1
|
Min SH, Lei W, Jun CJ, Yan ZS, Guang YX, Tong Z, Yong ZP, Hui LZ, Xing H. Design strategy and research progress of multifunctional nanoparticles in lung cancer therapy. Expert Opin Investig Drugs 2023; 32:723-739. [PMID: 37668152 DOI: 10.1080/13543784.2023.2254683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Lung cancer is one of the cancer types with the highest mortality rate, exploring a more effective treatment modality that improves therapeutic efficacy while mitigating side effects is now an urgent requirement. Designing multifunctional nanoparticles can be used to overcome the limitations of drugs and conventional drug delivery systems. Nanotechnology has been widely researched, and through different needs, suitable nanocarriers can be selected to load anti-cancer drugs to improve the therapeutic effect. It is foreseeable that with the rapid development of nanotechnology, more and more lung cancer patients will benefit from nanotechnology. This paper reviews the merits of various multifunctional nanoparticles in the treatment of lung cancer to provide novel ideas for lung cancer treatment. AREAS COVERED This review focuses on summarizing various nanoparticles for targeted lung cancer therapy and their advantages and disadvantages, using nanoparticles loaded with anti-cancer drugs, delivered to lung cancer sites, enhancing drug half-life, improving anti-cancer drug efficacy and reducing side effects. EXPERT OPINION The delivery mode of nanoparticles with superior pharmacokinetic properties in the in vivo circulation enhances the half-life of the drug, and provides tissue-targeted selectivity and the ability to overcome biological barriers, bringing a revolution in the field of oncology.
Collapse
Affiliation(s)
- Shen Hui Min
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Lei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Jia Jun
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Shao Yan
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Xu Guang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Tong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Pei Yong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhen Hui
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huang Xing
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Hydroxyapatite Nanoparticles for Improved Cancer Theranostics. J Funct Biomater 2022; 13:jfb13030100. [PMID: 35893468 PMCID: PMC9326646 DOI: 10.3390/jfb13030100] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Beyond their well-known applications in bone tissue engineering, hydroxyapatite nanoparticles (HAp NPs) have also been showing great promise for improved cancer therapy. The chemical structure of HAp NPs offers excellent possibilities for loading and delivering a broad range of anticancer drugs in a sustained, prolonged, and targeted manner and thus eliciting lower complications than conventional chemotherapeutic strategies. The incorporation of specific therapeutic elements into the basic composition of HAp NPs is another approach, alone or synergistically with drug release, to provide advanced anticancer effects such as the capability to inhibit the growth and metastasis of cancer cells through activating specific cell signaling pathways. HAp NPs can be easily converted to smart anticancer agents by applying different surface modification treatments to facilitate the targeting and killing of cancer cells without significant adverse effects on normal healthy cells. The applications in cancer diagnosis for magnetic and nuclear in vivo imaging are also promising as the detection of solid tumor cells is now achievable by utilizing superparamagnetic HAp NPs. The ongoing research emphasizes the use of HAp NPs in fabricating three-dimensional scaffolds for the treatment of cancerous tissues or organs, promoting the regeneration of healthy tissue after cancer detection and removal. This review provides a summary of HAp NP applications in cancer theranostics, highlighting the current limitations and the challenges ahead for this field to open new avenues for research.
Collapse
|
3
|
Kang Z, Wang C, Zhang Z, Liu Q, Zheng Y, Zhao Y, Pan Z, Li Q, Shi L, Liu Y. Spatial Distribution Control of Antimicrobial Peptides through a Novel Polymeric Carrier for Safe and Efficient Cancer Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201945. [PMID: 35385590 DOI: 10.1002/adma.202201945] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial peptides (AMPs) hold great potential for use in tumor treatment. However, developing AMP-based antitumor therapies is challenging due to circulatory instability, hemolytic toxicity, low selectivity, and poor cell permeability of AMPs. In this study, a polymeric carrier for AMPs (denoted as PAMPm -co-PPBEn /PCA) is presented that effectively enhances their anticancer efficacy while minimizing their potential side effects. By integrating multiple responsive structures at the molecular level, the carrier finely controls the spatial distribution of AMPs in different biological microenvironments, thereby effectively modulating their membranolytic ability. Upon employing KLA as the model AMP, the polymeric carrier's hemolytic toxicity during blood circulation is suppressed, its cellular internalization when reaching tumor tissues facilitated, and its membranolytic toxicity toward the mitochondria upon entering cancer cells restored and further enhanced. Animal studies indicate that this approach significantly improves the antitumor efficacy of KLA and reduces its toxicity. Considering that the loading method for most AMPs is identical to that of KLA, the polymeric carrier reported in this study may provide a feasible approach for the development of AMP-based cancer treatments.
