the four seasons. It should be noted that even exposure to low doses of summer PM2.5 leads to significant DNA damage in A459 cells. Correlation analysis results showed that water-soluble ions, metallic elements, and polycyclic aromatic hydrocarbons (PAHs) were associated with most toxicological endpoints. Inhibitors of oxidative stress and endoplasmic reticulum (ER) stress significantly inhibited cellular damage, indicating that PM2.5-induced cytotoxicity may be related to the generation of ROS and ER stress. In addition, PM2.5 can induce ER stress through oxidative stress, which ultimately leads to apoptosis.
Collapse
Affiliation(s)
- Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Maoyu Cao
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
5
|
Salomez-Ihl C, Tanguy S, Alcaraz JP, Davin C, Pascal-Moussellard V, Jabeur M, Bedouch P, Le Hegarat L, Fessard V, Blier AL, Huet S, Cinquin P, Boucher F. Hydrogen inhalation: in vivo rat genotoxicity tests. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503736. [PMID: 38432775 DOI: 10.1016/j.mrgentox.2024.503736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Preclinical and clinical studies have shown that molecular hydrogen (H2) has anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Safety data are available in the literature and acute toxicity has been tested in isolated cells and laboratory animals. We have evaluates the genotoxicity of H2 in vivo in rats after 72 h exposure, following the International Council for Harmonization guidelines ICH S2 (R1). The study was conducted on three groups of male Wistar rats: a negative control group, a positive control group receiving methyl methanesulfonate, and a H2-treated group receiving a 3.1% H2 gas mixture for 72 h. Alkaline comet, formamidopyrimidine DNA glycosylase (Fpg)-modified comet and bone marrow micronucleus assays were performed. H2 exposure increased neither comet-tail DNA intensity (DNA damage) nor frequency of "hedgehogs" in blood, liver, lungs, or bronchoalveolar lavage fluid. No increase in Fpg-sensitive sites in lungs, no induction of micronucleus formation, and no imbalance of immature erythrocyte to total erythrocyte ratio (IME%) was observed in rats exposed to H2. The ICH S2 (R1) test-battery revealed no in vivo genotoxicity in Wistar rats after 72 h inhalation of a mixture containing 3.1% H2.
Collapse
Affiliation(s)
- Cordélia Salomez-Ihl
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France; CHU Grenoble Alpes, 38000 Grenoble, France
| | - Stéphane Tanguy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Jean-Pierre Alcaraz
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Chloé Davin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | | | - Mariem Jabeur
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Pierrick Bedouch
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France; CHU Grenoble Alpes, 38000 Grenoble, France
| | - Ludovic Le Hegarat
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Anne-Louise Blier
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Philippe Cinquin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France; CHU Grenoble Alpes, 38000 Grenoble, France
| | - François Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France.
| |
Collapse
|
6
|
Drventić I, Glumac M, Carev I, Kroflič A. Seasonality of Polyaromatic Hydrocarbons (PAHs) and Their Derivatives in PM 2.5 from Ljubljana, Combustion Aerosol Source Apportionment, and Cytotoxicity of Selected Nitrated Polyaromatic Hydrocarbons (NPAHs). TOXICS 2023; 11:518. [PMID: 37368618 DOI: 10.3390/toxics11060518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Airborne particulate matter (PM) is a vector of many toxic pollutants, including polyaromatic hydrocarbons (PAHs) and their derivatives. Especially harmful is the fine fraction (PM2.5), which penetrates deep into the lungs during inhalation and causes various diseases. Amongst PM2.5 components with toxic potential are nitrated PAHs (NPAHs), knowledge of which is still rudimentary. Three of the measured NPAHs (1-nitropyrene (1-nP), 9-nitroanthracene (9-nA), and 6-nitrochrysene (6-nC)) were detected in ambient PM2.5 from Ljubljana, Slovenia, along with thirteen non-nitrated PAHs. The highest concentrations of pollutants, which are closely linked with incomplete combustion, were observed in the cold part of the year, whereas the concentrations of NPAHs were roughly an order of magnitude lower than those of PAHs throughout the year. Further on, we have evaluated the toxicity of four NPAHs, including 6-nitrobenzo[a]pyrene (6-nBaP), to the human kidney cell line, HEK293T. The most potent was 1-nP (IC50 = 28.7 µM), followed by the other three NPAHs, whose IC50 was above 400 or 800 µM. According to our cytotoxicity assessment, atmospheric 1-nP is the most harmful NPAH among the investigated ones. Despite low airborne concentrations of NPAHs in ambient air, they are generally considered harmful to human health. Therefore, systematic toxicological assessment of NPAHs at different trophic levels, starting with cytotoxicity testing, is necessary in order to accurately evaluate their threat and adopt appropriate abatement strategies.
