1
|
Ghiasvand K, Amirfazli M, Moghimi P, Safari F, Takhshid MA. The role of neuron-like cell lines and primary neuron cell models in unraveling the complexity of neurodegenerative diseases: a comprehensive review. Mol Biol Rep 2024; 51:1024. [PMID: 39340590 DOI: 10.1007/s11033-024-09964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of neurons. As to developing effective therapeutic interventions, it is crucial to understand the underlying mechanisms of NDs. Cellular models have become invaluable tools for studying the complex pathogenesis of NDs, offering insights into disease mechanisms, determining potential therapeutic targets, and aiding in drug discovery. This review provides a comprehensive overview of various cellular models used in ND research, focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Cell lines, such as SH-SY5Y and PC12 cells, have emerged as valuable tools due to their ease of use, reproducibility, and scalability. Additionally, co-culture models, involving the growth of distinct cell types like neurons and astrocytes together, are highlighted for simulating brain interactions and microenvironment. While cell lines cannot fully replicate the complexity of the human brain, they provide a scalable method for examining important aspects of neurodegenerative diseases. Advancements in cell line technologies, including the incorporation of patient-specific genetic variants and improved co-culture models, hold promise for enhancing our understanding and expediting the development of effective treatments. Integrating multiple cellular models and advanced technologies offers the potential for significant progress in unraveling the intricacies of these debilitating diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Kianoush Ghiasvand
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Amirfazli
- School of biological sciences, Illinois State University, Normal, United States of America
| | - Parvaneh Moghimi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Division of Medical Biotechnology, Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Kim BS, Kim JU, Lee JW, Ryu KM, Koh RH, So KH, Hwang NS. Comparative analysis of supercritical fluid-based and chemical-based decellularization techniques for nerve tissue regeneration. Biomater Sci 2024; 12:1847-1863. [PMID: 38411258 DOI: 10.1039/d3bm02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Axon regeneration and Schwann cell proliferation are critical processes in the repair and functional recovery of damaged neural tissues. Biomaterials can play a crucial role in facilitating cell proliferative processes that can significantly impact the target tissue repair. Chemical decellularization and supercritical fluid-based decellularization methods are similar approaches that eliminate DNA from native tissues for tissue-mimetic biomaterial production by using different solvents and procedures to achieve the final products. In this study, we conducted a comparative analysis of these two methods in the context of nerve regeneration and neuron cell differentiation efficiency. We evaluated the efficacy of each method in terms of biomaterial quality, preservation of extracellular matrix components, promotion of neuronal cell differentiation and nerve tissue repair ability in vivo. Our results indicate that while both methods produce high-quality biomaterials, supercritical fluid-based methods have several advantages over conventional chemical decellularization, including better preservation of extracellular matrix components and mechanical properties and superior promotion of cellular responses. We conclude that supercritical fluid-based methods show great promise for biomaterial production for nerve regeneration and neuron cell differentiation applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
3D printed microfluidics for bioanalysis: A review of recent advancements and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Huang K, Castiaux A, Podicheti R, Rusch DB, Martin RS, Baker LA. A Hybrid Nanofiber/Paper Cell Culture Platform for Building a 3D Blood-brain Barrier Model. SMALL METHODS 2021; 5:2100592. [PMID: 34541301 PMCID: PMC8445000 DOI: 10.1002/smtd.202100592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/16/2023]
Abstract
The blood brain barrier (BBB) protects the central nervous system from toxins and pathogens in the blood by regulating permeation of molecules through the barrier interface. In vitro BBB models described to date reproduce some aspects of BBB functionality, but also suffer from incomplete phenotypic expression of brain endothelial traits, difficulty in reproducibility and fabrication, or overall cost. To address these limitations, we describe a three-dimensional (3D) BBB model based on a hybrid paper/nanofiber scaffold. The cell culture platform utilizes lens paper as a framework to accommodate 3D culture of astrocytes. An electrospun nanofiber layer is coated onto one face of the paper to mimic the basement membrane and support growth of an organized two-dimensional layer of endothelial cells (ECs). Human induced pluripotent stem cell-derived ECs and astrocytes are co-cultured to develop a human BBB model. Morphological and spatial organization of model are validated with confocal microscopy. Measurements of transendothelial resistance and permeability demonstrate the BBB model develops a high-quality barrier and responds to hyperosmolar treatments. RNA-sequencing shows introduction of astrocytes both regulates EC tight junction proteins and improves endothelial phenotypes related to vasculogenesis. This model shows promise as a model platform for future in vitro studies of the BBB.