Collapse
Affiliation(s)
- Ziyao Kang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Chun Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Zhanzhan Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Qi Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yadan Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Zheng Pan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Chu Y, Sun T, Jiang C. Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev 2021; 178:113909. [PMID: 34352354 DOI: 10.1016/j.addr.2021.113909] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common tumor in women, and the metastasis further increases the malignancy with extremely high mortality. However, there is almost no effective method in the clinic to completely inhibit breast cancer metastasis due to the dynamic multistep process with complex pathways and scattered occurring site. Nowadays, nanomedicines have been evidenced with great potential in treating cancer metastasis. In this review, we summarize the latest research advances of nanomedicines in anti-metastasis treatment. Strategies are categorized according to the metastasis dynamics, including primary tumor, circulating tumor cells, pre-metastatic niches and secondary tumor. In each different stage of metastasis process, nanomedicines are designed specifically with different functions. At the end of the review, we give our perspectives on current limitations and future directions in anti-metastasis therapy. We expect the review provides comprehensive understandings of anti-metastasis therapy for breast cancer, and boosts the clinical translation in the future to improve women's health.
Collapse
|
6
|
Liu Y, Raina DB, Sebastian S, Nagesh H, Isaksson H, Engellau J, Lidgren L, Tägil M. Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma. Acta Biomater 2021; 131:555-571. [PMID: 34271171 DOI: 10.1016/j.actbio.2021.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Doxorubicin (DOX) is a cornerstone drug in the treatment of osteosarcoma. However, achieving sufficient concentration in the tumor tissue after systemic administration with few side effects has been a challenge. Even with the most advanced nanotechnology approaches, less than 5% of the total administered drug gets delivered to the target site. Alternatives to increase the local concentration of DOX within the tumor using improved drug delivery methods are needed. In this study, we evaluate a clinically approved calcium sulfate/hydroxyapatite (CaS/HA) carrier, both in-vitro and in-vivo, for local, sustained and controlled delivery of DOX to improve osteosarcoma treatment. In-vitro drug release studies indicated that nearly 28% and 36% of the loaded drug was released over a period of 4-weeks at physiological pH (7.4) and acidic pH (5), respectively. About 63% of the drug had been released after 4-weeks in-vivo. The efficacy of the released drug from the CaS/HA material was verified on two human osteosarcoma cell lines MG-63 and 143B. It was demonstrated that the released drug fractions functioned the same way as the free drug without impacting its efficacy. Finally, the carrier system with DOX was assessed using two clinically relevant human osteosarcoma xenograft models. Compared to no treatment or the clinical standard of care with systemic DOX administration, the delivery of DOX using a CaS/HA biomaterial could significantly hinder tumor progression by inhibiting angiogenesis and cell proliferation. Our results indicate that a clinically approved CaS/HA biomaterial containing cytostatics could potentially be used for the local treatment of osteosarcoma. STATEMENT OF SIGNIFICANCE: The triad of doxorubicin (DOX), methotrexate and cisplatin has routinely been used for the treatment of osteosarcoma. These drugs dramatically improved the prognosis, but 45-55% of the patients respond poorly to the treatment with low 5-year survival. In the present study, we repurpose the cornerstone drug DOX by embedding it in a calcium sulfate/hydroxyapatite (CaS/HA) biomaterial, ensuring a spatio-temporal drug release and a hypothetically higher and longer lasting intra-tumoral concentration of DOX. This delivery system could dramatically hinder the progression of a highly aggressive osteosarcoma compared to systemic administration, by inhibiting angiogenesis and cell proliferation. Our data show an efficient method for supplementary osteosarcoma treatment with possible rapid translational potential due to clinically approved constituents.
Collapse
|
7
|
Emerging nanomedicine-based therapeutics for hematogenous metastatic cascade inhibition: Interfering with the crosstalk between "seed and soil". Acta Pharm Sin B 2021; 11:2286-2305. [PMID: 34522588 PMCID: PMC8424221 DOI: 10.1016/j.apsb.2020.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Despite considerable progresses in cancer treatment, tumor metastasis is still a thorny issue, which leads to majority of cancer-related deaths. In hematogenous metastasis, the concept of “seed and soil” suggests that the crosstalk between cancer cells (seeds) and premetastatic niche (soil) facilitates tumor metastasis. Considerable efforts have been dedicated to inhibit the tumor metastatic cascade, which is a highly complicated process involving various pathways and biological events. Nonetheless, satisfactory therapeutic outcomes are rarely observed, since it is a great challenge to thwart this multi-phase process. Recent advances in nanotechnology-based drug delivery systems have shown great potential in the field of anti-metastasis, especially compared with conventional treatment methods, which are limited by serious side effects and poor efficacy. In this review, we summarized various factors involved in each phase of the metastatic cascade ranging from the metastasis initiation to colonization. Then we reviewed current approaches of targeting these factors to stifle the metastatic cascade, including modulating primary tumor microenvironment, targeting circulating tumor cells, regulating premetastatic niche and eliminating established metastasis. Additionally, we highlighted the multi-phase targeted drug delivery systems, which hold a better chance to inhibit metastasis. Besides, we demonstrated the limitation and future perspectives of nanomedicine-based anti-metastasis strategies.