Collapse
Affiliation(s)
- Ivana Drventić
- Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Mateo Glumac
- Laboratory for Cancer Research, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia
| | - Ivana Carev
- NAOS Institute of Life Science, 355 rue Pierre-Simon Laplace, 13290 Aix-en-Provence, France
- Mediterranean Institute for Life Science, Meštrovićevo šetalište 45, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Ana Kroflič
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Liu H, Zhang X, Sun Z, Chen Y. Ambient Fine Particulate Matter and Cancer: Current Evidence and Future Perspectives. Chem Res Toxicol 2023; 36:141-156. [PMID: 36688945 DOI: 10.1021/acs.chemrestox.2c00216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The high incidence of cancer has placed an enormous health and economic burden on countries around the world. In addition to evidence of epidemiological studies, conclusive evidence from animal experiments and mechanistic studies have also shown that morbidity and mortality of some cancers can be attributed to ambient fine particulate matter (PM2.5) exposure, especially in lung cancer. However, the underlying carcinogenetic mechanisms of PM2.5 remain unclear. Furthermore, in terms of risks of other types of cancer, both epidemiological and mechanistic evidence are more limited and scattered, and the results are also inconsistent. In order to sort out the carcinogenic effect of PM2.5, this paper reviews the association of cancers with PM2.5 based on epidemiological and biological evidence including genetic, epigenetic, and molecular mechanisms. The limitations of existing researches and the prospects for the future are also well clarified in this paper to provide insights for future studies.
Collapse
Affiliation(s)
- Hanrui Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
8
|
Santibáñez-Andrade M, Quezada-Maldonado EM, Rivera-Pineda A, Chirino YI, García-Cuellar CM, Sánchez-Pérez Y. The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity. Int J Mol Sci 2023; 24:ijms24021782. [PMID: 36675297 PMCID: PMC9860989 DOI: 10.3390/ijms24021782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Andrea Rivera-Pineda
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP 54090, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| |
Collapse
|
9
|
Chen SS, Wang TQ, Song WC, Tang ZJ, Cao ZM, Chen HJ, Lian Y, Hu X, Zheng WJ, Lian HZ. A novel particulate matter sampling and cell exposure strategy based on agar membrane for cytotoxicity study. CHEMOSPHERE 2022; 300:134473. [PMID: 35367490 DOI: 10.1016/j.chemosphere.2022.134473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Laboratories use different strategies to sample and extract atmospheric particulate matter (PM), some of which can be very complicated. Due to the absence of a standard protocol, it is difficult to compare the results of PM toxicity assessment across different laboratories. Here, we proposed a novel PM sampling and cell exposure strategy based on agar membrane. The agar membrane, prepared by a simple freeze-drying method, has a relatively flat surface and porous interior. We demonstrated that the agar membrane was a reliable substitute material for PM sampling. Then the PM on the agar membranes was directly extracted with the culture medium by vortex method, and the PM on the polytetrafluoroethylene (PTFE) filters was extracted with water by the traditional ultrasonic method for comparison. The extraction efficiency was evaluated and in vitro cytotoxicity assays were carried out to investigate the toxic effects of PM extracted with two strategies on macrophage cells. The results showed that the PM extracted from agar membranes induced higher cytotoxicity and more differentially expressed proteins. Overall, the novel PM sampling-cell exposure strategy based on the agar membrane is easy to operate, biocompatible and comparable, and has low disturbance, could be an alternative sampling and extraction method for PM toxicity assessment.
Collapse
Affiliation(s)
- Si-Si Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Tian-Qi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Wan-Chen Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhi-Jie Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Zhao-Ming Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Juan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi Lian
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, QC, H3A 1A2, Canada
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Zhao L, Zhang M, Bai L, Zhao Y, Cai Z, Yung KKL, Dong C, Li R. Real-world PM 2.5 exposure induces pathological injury and DNA damage associated with miRNAs and DNA methylation alteration in rat lungs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28788-28803. [PMID: 34988794 DOI: 10.1007/s11356-021-17779-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Fine particulate matter (PM2.5) has been demonstrated to threaten public health and increase lung cancer risk. DNA damage is involved in the pathogenesis of lung cancer. However, the mechanisms of epigenetic modification of lung DNA damage are still unclear. This study developed a real-world air PM2.5 inhalation system and exposed rats for 1 and 2 months, respectively, and investigated rat lungs pathological changes, inflammation, oxidative stress, and DNA damage effects. OGG1 and MTH1 expression was measured, along with their DNA methylation status and related miRNAs expression. The results showed that PM2.5 exposure led to pathological injury, influenced levels of inflammatory cytokines and oxidative stress factors in rat lungs. Of note, 2-month PM2.5 exposure aggravated pathological injury. Besides, PM2.5 significantly elevated OGG1 expression and suppressed MTH1 expression, which was correlated to oxidative stress and partially mediated by reducing OGG1 DNA methylation status and increasing miRNAs expression related to MTH1 in DNA damage with increases of γ-H2AX, 8-OHdG and GADD153. PM2.5 also activated c-fos and c-jun levels and inactivated PTEN levels in rat lungs. These suggested that epigenetic modification was probably a potential mechanism by which PM2.5-induced genotoxicity in rat lungs.