Collapse
Affiliation(s)
- Kaixiang Huang
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Andre Castiaux
- Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, Indiana 47405, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University Bloomington, 1001 East Third St., Bloomington, Indiana 47405, USA
| | - R Scott Martin
- Department of Chemistry and Center for Additive Manufacturing, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, USA
| | - Lane A Baker
- Department of Chemistry, Indiana University Bloomington, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
5
|
Microchip electrophoresis and electrochemical detection: A review on a growing synergistic implementation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Zhou W, Dou M, Timilsina SS, Xu F, Li X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. LAB ON A CHIP 2021; 21:2658-2683. [PMID: 34180494 PMCID: PMC8360634 DOI: 10.1039/d1lc00414j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Hybrid microfluidic systems that are composed of multiple different types of substrates have been recognized as a versatile and superior platform, which can draw benefits from different substrates while avoiding their limitations. This review article introduces the recent innovations of different types of low-cost hybrid microfluidic devices, particularly focusing on cost-effective polymer- and paper-based hybrid microfluidic devices. In this article, the fabrication of these hybrid microfluidic devices is briefly described and summarized. We then highlight various hybrid microfluidic systems, including polydimethylsiloxane (PDMS)-based, thermoplastic-based, paper/polymer hybrid systems, as well as other emerging hybrid systems (such as thread-based). The special benefits of using these hybrid systems have been summarized accordingly. A broad range of biological and biomedical applications using these hybrid microfluidic devices are discussed in detail, including nucleic acid analysis, protein analysis, cellular analysis, 3D cell culture, organ-on-a-chip, and tissue engineering. The perspective trends of hybrid microfluidic systems involving the improvement of fabrication techniques and broader applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Maowei Dou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Sanjay S Timilsina
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA. and Border Biomedical Research Center, Biomedical Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA and Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA
| |
Collapse
|
7
|
Wang L, Pumera M. Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116151] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Akther F, Yakob SB, Nguyen NT, Ta HT. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. BIOSENSORS 2020; 10:E182. [PMID: 33228050 PMCID: PMC7699314 DOI: 10.3390/bios10110182] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing the amount of samples and reagents and greater control over cellular microenvironment. Polydimethylsiloxane (PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency. However, the intrinsic hydrophobic nature of PDMS makes cell seeding challenging when applied on PDMS surface. The hydrophobicity of the PDMS surface also allows the non-specific absorption/adsorption of small molecules and biomolecules that might affect the cellular behaviour and functions. Hydrophilic modification of PDMS surface is indispensable for successful cell seeding. This review collates different techniques with their advantages and disadvantages that have been used to improve PDMS hydrophilicity to facilitate endothelial cells seeding in PDMS devices.
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Shazwani Binte Yakob
- School of Pharmacy, the University of Queensland, Brisbane, QLD 4102, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
9
|
Schilly KM, Gunawardhana SM, Wijesinghe MB, Lunte SM. Biological applications of microchip electrophoresis with amperometric detection: in vivo monitoring and cell analysis. Anal Bioanal Chem 2020; 412:6101-6119. [PMID: 32347360 PMCID: PMC8130646 DOI: 10.1007/s00216-020-02647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.
Collapse
Affiliation(s)
- Kelci M Schilly
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Shamal M Gunawardhana
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Manjula B Wijesinghe
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
10
|
Ragab MAA, El-Kimary EI. Recent Advances and Applications of Microfluidic Capillary Electrophoresis: A Comprehensive Review (2017-Mid 2019). Crit Rev Anal Chem 2020; 51:709-741. [PMID: 32447968 DOI: 10.1080/10408347.2020.1765729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microfluidic capillary electrophoresis (MCE) is the novel technique resulted from the CE mininaturization as planar separation and analysis device. This review presents and discusses various application fields of this advanced technology published in the period 2017 till mid-2019 in eight different sections including clinical, biological, single cell analysis, environmental, pharmaceuticals, food analysis, forensic and ion analysis. The need for miniaturization of CE and the consequence advantages achieved are also discussed including high-throughput, miniaturized detection, effective separation, portability and the need for micro- or even nano-volume of samples. Comprehensive tables for the MCE applications in the different studied fields are provided. Also, figure comparing the number of the published papers applying MCE in the eight discussed fields within the studied period is included. The future investigation should put into consideration the possibility of replacing conventional CE with the MCE after proper validation. Suitable validation parameters with their suitable accepted ranges should be tailored for analysis methods utilizing such unique technique (MCE).