Collapse
|
8
|
Zhu Y, Guo Y, Liu M, Wei L, Wang X. An oroxylin A-loaded aggregation-induced emission active polymeric system greatly increased the antitumor efficacy against squamous cell carcinoma. J Mater Chem B 2021; 8:2040-2047. [PMID: 32100790 DOI: 10.1039/c9tb01818b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Squamous cell carcinoma (SCC) is a usually responds poorly to treatment suffers from poor therapeutic benefits while oroxylin A (OA) is a promising flavonoid with high anticancer efficacy against various cancer types. Here in our study, in order to reveal the potential of OA based drug delivery systems (DDSs) in the treatment of SCC, we firstly revealed that OA had a certain pharmacodynamic effect on skin SCC (A431 cells). Afterwards, OA was loaded into a newly synthesized aggregation-induced emission (AIE)-active polymer to construct OA-loaded PDots for the first time. Our results revealed that OA-loaded PDots showed preferable drug loading and enhanced stability. Moreover, the DDS was also capable of self-illumination in the aggregate state to reveal the uptake profile. Most importantly, the DDS showed much more elevated anticancer benefits than free OA in vitro and advanced tumor targetability in vivo, suggesting that it might be a promising system against SCC.
Collapse
Affiliation(s)
- Yejin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China. and Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Yongjian Guo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| | - Mengdi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
9
|
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020; 10:605380. [PMID: 33381459 PMCID: PMC7768042 DOI: 10.3389/fonc.2020.605380] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Méndez-Guerrero
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
10
|
Li D, Cui R, Xu S, Liu Y. Synergism of cisplatin-oleanolic acid co-loaded hybrid nanoparticles on gastric carcinoma cells for enhanced apoptosis and reversed multidrug resistance. Drug Deliv 2020; 27:191-199. [PMID: 31924110 PMCID: PMC7006694 DOI: 10.1080/10717544.2019.1710622] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Combined administration of different drugs is a widely acknowledged approach for effective cancer therapy. However, the limited targeting, as well as inferior drug loading capacities of current drug delivery systems (DDS), are still the bottleneck for better performance in cancer treatment. Herein, we successfully developed a cancer cell membrane (CM) decorated calcium carbonate (CC) hybrid nanoparticles (HN) for the co-delivery of cisplatin (CDDP) and oleanolic acid (OA). The physicochemical property of HN/CDDP/OA was evaluated, which revealed that the as-prepared DDS was core-shell structured and well-dispersed nanoparticles with size around 100 nm. The HN/CDDP/OA showed high stability and biocompatibility with pH-responsive drug release. Moreover, the CM modification in HN also demonstrated highly elevated tumor-homing nature than bare CC. Finally, the feasibility of HN/CDDP/OA in the treatment of gastric cancer (MGC-803 cell line) was assessed. HN/CDDP/OA showed better performance than mono systems with enhanced apoptosis and capable of reversing multidrug resistance (MDR) of cancer cells.