Collapse
Affiliation(s)
- Lifang Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Mei Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Lirong Bai
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Yufei Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Institute of Environmental Science, Shanxi University, Taiyuan, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
11
|
Guo C, Lv S, Liu Y, Li Y. Biomarkers for the adverse effects on respiratory system health associated with atmospheric particulate matter exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126760. [PMID: 34396970 DOI: 10.1016/j.jhazmat.2021.126760] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of epidemiological evidence have confirmed the atmospheric particulate matter (PM2.5) exposure was positively correlated with the morbidity and mortality of respiratory diseases. Nevertheless, its pathogenesis remains incompletely understood, probably resulting from the activation of oxidative stress, inflammation, altered genetic and epigenetic modifications in the lung upon PM2.5 exposure. Currently, biomarker investigations have been widely used in epidemiological and toxicological studies, which may help in understanding the biologic mechanisms underlying PM2.5-elicited adverse health outcomes. Here, the emerging biomarkers to indicate PM2.5-respiratory system interactions were summarized, primarily related to oxidative stress (ROS, MDA, GSH, etc.), inflammation (Interleukins, FENO, CC16, etc.), DNA damage (8-OHdG, γH2AX, OGG1) and also epigenetic modulation (DNA methylation, histone modification, microRNAs). The identified biomarkers shed light on PM2.5-elicited inflammation, fibrogenesis and carcinogenesis, thus may favor more precise interventions in public health. It is worth noting that some inconsistent findings may possibly relate to the inter-study differentials in the airborne PM2.5 sample, exposure mode and targeted subjects, as well as methodological issues. Further research, particularly by -omics technique to identify novel, specific biomarkers, is warranted to illuminate the causal relationship between PM2.5 pollution and deleterious lung outcomes.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
12
|
Halappanavar S, Wu D, Boyadzhiev A, Solorio-Rodriguez A, Williams A, Jariyasopit N, Saini A, Harner T. Toxicity screening of air extracts representing different source sectors in the Greater Toronto and Hamilton areas: In vitro oxidative stress, pro-inflammatory response, and toxicogenomic analysis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503415. [PMID: 34798935 DOI: 10.1016/j.mrgentox.2021.503415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
In the present study, the suitability and sensitivity of different in vitro toxicity endpoints were determined to evaluate and distinguish the specific contributions of polycyclic aromatic carbon (PAC) mixtures from various sites in Toronto (Canada), to pulmonary toxicity. Air samples were collected for two-month periods from April 2014 to March 2015 from one location, and from August 2016 to August 2017 from multiple locations reflecting different geographical areas in Toronto, and the Greater Toronto Area, with varying source emissions including background, traffic, urban, industrial and residential sites. Relative concentrations of PACs and their derivatives in these air samples were characterised. In vitro cytotoxicity, pro-inflammatory, and oxidative stress assays were employed to assess the acute pulmonary effects of urban-air-derived air pollutants. In addition, global transcriptional profiling was utilized to understand how these chemical mixtures exert their harmful effects. Lastly, the transcriptomic data and the chemical profiles for each site and season were used to relate the biological response back to individual constituents. Site-specific responses could not be derived; however, the Spring season was identified as the most responsive through benchmark concentration analysis. A combination of correlational analysis and principal component analysis revealed that nitrated and oxygenated polycyclic aromatic hydrocarbons (PAHs) drive the response at lower concentrations while specific PAHs drive the response at the highest concentration tested. Unsubstituted PAHs are the current targets for analysis as priority pollutants. The present study highlights the importance of by-products of PAH degradation in the assessment of risk. The study also demonstrates the usefulness of in vitro toxicity assays to derive meaningful data in support of risk assessment.
Collapse
Affiliation(s)
- S Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1Y 0M1, Canada.
| | - D Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1Y 0M1, Canada
| | - A Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1Y 0M1, Canada
| | - A Solorio-Rodriguez
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1Y 0M1, Canada
| | - A Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1Y 0M1, Canada
| | - N Jariyasopit
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada; Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - A Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| | - T Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON, M3H 5T4, Canada
| |
Collapse
|
13
|
Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, García-Cuellar CM. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117313. [PMID: 34022687 DOI: 10.1016/j.envpol.2021.117313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.