Collapse
Affiliation(s)
- Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| | - Eman I El-Kimary
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, El-Messalah, Alexandria, Egypt
| |
Collapse
|
11
|
Castiaux AD, Currens ER, Martin RS. Direct embedding and versatile placement of electrodes in 3D printed microfluidic-devices. Analyst 2020; 145:3274-3282. [PMID: 32242194 PMCID: PMC7243341 DOI: 10.1039/d0an00240b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we describe how PolyJet 3D printing technology can be used to fully integrate electrode materials into microfluidic devices during the print process. This approach uses stacked printing (separate printing steps and stage drops) with liquid support to result in devices where electrodes and a capillary fluidic connection are directly integrated and ready to use when printing is complete. A key feature of this approach is the ability to directly incorporate electrode materials into the print process so that the electrode(s) can be placed anywhere in the channel (at any height). We show that this can be done with a single electrode or an electrode array (which led to increases in signal). In both cases, we found that a middle electrode configuration leads to a significant increase in the sensitivity, as opposed to more traditional bottom channel placement. Since the electrode is embedded in the device, in situ platinum black deposition was performed to aid in the detection of nitric oxide. Finally, a generator-collector configuration with an opposed counter electrode was made by placing two working electrodes ∼750 μm apart (in the middle of the channel) and a platinum counter electrode at the bottom of the channel. The utility of this configuration was demonstrated by dual electrode detection of catechol. This 3D printing approach affords robust electrochemical detection schemes with new electrode configurations being possible in a manner that also increases the ease of use and transferability of the 3D printed devices with integrated electrode materials.
Collapse
|
12
|
Hayter EA, Castiaux AD, Martin RS. 3D-Printed Microfluidic Device with In-line Amperometric Detection that Also Enables Multi-Modal Detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2046-2051. [PMID: 32849919 PMCID: PMC7444025 DOI: 10.1039/d0ay00368a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidic amperometric detectors often include a reservoir to house auxiliary and reference electrodes, making subsequent detection downstream challenging. Here, we present an in-line microfluidic device with amperometric detection that incorporates a three-electrode set-up, made possible by threading electrodes into a 3D-printed flow cell. The electrodes consist of a commercially available threaded reference electrode and electrodes fabricated in commercially available fittings. This approach centers the working electrode in the fluidic channel enabling the use of a pillar working electrode that is shown to increase sensitivity, as compared to a traditional thin-layer electrode. In addition, the working and auxiliary electrodes can be directly opposed, with this configuration leading to a more uniform potential being applied to the working electrode as well as fewer issues with any iR drop. To demonstrate the ability to incorporate a separate mode of detection downstream from the electrochemical flow cell, the device is modified to include a mixing T for introduction of reagents for chemiluminescent detection of ATP (via the luciferin-luciferase reaction), leading to a single 3D-printed device that can be used to detect norepinephrine and ATP, nearly simultaneously, by amperometry and chemiluminescence, respectively. This approach opens numerous possibilities, where microfluidics with in-line amperometry can be used in continuous circulation studies or in conjunction with other downstream detection events to study complex systems.
Collapse
|
13
|
Abstract
The developments in the field of rehabilitation are proceeding hand in hand with those of cybernetics, with the result of obtaining increasingly performing prostheses and rehabilitations for patients. The purpose of this work is to make a brief exposition of new technologies regarding composites materials that are used in the prosthetic and rehabilitative fields. Data collection took place on scientific databases, limited to a collection of data for the last five years, in order to present news on the innovative and actual materials. The results show that some of the most commonly used last materials are glass fibers and carbon fibers. Even in the robotics field, materials of this type are beginning to be used, thanks above all to the mechanical performances they offer. Surely these new materials, which offer characteristics similar to those in humans, could favor both the rehabilitation times of our patients, and also a better quality of life.
Collapse
|
14
|
Castiaux AD, Spence DM, Martin RS. Review of 3D Cell Culture with Analysis in Microfluidic Systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:4220-4232. [PMID: 32051693 PMCID: PMC7015157 DOI: 10.1039/c9ay01328h] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A review with 105 references that analyzes the emerging research area of 3D cell culture in microfluidic platforms with integrated detection schemes. Over the last several decades a central focus of cell culture has been the development of better in vivo mimics. This has led to the evolution from planar cell culture to cell culture on 3D scaffolds, and the incorporation of cell scaffolds into microfluidic devices. Specifically, this review explores the incorporation of suspension culture, hydrogels scaffolds, paper-based scaffolds, and fiber-based scaffolds into microfluidic platforms. In order to decrease analysis time, simplify sample preparation, monitor key signaling pathways involved in cell-to-cell communication or cell growth, and combat the limitations of sample volume/ dilution seen in traditional assays, researchers have also started to focus on integrating detection schemes into the cell culture devices. This review will highlight the work that has been performed towards combining these techniques and will discuss potential future directions. It is clear that microfluidic-based 3D cell culture coupled with quantitative analysis can greatly improve our ability to mimic and understand in vivo systems.
Collapse
Affiliation(s)
- Andre D Castiaux
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103
| | - Dana M Spence
- Department of Biomedical Engineering, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, MO 63103
| |
Collapse
|