Collapse
Affiliation(s)
- Danyang Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixue Cui
- Department of Medical Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Shuning Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Huang Q, Wang E, Gu W, Ma W, Zhou Y. Hyaluronan-coated meta-organic framework loaded with cisplatin and oleanolic acid for synergetic chemotherapy of colorectal cancer. JOURNAL OF MATERIALS RESEARCH 2020; 35:3106-3115. [DOI: 10.1557/jmr.2019.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Abstract
Collapse
|
12
|
Forest CR, Silva CAC, Thordarson P. Dual‐peptide functionalized nanoparticles for therapeutic use. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chelsea R. Forest
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| | - Caitlin A. C. Silva
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
13
|
Wang Y, Jiang L, Zhang Y, Lu Y, Li J, Wang H, Yao D, Wang D. Fibronectin-Targeting and Cathepsin B-Activatable Theranostic Nanoprobe for MR/Fluorescence Imaging and Enhanced Photodynamic Therapy for Triple Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33564-33574. [PMID: 32633941 DOI: 10.1021/acsami.0c10397] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the lack of specific targets, the highly aggressive triple negative breast cancer (TNBC) is unable to benefit from endocrine therapy or conventional targeting therapy. Even worse, current diagnostic and therapeutic approaches have limited value for TNBC. Therefore, developing TNBC-specific theranostic probes for accurate diagnosis and further selective therapy will build a powerful toolbox for TNBC management. In this contribution, we developed a sequential strategy to enhance the specificity of TNBC theranostics. In this theranostic system, a versatile nanoprobe (Pep-SQ@USPIO) was integrated legitimately for the fibronectin-targeting MR imaging and CTSB-activatable fluorescence imaging, followed with enhanced photodynamic therapy (PDT) of TNBC. First, the fibronectin overexpressed in the extracellular matrix (ECM) of TNBC was used as a biomarker for targeting theranostics using the Cys-Arg-Glu-Lys-Ala (CREKA) peptide. For another, the fluorescence and PDT capacity of self-developed squaraine photosensitizer (SQ) were prequenched by ultrasmall superparamagnetic iron oxide (USPIO), an MR imaging contrast agent. Once the linker, Gly-Phe-Leu-Gly (GFLG) peptide, was selectively cleaved by TNBC-derived CTSB, the liberated SQ photosensitizer allowed light-up fluorescence imaging and enhanced PDT of TNBC. Remarkably, this research demonstrates that tumor-ECM-targeting and endogenous enzyme-activated nanoprobes open a new avenue for TNBC theranostics.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Liping Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yimei Lu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jinning Li
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
14
|
Zhou Y, Han M, Gao J. Prognosis and targeting of pre-metastatic niche. J Control Release 2020; 325:223-234. [PMID: 32629136 DOI: 10.1016/j.jconrel.2020.06.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
As the main cause of tumoral fatality, metastasis remains to be one of the most urgent difficulties researcher struggled to overcome. During the development and progression of metastasis, the establishment of pre-metastatic niche is crucial in preparing fertile microenvironment for disseminated tumor cells settlement and colonization in distant metastatic target sites. The key participators, including the primary tumor-derived factors, bone marrow-derived cells, stromal cells of both the host and the potential metastatic sites, regulate the temporal progress of potential metastasis. Firstly, pioneers are sent from primary tumor, recruiting immunosuppressive cells; then circulating tumor cells settled and colonized; and finally, micrometastases develop. Here, we summarize the therapeutic strategies presented in recent years targeting different stages of the pre-metastatic niche formation and discuss their chances and challenges in clinical translation, providing promising approaches for metastasis prevention and therapeutic interventions.
Collapse
Affiliation(s)
- Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-Controlled Preparation and Behavior Study of Phospholipid-Calcium Carbonate Hybrid Nanoparticles. Int J Nanomedicine 2020; 15:4049-4062. [PMID: 32606663 PMCID: PMC7293410 DOI: 10.2147/ijn.s237156] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Calcium carbonate (CC) nanoparticles have broad biomedical utilizations, owing to their multiple intrinsic merits. However, bare CC nanoparticles do not allow for the development of multifunctional devices suitable for advanced drug delivery in cancer therapy. Methods Phospholipid-modified phospholipid–CC hybrid nanoparticles were prepared in our study using a combination of vapor-diffusion and solvent-diffusion methods to offer optimized pharmaceutical capabilities. Results Considering that particle size is a critical parameter that plays an important role in both in vitro and in vivo behaviors of nanoparticles, we here for the first time a present detailed protocol for the size-controlled preparation of hybrid nanoparticles, as well as analysis of the in vitro/in vivo behaviors of differently sized hybrid nanoparticles. Conclusion Our results might significantly advance the application of this promising material in more varied fields.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shaoqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lu Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xuerong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
16
|
Zhao Z, Ji M, Wang Q, He N, Li Y. Ca 2+ signaling modulation using cancer cell membrane coated chitosan nanoparticles to combat multidrug resistance of cancer. Carbohydr Polym 2020; 238:116073. [PMID: 32299562 DOI: 10.1016/j.carbpol.2020.116073] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Off-target drug delivery, together with multidrug resistance (MDR), are two keys obstacles that account for the disappointing outcome in clinical chemotherapy of cancer. To solve these dilemmas, Herein, we constructed cancer cell membrane (CCM) modified silica (CS) nanoparticles (CCM/CS) to co-deliver Ca2+ channel siRNA with doxorubicin (DOX) to construct a platform (CCM/CS/R-D) for the efficient therapy of cervical cancer. It was demonstrated that the optimal CCM/CS/R-D was spherical nanoparticles with size at 122.39 ± 4.69 nm and the surface charge of -27.76 ± 3.12 mV. In addition, the CCM/CS/R-D showed acid responsive drug release while high stability under physiological conditions with negligible hemolysis. The CCM/CS/R-D showed CCM mediated cellular uptake and efficient endosomal escape as well as siRNA transfection potential (comparable to that of PEI 25 K) on MDR cervical cancer cells (HeLa/DOX). Most importantly, the MDR of cancer cells was conquered through modulation of T-type Ca2+ (Cav) channels. It was observed that the Cav channel siRNA could negatively regulate the level of cytosolic Ca2+ concentration which triggered G0/G1 phase cell cycle arrest and elevated intracellular drug retention in HeLa/DOX cells without significantly affect the expression of P-glycolprotein (P-gp). The in vitro and in vivo experiments revealed that CCM/CS/R-D exerted greatly enhanced tumor targetability and therapeutic effect on HeLa/DOX, which was superior than CS/R-D or mono delivery system (CCM/CS/R or CCM/CS/D).