Collapse
Affiliation(s)
- Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio B, Primer Piso, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico.
| |
Collapse
|
14
|
Han X, Tian M, Shliaha PV, Zhang J, Jiang S, Nan B, Alam MN, Jensen ON, Shen H, Huang Q. Real-world particulate matters induce lung toxicity in rats fed with a high-fat diet: Evidence of histone modifications. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126182. [PMID: 34492953 DOI: 10.1016/j.jhazmat.2021.126182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Exposure to ambient particulate matters (PMs) has been associated with a variety of lung diseases, and high-fat diet (HFD) was reported to exacerbate PM-induced lung dysfunction. However, the underlying mechanisms for the combined effects of HFD and PM on lung functions remain poorly unraveled. By performing a comparative proteomic analysis, the current study investigated the global changes of histone post-translational modifications (PTMs) in rat lung exposed to long-term, real-world PMs. In result, after PM exposure the abundance of four individual histone PTMs (1 down-regulated and 3 up-regulated) and six combinatorial PTMs (1 down-regulated and 5 up-regulated) were significantly altered in HFD-fed rats while only one individual PTM was changed in rats with normal diet (ND) feeding. Histones H3K18ac, H4K8ac and H4K12ac were reported to be associated with DNA damage response, and we found that these PTMs were enhanced by PM in HFD-fed rats. Together with the elevated DNA damage levels in rat lungs following PM and HFD co-exposure, we demonstrate that PM exposure combined with HFD could induce lung injury through altering more histone modifications accompanied by DNA damage. Overall, these findings will augment our knowledge of the epigenetic mechanisms for pulmonary toxicity caused by ambient PM and HFD exposure.
Collapse
Affiliation(s)
- Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Pavel V Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang An Nan Road, Xiamen 361102, China.
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 4221-117 Xiang An Nan Road, Xiamen 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
15
|
Zhang J, Meng H, Kong X, Cheng X, Ma T, He H, Du W, Yang S, Li S, Zhang L. Combined effects of polyethylene and organic contaminant on zebrafish (Danio rerio): Accumulation of 9-Nitroanthracene, biomarkers and intestinal microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116767. [PMID: 33640823 DOI: 10.1016/j.envpol.2021.116767] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 05/06/2023]
Abstract
Microplastics, as emerging pollutant, are predicted to act as carriers for organic pollutants, but the carrier role and bio-toxic effects with other pollutants in environments are poorly acknowledged. In this study, both the single and combined effects of polyethylene (PE, 10 and 40 mg/L) with the particle size of 100-150 μm and 9-Nitroanthracene (9-NAnt, 5 and 500 μg/L) on zebrafish (Danio rerio) had been investigated. The results illustrated that PE could be as 9-NAnt carrier to enter into zebrafish body, but significantly reduced the bioaccumulation of 9-NAnt, due to the occurrence of adsorption interactions between the simultaneous presence of both PE and 9-NAnt. After 4 days, the enzymes activity of cytochrome P4501A, acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH), and the abundance of malondialdehyde (MDA), lipid peroxide (LPO) responded strongly to low-dose PE exposure (10 mg/L). After 7 days exposure to PE-9-NAnt (40 mg/L), the P4501A activity increased significantly, but the activities of AChE and LDH were inhibited clearly, causing certain neurotoxicity and disorders of energy metabolism to zebrafish. The analysis of integrated biomarker response index (IBR) suggested that PE had greater bio-toxicity to zebrafish in all exposure groups after short-term exposure, but the PE-9-NAnt complex showed greater bio-toxicity after 7 days, which indicated that complex exposure of PE-9-NAnt had a delayed effect on the bio-toxicity of zebrafish. Furthermore, analysis of the intestinal microbiota exhibited that under the conditions of the exposure group with 9-NAnt, the relative abundance of the five dominant bacterial phyla (Proteobacteria, Firmicutes, Fusobacteriota, Bacteroidota and Verrucomicrobiota) changed greatly. Overall, this study confirmed that PE could carry 9-NAnt into fish causing bioaccumulation, but in the case of coexisting exposures, PE reduced 9-NAnt bioaccumulation, suggesting that microplastics with other emerging pollutants in chronic toxicity are probably next objects in future works.
Collapse
Affiliation(s)
- Jinghua Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Han Meng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Xiangcheng Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Xinying Cheng
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Tao Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China.
