1
|
Motshakeri M, Angoro B, Phillips ARJ, Svirskis D, Kilmartin PA, Sharma M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1474. [PMID: 40096308 PMCID: PMC11902859 DOI: 10.3390/s25051474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Efforts to quantify iron ion concentrations across fields such as environmental, chemical, health, and food sciences have intensified over the past decade, which drives advancements in analytical methods, particularly electrochemical sensors known for their simplicity, portability, and reliability. The development of electrochemical methods using non-mercury electrodes is increasing as alternatives to environmentally unsafe mercury-based electrodes. However, detecting iron species such as Fe(II) and Fe(III) remains challenging due to their distinct chemical properties, continuous oxidation-state interconversion, presence of interfering species, and complex behavior in diverse environments and matrixes. Selective trace detection demands careful optimization of electrochemical methods, including proper electrode materials selection, electrode surface modifications, operating conditions, and sample pretreatments. This review critically evaluates advancements over the past decade in mercury-free electrode materials and surface modification strategies for iron detection. Strategies include incorporating a variety of nanomaterials, composites, conducting polymers, membranes, and iron-selective ligands to improve sensitivity, selectivity, and performance. Despite advancements, achieving ultra-low detection limits in real-world samples with minimal interference remains challenging and emphasizes the need for enhanced sample pretreatment. This review identifies challenges, knowledge gaps, and future directions and paves the way for advanced iron electrochemical sensors for environmental monitoring, health diagnostics, and analytical precision.
Collapse
Affiliation(s)
- Mahsa Motshakeri
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Barbara Angoro
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Anthony R. J. Phillips
- School of Biological Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
- Surgical and Translational Research Center, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| | - Paul A. Kilmartin
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (B.A.); (D.S.)
| |
Collapse
|
2
|
Dahake RV, Bansiwal A. Disposable Sensors for Heavy Metals Detection: A Review of Carbon and Non‐Noble Metal‐Based Receptors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rashmi V. Dahake
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh
| | - Amit Bansiwal
- CSIR-National Environmental Engineering Research Institute(NEERI) Nagpur
| |
Collapse
|
3
|
Kaur S, Shiekh BA, Kaur D, Kaur I. Highly sensitive sensing of Fe(III) harnessing Schiff based ionophore: An electrochemical approach supported with spectroscopic and DFT studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Panda SK, Mishra S, Singh AK. Recent progress in the development of MOF-based optical sensors for Fe 3. Dalton Trans 2021; 50:7139-7155. [PMID: 33908518 DOI: 10.1039/d1dt00353d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fe(iii) is a common pollutant released into our ecosystem from various industrial and anthropogenic activities which when in excess interferes with human health. A plethora of sensors based on various designs and working principles are being continuously synthesized and improvised for its facile detection. In the present review, we have provided a brief overview of the developments made in the field of metal organic framework (MOF) based optical sensors for Fe3+. MOFs have exponentially emerged in the field of research due to their high porosity, modular construction and easy tunability. These inorganic-organic hybrid porous materials are being essentially promoted as optical sensors because of their unique photophysical properties and potential sensing applications.
Collapse
Affiliation(s)
- Suvam Kumar Panda
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752 050, India.
| | - Sagarika Mishra
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752 050, India.
| | - Akhilesh Kumar Singh
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, 752 050, India.