Collapse
Affiliation(s)
- Zhao Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mei Ji
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Qianqing Wang
- Gynaecological Oncology, Xinxiang Central Hospital, Xinxiang 453000, China
| | - Nannan He
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yue Li
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
17
|
Sun X, Li Y, Xu L, Shi X, Xu M, Tao X, Yang G. Heparin coated meta-organic framework co-delivering doxorubicin and quercetin for effective chemotherapy of lung carcinoma. J Int Med Res 2020; 48:300060519897185. [PMID: 32054349 PMCID: PMC7111025 DOI: 10.1177/0300060519897185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 11/26/2022] Open
Abstract
Objective To develop and evaluate a drug delivery system (DDS) capable of targeting cancer cells while at the same time delivering two chemotherapeutic agents to overcome multidrug resistance (MDR). Methods This study developed a DDS composed of heparin (HA)-coated meta-organic framework (MOF) nanoparticles (HM) designed to deliver doxorubicin (Dox) and quercetin (Que). A range of in vitro and in vivo studies were conducted to determine the characteristics of the HM/Dox/Que nanoparticles, their ability to produce cytotoxic effects in Dox-resistant A549/Dox cells and target and treat solid tumours in a mouse xenograft model of human lung carcinoma. Results This study demonstrated that the HM/Dox/Que nanoparticles reduced cell viability, increased apoptosis, arrested cells in the G0/G1 phase of the cell cycle and reversed MDR in A549/Dox cells in vitro when compared with mono-drug delivery. In a mouse xenograft model of human lung carcinoma, the HM/Dox/Que nanoparticles targeted the tumours and reduced tumour growth as determined by tumour volume. Conclusion The use of HM/Dox/Que nanoparticles might be a viable alternative to traditional chemotherapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaojun Sun
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Yongxing Li
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Liang Xu
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Xinyu Shi
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Mengmin Xu
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Xuefang Tao
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| | - Guobiao Yang
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University of Arts and Sciences, Shaoxing, Zhejiang Province, China
| |
Collapse
|
18
|
Chen D, Cai L, Guo Y, Chen J, Gao Q, Yang J, Li Y. Cancer Cell Membrane-Decorated Zeolitic-Imidazolate Frameworks Codelivering Cisplatin and Oleanolic Acid Induce Apoptosis and Reversed Multidrug Resistance on Bladder Carcinoma Cells. ACS OMEGA 2020; 5:995-1002. [PMID: 31984255 PMCID: PMC6977025 DOI: 10.1021/acsomega.9b02261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/11/2019] [Indexed: 05/10/2023]
Abstract
Combination therapy is emerging as a preferable approach in cancer therapy with minimized side effects and elevated performance. Nevertheless, the poor targeting and drug loading of currently available drug delivery systems (DDSs) are the main difficulties to realize preferable combination therapy of cancer. As a result, a cancer cell membrane-decorated zeolitic-imidazolate framework hybrid nanoparticle (HP) was successfully constructed in our study to codeliver cisplatin (DDP) and oleanolic acid (OLA). Our results showed positive results of the platform (HP/DDP/OLA) for the treatment of bladder cancer (SW780). In detail, HP/DDP/OLA could enhance apoptosis while reverse multidrug resistance in SW780 cells than free drugs alone or monodelivery systems, which might be a suitable DDS for codelivery of different drugs with great promise.