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
16
|
Ge J, Yang H, Lu X, Wang S, Zhao Y, Huang J, Xi Z, Zhang L, Li R. Combined exposure to formaldehyde and PM 2.5: Hematopoietic toxicity and molecular mechanism in mice. ENVIRONMENT INTERNATIONAL 2020; 144:106050. [PMID: 32861163 PMCID: PMC7839661 DOI: 10.1016/j.envint.2020.106050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 05/24/2023]
Abstract
PM2.5 and formaldehyde (FA) are major outdoor and indoor air pollutants in China, respectively, and both are known to be harmful to human health and to be carcinogenic. Of all the known chronic health effects, leukaemia is one of the most serious health risks associated with these two pollutants. To explore the influence and underlying mechanisms of exposure to formaldehyde and PM2.5 on hematopoietic toxicity, we systematically studied the toxicity induced in hematopoietic organs: bone marrow (BM); spleen; and myeloid progenitor cells (MPCs). Male Balb/c mice were exposed to: PM2.5 (20, 160 μg/kg·d) at a dose of 40 μL per mouse or formaldehyde (0.5, 3.0 mg/m3) for 8 h per day for 2 weeks or co-exposed to formaldehyde and PM2.5 (20 μg/kg·d PM2.5 + 0.5 mg/m3 FA, 20 μg/kg·d PM2.5 + 3 mg/m3 FA, 160 μg/kg·d PM2.5 + 0.5 mg/m3 FA, 160 μg/kg·d PM2.5 + 3 mg/m3 FA) for 2 weeks. Similar toxic effects were found in the formaldehyde-only and PM2.5-only groups, including significant decrease of blood cells and MPCs, along with decreased expression of hematopoietic growth factors. In addition, individual exposure of formaldehyde or PM2.5 increased oxidative stress, DNA damage and immune system disorder by destroying the balance of Th1/Th2, and Treg/Th17. DNA repair was markedly inhibited by deregulating the mammalian target of rapamycin (mTOR) pathway. Combined exposure to PM2.5 and formaldehyde led to more severe effects. Administration of Vitamin E (VE) was shown to attenuate these effects. In conclusion, our findings suggested that PM2.5 and formaldehyde may induce hematopoietic toxicity by reducing the expression of hematopoietic growth factors, increasing oxidative stress and DNA damage, activating the 'immune imbalance' pathway and suppressing the DNA-repair related mTOR pathway. The hematopoietic toxicity induced by combined exposure of PM2.5 and formaldehyde might provide further insights into the increased incidence of hematological diseases, including human myeloid leukaemia.
Collapse
Affiliation(s)
- Jing Ge
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xianxian Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiawei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
17
|
The Inducible Role of Ambient Particulate Matter in Cancer Progression via Oxidative Stress-Mediated Reactive Oxygen Species Pathways: A Recent Perception. Cancers (Basel) 2020; 12:cancers12092505. [PMID: 32899327 PMCID: PMC7563781 DOI: 10.3390/cancers12092505] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Particulate matter, especially the fine fraction PM2.5, is officially stated as carcinogenic to human. There are compelling evidences on the association between PM2.5 exposure and lung cancer, and there are also some preliminary data reporting the significant links between this fraction with non-lung cancers. The underlying mechanisms remain unclear. Further studies related to such scope are highly required. The purpose of this work is to systemically analyze recent findings concerning the relationship between PM2.5 and cancer, and to thoroughly present the oxidative stress pathways mediated by reactive oxygen species as the key mechanism for carcinogenesis induced by PM2.5. This will provide a more comprehensive and updated knowledge regarding carcinogenic capacity of PM2.5 to both clinicians and public health workers, contributing to preventive and therapeutic strategies to fight against cancer in human. Abstract Cancer is one of the leading causes of premature death and overall death in the world. On the other hand, fine particulate matter, which is less than 2.5 microns in aerodynamic diameter, is a global health problem due to its small diameter but high toxicity. Accumulating evidence has demonstrated the positive associations between this pollutant with both lung and non-lung cancer processes. However, the underlying mechanisms are yet to be elucidated. The present review summarizes and analyzes the most recent findings on the relationship between fine particulate matter and various types of cancer along with the oxidative stress mechanisms as its possible carcinogenic mechanisms. Also, promising antioxidant therapies against cancer induced by this poison factor are discussed.