| |
Collapse
|
5
|
Zhang Y, Wang X, Wang Y, Li L, Xu N, Wang X. Anderson-type polyoxometalate-based complexes constructed from a new ‘V’-like bis-pyridine–bis-amide ligand for selective adsorption of organic dyes and detection of Cr( vi) and Fe( iii) ions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00785h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four isostructural complexes constructed from Anderson-type POM and new ‘V’-like ligands exhibited outstanding selective adsorption capacities for organic dyes, and electrochemical sensing behaviors toward Cr(vi) and Fe(iii) ions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China
| | - Lei Li
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China
| | - XiuLi Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China
| |
Collapse
|
6
|
Shellaiah M, Thirumalaivasan N, Aazaad B, Awasthi K, Sun KW, Wu SP, Lin MC, Ohta N. Novel rhodamine probe for colorimetric and fluorescent detection of Fe 3+ ions in aqueous media with cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118757. [PMID: 32791389 DOI: 10.1016/j.saa.2020.118757] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 05/20/2023]
Abstract
A novel rhodamine-pyridine conjugated spectroscopic probe RhP was synthesized and its X-ray single crystalline properties were revealed with tabulation. The RhP displayed a distinct pale-pink colorimetric and "turn-on" fluorescent response to Fe3+ in aqueous media [H2O:DMSO (95:5, v/v)] than that of other interfering ions. During the Fe3+ recognition, the absorption (UV-Vis) and photoluminescence (PL) spectral studies revealed new peaks at 561 and 592 nm, respectively. The 1:1 stoichiometry and binding sites were verified by Job's plot, ESI-mass, and 1H NMR titrations. Subsequently, LOD and binding constant for RhP + Fe3+ complex were estimated as 102.3 nM and 6.265 × 104 M-1 from linear fitting and Benesi-Hildebrand plots, correspondingly. Sensor reversibility of RhP + Fe3+ by EDTA was demonstrated by UV/PL and TRPL investigations. Moreover, the photoinduced energy transfer mechanism and band gap changes were established from the DFT interrogations. Lastly, cellular imaging studies were carried out to authenticate the real applicability of RhP in Fe3+ detection.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | - Basheer Aazaad
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Kamlesh Awasthi
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan; Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Chang Lin
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Nobuhiro Ohta
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan; Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
7
|
Zhu B, Huang G, He Y, Xie J, He T, Wang J, Zong Z. Synthesis and characterization of MOFs constructed from 5-(benzimidazole-1-yl)isophthalic acid and highly selective fluorescence detection of Fe(iii) and Cr(vi) in water. RSC Adv 2020; 10:34943-34952. [PMID: 35514377 PMCID: PMC9056870 DOI: 10.1039/d0ra06529c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022] Open
Abstract
In this work, four novel metal–organic frameworks [Cd(bipa)]n (1), {[Zn2(bipa)2]·2C2H5OH}n (2), {[Co(bipa)]·C2H5OH}n (3), {[Ni(bipa)2]·2DMA}n (4), (H2bipa = 5-(benzimidazole-1-yl)isophthalic acid) were successfully synthesized under solvothermal conditions. Complexes 1–4 were characterized by powder X-ray diffraction, elemental analysis, infrared spectroscopy and thermogravimetric analysis. Interestingly, the coordination patterns and 3D network structures of complexes 1–3 are very similar, while complex 4 is relatively unique. Complexes 1–2 exhibit potential fluorescent properties. Complex 1 can selectively and sensitively detect trace Fe(iii) and Cr(vi) in water by fluorescence quenching detection, and the quenching mechanism is further discussed. In this work, four novel MOFs [Cd(bipa)]n (1), {[Zn2(bipa)2]·2C2H5OH}n (2), {[Co(bipa)]·C2H5OH}n (3), {[Ni(bipa)2]·2DMA}n (4), (H2bipa = 5-(benzimidazole-1-yl)isophthalic acid) were successfully synthesized under solvothermal conditions.![]()
Collapse
Affiliation(s)
- Bin Zhu
- College of Chemistry and Chemical Engineering, Ocean University of China Qingdao 266100 Shandong China
| | - Guimei Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Yanni He
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Jisheng Xie
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Tao He
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Junli Wang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Ziao Zong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| |
Collapse
|
8
|
Sadeghi S, Ebadi S. Sensitive Quantification of Fe(III) in Food Samples at Screen Printed Carbon Electrode Modified with Graphene and Piroxicam by Catalytic Adsorptive Voltammetry. ELECTROANAL 2020. [DOI: 10.1002/elan.202060068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Susan Sadeghi
- Department of Chemistry, Faculty of Science University of Birjand Birjand South Khorasan Iran
| | - Samaneh Ebadi
- Department of Chemistry, Faculty of Science University of Birjand Birjand South Khorasan Iran
| |
Collapse
|
9
|
Singh G, Sindhu J, Manisha, Kumar V, Sharma V, Sharma SK, Mehta SK, Mahnashi MH, Umar A, Kataria R. Development of an off-on selective fluorescent sensor for the detection of Fe3+ ions based on Schiff base and its Hirshfeld surface and DFT studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111814] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Ozer T, Isildak I. A New Fe (III)-Selective Membrane Electrode Based on Fe (II) Phthalocyanine. J ELECTROCHEM SCI TE 2019. [DOI: 10.33961/jecst.2019.00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhao ZX, Li T, Cheng LP, Li M, Zhong ZJ, Pang W. AlCl3·6H2O-catalyzed Schiff-base reaction between aryl ketones and aromatic acylhydrazines/hydrazines in water. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02488-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|