Collapse
Affiliation(s)
- Dong Chen
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Longbo Cai
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Yihong Guo
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Junyi Chen
- Department
of Urology, 2nd Affiliated Hospital of Fujian
Medical University, Quanzhou City 362000, Fujian Province, China
| | - Qiangli Gao
- Department
of Urology, The Affiliated Puren Hospital
of Wuhan University of Science and Technology, No. 1 Benxi Street, the Fourth Jianshe Road, Qingshan District, Wuhan 430080, China
| | - Junxian Yang
- Department
of Urology, The Affiliated Puren Hospital
of Wuhan University of Science and Technology, No. 1 Benxi Street, the Fourth Jianshe Road, Qingshan District, Wuhan 430080, China
| | - Yongfa Li
- Department
of Urology, The Affiliated Puren Hospital
of Wuhan University of Science and Technology, No. 1 Benxi Street, the Fourth Jianshe Road, Qingshan District, Wuhan 430080, China
| |
Collapse
|
19
|
AbouAitah K, Stefanek A, Higazy IM, Janczewska M, Swiderska-Sroda A, Chodara A, Wojnarowicz J, Szałaj U, Shahein SA, Aboul-Enein AM, Abou-Elella F, Gierlotka S, Ciach T, Lojkowski W. Effective Targeting of Colon Cancer Cells with Piperine Natural Anticancer Prodrug Using Functionalized Clusters of Hydroxyapatite Nanoparticles. Pharmaceutics 2020; 12:E70. [PMID: 31963155 PMCID: PMC7022489 DOI: 10.3390/pharmaceutics12010070] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 01/03/2023] Open
Abstract
Targeted drug delivery offers great opportunities for treating cancer. Here, we developed a novel anticancer targeted delivery system for piperine (Pip), an alkaloid prodrug derived from black pepper that exhibits anticancer effects. The tailored delivery system comprises aggregated hydroxyapatite nanoparticles (HAPs) functionalized with phosphonate groups (HAP-Ps). Pip was loaded into HAPs and HAP-Ps at pH 7.2 and 9.3 to obtain nanoformulations. The nanoformulations were characterized using several techniques and the release kinetics and anticancer effects investigated in vitro. The Pip loading capacity was >20%. Prolonged release was observed with kinetics dependent on pH, surface modification, and coating. The nanoformulations fully inhibited monolayer HCT116 colon cancer cells compared to Caco2 colon cancer and MCF7 breast cancer cells after 72 h, whereas free Pip had a weaker effect. The nanoformulations inhibited ~60% in HCT116 spheroids compared to free Pip. The Pip-loaded nanoparticles were also coated with gum Arabic and functionalized with folic acid as a targeting ligand. These functionalized nanoformulations had the lowest cytotoxicity towards normal WI-38 fibroblast cells. These preliminary findings suggest that the targeted delivery system comprising HAP aggregates loaded with Pip, coated with gum Arabic, and functionalized with folic acid are a potentially efficient agent against colon cancer.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622 Dokki, Giza, Egypt
| | - Agata Stefanek
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Iman M. Higazy
- Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), P.C. 12622 Dokki Giza, Egypt;
| | - Magdalena Janczewska
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Agnieszka Chodara
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
- Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Samar A. Shahein
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Ahmed M. Aboul-Enein
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Faten Abou-Elella
- Biochemistry Department, Faculty of Agriculture, Cairo University, P.C. 12613 Giza, Egypt (A.M.A.-E.); (F.A.-E.)
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.S.); (M.J.); (T.C.)
| | - Witold Lojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (A.S.-S.); (A.C.); (J.W.); (U.S.); (S.G.); (W.L.)
| |
Collapse
|
20
|
Ren X, Yi Z, Sun Z, Ma X, Chen G, Chen Z, Li X. Natural polysaccharide-incorporated hydroxyapatite as size-changeable, nuclear-targeted nanocarrier for efficient cancer therapy. Biomater Sci 2020; 8:5390-5401. [DOI: 10.1039/d0bm01320j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nuclear-targeted, size-changeable polysaccharide hybrid hydroxyapatite nanoparticles were prepared for the delivery of doxorubicin for cancer therapy, showing low toxicity to healthy tissue cells but strong killing effect on tumor cells.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
- Department of Biomedical Engineering
| | - Zeng Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Zhe Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Guangcan Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | | | - Xudong Li
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
21
|
Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2019; 69:279-292. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | - Ameeduzzafar
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | | | | | - Fahad A Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Natural Product Drug Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Aslam
- Statistics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.