Collapse
|
18
|
Tang ZJ, Cao ZM, Guo XW, Chen HJ, Lian Y, Zheng WJ, Chen YJ, Lian HZ, Hu X. Cytotoxicity and toxicoproteomic analyses of human lung epithelial cells exposed to extracts of atmospheric particulate matters on PTFE filters using acetone and water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110223. [PMID: 31991395 DOI: 10.1016/j.ecoenv.2020.110223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Differences of cytotoxicity associated with exposure to different extracts of atmospheric particulate matters (PMs) are still not well characterized by in vitro toxicoproteomics. In this study, in vitro cytotoxicity assays and toxicoproteomic analyses were carried out to investigate toxic effects of PM collected using polytetrafluoroethylene (PTFE) filters extracted with acetone for PM2.1 and water for PM2.1 and PM10 on A549 human lung epithelial cells. The cytotoxicity assays based on cell viability, cell apoptosis and reactive oxygen species generation indicated that PM2.1 extracted with acetone had the highest toxicity. iTRAQ labeling and LC-MS/MS analyses indicated that the number of differentially expressed proteins in A549 cells affected by PM2.1 extracted with acetone was noticeably higher than that of the other two groups. Hierarchical cluster analyses showed that the influences of the extracts of PM2.1 and PM10 using water on the proteome of A549 cells were similar, whereas significantly different from the effect of PM2.1 extracted with acetone. Pathways analyses indicated that PM2.1 extracted with acetone influenced the expression of proteins involved in 14 pathways including glycolysis/gluconeogenesis, pentose phosphate pathway, proteasome, etc. PM2.1 extracted with water affected the expression of proteins involved in 3 pathways including non-homologous end-joining, ribosome and endocytosis. However, PM10 extracted with water affected the expression of proteins involved in only spliceosome pathway. The extracts of PM using different extractants to detach PM from PTFE filters influenced the cytotoxic effects of PM and the proteome of A549 cells. Therefore, extractants should be assessed carefully before the investigations on cytotoxicity to improve the compatibility of experimental results among research teams.
Collapse
Affiliation(s)
- Zhi-Jie Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Zhao-Ming Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Xue-Wen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Juan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi Lian
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, QC, H3A 1A2, Canada
| | - Wei-Juan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi-Jun Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
de Oliveira Galvão MF, Sadiktsis I, Batistuzzo de Medeiros SR, Dreij K. Genotoxicity and DNA damage signaling in response to complex mixtures of PAHs in biomass burning particulate matter from cashew nut roasting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113381. [PMID: 31662259 DOI: 10.1016/j.envpol.2019.113381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Approximately 3 billion people world-wide are exposed to air pollution from biomass burning. Herein, particulate matter (PM) emitted from artisanal cashew nut roasting, an important economic activity worldwide, was investigated. This study focused on: i) chemical characterization of polycyclic aromatic hydrocarbons (PAHs) and oxygenated (oxy-) PAHs; ii) intracellular levels of reactive oxygen species (ROS); iii) genotoxic effects and time- and dose-dependent activation of DNA damage signaling, and iv) differential expression of genes involved in xenobiotic metabolism, inflammation, cell cycle arrest and DNA repair, using A549 lung cells. Among the PAHs, chrysene, benzo[a]pyrene (B[a]P), benzo[b]fluoranthene, and benz[a]anthracene showed the highest concentrations (7.8-10 ng/m3), while benzanthrone and 9,10-anthraquinone were the most abundant oxy-PAHs. Testing of PM extracts was based on B[a]P equivalent doses (B[a]Peq). IC50 values for viability were 5.7 and 3.0 nM B[a]Peq at 24 h and 48 h, respectively. At these low doses, we observed a time- and dose-dependent increase in intracellular levels of ROS, genotoxicity (DNA strand breaks) and DNA damage signaling (phosphorylation of the protein checkpoint kinase 1 - Chk1). In comparison, effects of B[a]P alone was observed at micromolar range. To our knowledge, no previous study has demonstrated an activation of pChk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro, in lung cells exposed to cashew nut roasting extracts. Sustained induction of expression of several important stress response mediators of xenobiotic metabolism (CYP1A1, CYP1B1), ROS and pro-inflammatory response (IL-8, TNF-α, IL-2, COX2), and DNA damage response (CDKN1A and DDB2) was also identified. In conclusion, our data show high potency of cashew nut roasting PM to induce cellular stress including genotoxicity, and more potently when compared to B[a]P alone. Our study provides new data that will help elucidate the toxic effects of low-levels of PAH mixtures from air PM generated by cashew nut roasting.