| |
Collapse
|
22
|
Molavipordanjani S, Hosseinimehr SJ. Strategies for Conjugation of Biomolecules to Nanoparticles as Tumor Targeting Agents. Curr Pharm Des 2019; 25:3917-3926. [DOI: 10.2174/1381612825666190903154847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Combination of nanotechnology, biochemistry, chemistry and biotechnology provides the opportunity
to design unique nanoparticles for tumor targeting, drug delivery, medical imaging and biosensing. Nanoparticles
conjugated with biomolecules such as antibodies, peptides, vitamins and aptamer can resolve current challenges
including low accumulation, internalization and retention at the target site in cancer diagnosis and therapy
through active targeting. In this review, we focus on different strategies for conjugation of biomolecules to
nanoparticles such as inorganic nanoparticles (iron oxide, gold, silica and carbon nanoparticles), liposomes, lipid
and polymeric nanoparticles and their application in tumor targeting.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
23
|
Pan H, Sun Y, Cao D, Wang L. Low-density lipoprotein decorated and indocyanine green loaded silica nanoparticles for tumor-targeted photothermal therapy of breast cancer. Pharm Dev Technol 2019; 25:308-315. [PMID: 31820663 DOI: 10.1080/10837450.2019.1684944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hongying Pan
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Yi Sun
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Danxia Cao
- Department of Thyroid and Breast Surgery, Danyang People’s Hospital, Danyang, Jiangsu, China
| | - Lihui Wang
- Central Laboratory, Danyang People’s Hospital, Danyang, Jiangsu, China
| |
Collapse
|
24
|
He J, Gong C, Qin J, Li M, Huang S. Cancer Cell Membrane Decorated Silica Nanoparticle Loaded with miR495 and Doxorubicin to Overcome Drug Resistance for Effective Lung Cancer Therapy. NANOSCALE RESEARCH LETTERS 2019; 14:339. [PMID: 31705398 PMCID: PMC6841775 DOI: 10.1186/s11671-019-3143-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
Current cancer therapy usually succumbs to many extracellular and intracellular barriers, among which untargeted distribution and multidrug resistance (MDR) are two important difficulties responsible for poor outcome of many drug delivery systems (DDS). Here, in our study, the dilemma was addressed by developing a cancer cell membrane (CCM)-coated silica (SLI) nanoparticles to co-deliver miR495 with doxorubicin (DOX) for effective therapy of lung cancer (CCM/SLI/R-D). The homologous CCM from MDR lung cancer cells (A549/DOX) was supposed to increase the tumor-homing property of the DDS to bypass the extracellular barriers. Moreover, the MDR of cancer cells were conquered through downregulation of P-glycoprotein (P-gp) expression using miR495. It was proved that miR495 could significantly decrease the expression of P-gp which elevated intracellular drug accumulation in A549/DOX. The in vitro and in vivo results exhibited that CCM/SLI/R-D showed a greatly enhanced therapeutic effect on A549/DOX, which was superior than applying miR495 or DOX alone. The preferable effect of CCM/SLI/R-D on conquering the MDR in lung cancer provides a novel alternative for effective chemotherapy of MDR cancers.
Collapse
Affiliation(s)
- Jinyuan He
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Chulian Gong
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Jie Qin
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Mingan Li
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| | - Shaohong Huang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630 China
| |
Collapse
|
25
|
Bio-inspired drug-dominated supramolecular nanocomplex based on low molecular weight heparin for progressive tumor therapy. Carbohydr Polym 2019; 220:30-42. [DOI: 10.1016/j.carbpol.2019.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/25/2023]
|
26
|
Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; 69:249-267. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Cancer, being the most prevalent and resistant disease afflicting any gender, age or social status, is the ultimate challenge for the scientific community. The new generation therapeutics for cancer management has shifted the approach to personalized/precision medicine, making use of patient- and tumor-specific markers for specifying the targeted therapies for each patient. Peptides targeting these cancer-specific signatures hold enormous potential for cancer therapy and diagnosis. The rapid advancements in the combinatorial peptide libraries served as an impetus to the development of multifunctional peptide-based materials for targeted cancer therapy. The present review outlines benefits and shortcomings of peptides as cancer therapeutics and the potential of peptide modified nanomedicines for targeted delivery of anticancer agents.