Collapse
Affiliation(s)
- Marcos Felipe de Oliveira Galvão
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Ioannis Sadiktsis
- Department of Environmental Science and Analytical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
20
|
Ma H, Wang H, Zhang H, Guo H, Zhang W, Hu F, Yao Y, Wang D, Li C, Wang J. Effects of phenanthrene on oxidative stress and inflammation in lung and liver of female rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:37-46. [PMID: 31456356 DOI: 10.1002/tox.22840] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Phenanthrene (Phe) female rat model was established to explore the effects of Phe on oxidative stress and inflammation. The rats were randomly divided into three groups including control (C), low (L), and high (H) group. Phe was supplied to L and H groups at the dosage of 180 mg/kg and 900 mg/kg orally at first day, and with the dose 90 mg/kg and 450 mg/kg by intraperitoneal injection at the last 2 days. The C group was enriched with the same volume of corn oil. The blood, lung, and liver tissues were collected. The superoxide dismutase (SOD), malonaldehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) were detected to evaluate oxidative stress. The protein and mRNA expressions of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), and interleukin 10 (IL-10) were detected to evaluate inflammation. Further, the forkhead box transcription factor 3 (Foxp3) was analyzed to hint the injury mechanism of inflammation. The results showed SOD and MDA in lung and liver, and serum 8-OHdG elevated significantly in H groups (P < .05). Meanwhile, there were significant increases in the protein and mRNA expression of TNF-α and IL-6 in lung and liver of H groups (P < .05). In addition, the protein and mRNA expressions of TGF-β and Foxp3 were all decreased significantly in both lung and liver of H groups (P < .05). Results demonstrated that an obvious change of Phe exposure could induce oxidative stress and inflammation in female rats. This is a first pilot study to explore the association between Phe exposure and oxidative stress and inflammation using a female rat model.
Collapse
Affiliation(s)
- Haitao Ma
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Huiling Wang
- Department of Integrated Chinese and Western Medicine Gynecology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Haojun Zhang
- Department of Hospital Infection, People's Hospital of Gansu Province, Lanzhou, China
| | - Huizhen Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Wenwen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Fengjing Hu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Yueli Yao
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Dong Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Chengyun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Junling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Huang H, Cai C, Yu S, Li X, Liu Y, Tao S, Liu W. Emission behaviors of nitro- and oxy-polycyclic aromatic hydrocarbons during pyrolytic disposal of electronic wastes. CHEMOSPHERE 2019; 222:267-274. [PMID: 30708161 DOI: 10.1016/j.chemosphere.2019.01.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/28/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Emission factors (EFs) of polycyclic aromatic hydrocarbon (PAH) derivatives (12 nitro-PAHs and 4 oxy-PAHs) during the pyrolysis of two types of electronic waste (E-waste) were measured. Compositional profile, particle size distribution, gas-particle partitioning, correlations with precursor species and influences of pyrolytic temperature were investigated. The derivative products were dominated by oxy-PAHs. The averaged EFs of oxy-PAHs were 3.37 ± 4.10 μg/g and 32.6 ± 18.1 μg/g for PWBs and plastic casings, respectively, and those of nitro-PAHs were 85.7 ± 92.4 ng/g and 83.3 ± 69.7 ng/g, respectively. Most EFs of derivative species significantly correlated with their corresponding parent PAHs (p < 0.05), except a few cases, indicating formation of derivatives via related reactions of parent species. Most nitro-PAHs occurred in fine particles with the size < 2.1 μm, and oxy-PAHs were prevailing in fine particles with the size between 0.4 μm and 2.1 μm. Proportions of oxy-PAHs in particulate phase, especially those with higher molecular weight, were noticeably greater than those of the corresponding parent species. Below 480 °C, there was no evident difference in the EFs of PAH derivatives, while the EFs noticeably increased from 520 °C. With the increasing temperature, the majority of oxy-PAHs still occurred on finer particles, while the contribution of coarser particles tended to increase.
Collapse
Affiliation(s)
- HuiJing Huang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - ChuanYang Cai
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - ShuangYu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - XinYue Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Shang Y, Wu M, Zhou J, Zhang X, Zhong Y, An J, Qian G. Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:316-324. [PMID: 30599404 DOI: 10.1016/j.jhazmat.2018.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 05/05/2023]
Abstract
Fine particles (PM2.5) emitted from municipal solid waste incineration (MSWI) contain high amounts of toxic compounds and pose a serious threat to environment and human health. In this study, entire particles as well as extracted water-soluble and -insoluble fractions of PM2.5 collected from MSWI and biomass incineration (BMI) were subjected to physiochemical characterization and cytotoxic tests in A549 and BEAS-2B cells. MSWI PM2.5 had higher contents of heavy metals (including Pb, Zn, and Cu) and dioxins (PCDD/Fs) than did BMI PM2.5. The metals were enriched in the water-insoluble fraction, as measured by inductively coupled plasma-atomic emission spectrometry. BMI PM2.5 had a higher content of endotoxin, which was also enriched in the water-insoluble fraction. MSWI PM2.5 caused more serious cell injuries, as indicated by the lower viability, higher ROS generation, and DNA damage, whereas BMI PM2.5 presented higher pro-inflammatory potential, as indicated by increased mRNA levels of interleukin 6. Normal human BEAS-2B cells were more sensitive than A549 cells in all these tests. Toxic effects caused by MSWI and BMI PM2.5 were mostly attributable to their water-insoluble fractions. Our results indicate different chemical and biological compositions in MSWI and BMI PM2.5 probably dominate in different toxic endpoints in vitro.
Collapse
Affiliation(s)
- Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Meiying Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jizhi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
23
|
Xie P, Zhao C, Huang W, Yong T, Chung ACK, He K, Chen X, Cai Z. Prenatal exposure to ambient fine particulate matter induces dysregulations of lipid metabolism in adipose tissue in male offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1389-1397. [PMID: 30677905 DOI: 10.1016/j.scitotenv.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Prenatal exposure to ambient fine particles (diameter < 0.25 μm, PM2.5) has been found to be associated with abnormal growth and development in offspring. However, the effects of PM2.5 on the lipid metabolism of adipose tissue in offspring are unclear. In the present study, we established a mouse model of prenatal exposure to PM2.5 by intratracheal instillation to pregnant C57BL/6 female mice with PM2.5 suspension or normal saline. We found that prenatal exposure to PM2.5 of a mouse model reduced body weight in adult male offspring after 6 weeks old. Histological analysis showed that the adipocyte size was significantly reduced in epididymal adipose tissue (eWAT) in male offspring, but not in brown adipose tissue. The expression levels of genes related to fatty acid synthesis (ACC1, ACSL1) and oxidation (PPARα) in eWAT were also significantly decreased. In addition, downregulation of pro-inflammatory cytokines (TNFα, IL-1β, IL-6) was also observed. Lipidomics analysis of eWAT demonstrated that prenatal exposure of PM2.5 reduced lysophosphatidylcholines (LPC), phosphatidylcholines (PC), phosphatidylethanolamines (PE), sphingomyelins (SM), and ceramides (Cer), indicating that metabolic pathways, including SM-Cer signaling and glycerophospholipids remodeling, were disrupted. In summary, prenatal exposure to PM2.5 was associated with the dysregulations in lipid metabolism of eWAT and pro-inflammatory response in male offspring.
Collapse
Affiliation(s)
- Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Ting Yong
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Arthur C K Chung
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Kaiwu He
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
24
|
Zhao C, Zhu L, Li R, Wang H, Cai Z. Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinoma cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:45-52. [PMID: 30529940 DOI: 10.1016/j.envpol.2018.11.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Exposure to airborne particulate matter (PM) 2.5 induced various adverse health effects, such as metabolic syndrome, systemic inflammation and respiratory infection. However, a global influence of PM2.5-induced metabolic and proteomic disorders remains confusing, and the underlying mechanism is still under-explored. Herein, LC-MS/MS-based metabolomics, lipidomics and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomics were applied to analyze the toxicological characteristics of PM2.5 from Taiyuan City in China (Taiyuan-PM2.5) on human lung carcinoma cells (A549) after the 24-h treatment. Metabolites, lipids and proteins that have distinctive differences were screened by SIEVE, LipidSearch and Proteome Discoverer, respectively. The abundance of 56 metabolites (40 increased and 16 decreased), 22 lipids (19 increased and 3 decreased) and 81 proteins (55 up-regulated and 26 down-regulated) were significantly changed upon the PM2.5 treatment. Among the proteomics analysis, 16 proteins were specifically related to RNA splicing, mainly including up-regulated serine/arginine-rich splicing factor 1 (SRSF1), SRSF2, small nuclear ribonucleoprotein 70 kDa (snRNP70), small nuclear ribonucleoprotein polypeptide B (SNRPB), SNRPC, SNRPE and down-regulated heterogeneous nuclear ribonucleoprotein U-like 2 (hnRNP UL2). At the metabolic level, PM2.5 exposure significantly altered the sphingolipid metabolism, including ceramide, serine, sphingosine and sphingomyelin. It was proposed that excessive accumulation of ceramide and expression of key enzymes (ceramide synthases, phingomyelinase, sphingosine kinase types 2 and protein phosphatase-1) induced the secretion of pro-inflammatory cytokines, generation of lipotoxicity and alterations of RNA splicing in PM2.5-treated A549 cells. In general, our results demonstrated that ceramide accumulation and altered RNA splicing could becritical contributors to PM2.5-induced cytotoxicity at metabolic and proteomic level, which might be considered as potential markers for toxicological evaluation of PM2.5 samples.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ruijin Li
- Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
25
|
Effects of Ambient Atmospheric PM2.5, 1-Nitropyrene and 9-Nitroanthracene on DNA Damage and Oxidative Stress in Hearts of Rats. Cardiovasc Toxicol 2018; 19:178-190. [DOI: 10.1007/s12012-018-9488-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|