Collapse
|
27
|
Wei K, Zhang J, Li X, Shi P, Fu P. High density lipoprotein coated calcium carbonate nanoparticle for chemotherapy of breast cancer. J Biomater Appl 2019; 34:178-187. [PMID: 31109259 DOI: 10.1177/0885328219850759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kai Wei
- 1 Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Zhang
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Li
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Shi
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- 2 Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Ni J, Sun Y, Song J, Zhao Y, Gao Q, Li X. Artificial Cell-Mediated Photodynamic Therapy Enhanced Anticancer Efficacy through Combination of Tumor Disruption and Immune Response Stimulation. ACS OMEGA 2019; 4:12727-12735. [PMID: 31460395 PMCID: PMC6682153 DOI: 10.1021/acsomega.9b01881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
Recent studies have identified photodynamic therapy (PDT) as a promising approach for cancer treatment. Here, in this study, we have constructed cancer cell membrane (CCM)-coated silica nanoparticles (SIL) as an artificial cell carrier (CCM/SIL) to effectively deliver chlorin e6 (Ce6), a commonly adopted photodynamic reagent (CCM/SIL/Ce6), to achieve enhanced PDT of cancer. In addition, apart from the generally recognized cytotoxicity induced by reactive oxygen species (ROS), our study also revealed that ROS could further potentiate the loss of intercellular junctions and integrity disruption as a result of down-regulation of VE-cadherin and CD31. Consequently, dendritic cells (DCs) were more readily accumulated to the tumor tissue and became maturated, which secreted tumor necrosis factor-α and interleukin-12 (IL-12) to trigger the following immune responses. Our work not only explored the anticancer feasibility of a new system but also demonstrated the underlining mechanisms responsible for PDT-induced anticancer effects, which offers a new perspective to employ and improve the efficacy of PDT and related systems.
Collapse
Affiliation(s)
- Jiang Ni
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Ying Sun
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Jinfang Song
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Yiqing Zhao
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Qiufang Gao
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| | - Xia Li
- Department of Pharmacy, The
Affiliated Hospital of Jiangnan University (original
Area of Wuxi Third People’s Hospital), No. 585, North Xingyuan Road,
Liang Xi District, Wuxi City 214000, Jiangsu Province, P. R. China
| |
Collapse
|
29
|
Yang J, Teng Y, Fu Y, Zhang C. Chlorins e6 loaded silica nanoparticles coated with gastric cancer cell membrane for tumor specific photodynamic therapy of gastric cancer. Int J Nanomedicine 2019; 14:5061-5071. [PMID: 31371947 PMCID: PMC6628142 DOI: 10.2147/ijn.s202910] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Photodynamic therapy (PDT) is widely recognized as a promising way to cure cancer. However, the limited tumor homing property of currently available drug delivery systems (DDSs) is the bottleneck for the delivery of photodynamic agents. Purpose: In our study, we decorated silica nanoparticles (SLN) with cell membrane (CM) derived from SGC7901 cells to construct carrier (CM/SLN) which was able to to specifically target the homogenous SGC7901 cells. Materials and methods: Furthermore, the decent drug loading capability of CM/SLN was adopted to load photodynamic agent chlorins e6 (Ce6) to finally construct aDDS suitable for tumor-targeted PDT of gastric cancer. Results: The experimental results suggested that CM/SLN/Ce6 was nano-sized particles with good dispersion and stability in physiological conditions. Moreover, due to the modification of CM,CM/SLN/Ce6 could specifically target the homogenous SGC7901 cells both in vitro and in vivo. Most importantly, further in vivo results demonstrated that the CM/SLN/Ce6 showed a better anticancer outcome compared to SLN/Ce6. Conclusion: CM/SLN/Ce6 might be a promising platform for effective tumor targeted PDT of gastric cancer.
Collapse
Affiliation(s)
- Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yongliang Teng
- Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yu Fu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Chunyu Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
30
|
Zhang J, Miao Y, Ni W, Xiao H, Zhang J. Cancer cell membrane coated silica nanoparticles loaded with ICG for tumour specific photothermal therapy of osteosarcoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2298-2305. [PMID: 31174440 DOI: 10.1080/21691401.2019.1622554] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jingwei Zhang
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Yu Miao
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Weifeng Ni
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Haijun Xiao
- Department of Orthopedics, Shanghai Fengxian District Central Hospital / Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jieyuan Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
31
|
Zhang H, Yu N, Chen Y, Yan K, Wang X. Cationic liposome codelivering PI3K pathway regulator improves the response of BRCA1-deficient breast cancer cells to PARP1 inhibition. J Cell Biochem 2019; 120:13037-13045. [PMID: 30873673 DOI: 10.1002/jcb.28574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
Abstract
Although some progresses have been made in breast cancer therapy, effective treatment for BRCA1-deficient breast cancer remains to be a great challenge. It has been demonstrated that the PI3K pathway is inappropriately activated in BRCA1-deficient breast cancers which can be downregulated by microRNA 451 (miR-451). In addition, although PARP1 inhibitors showed relatively positive results in both preclinical and clinical studies, additional efforts to decrease drug resistance as well as reduce systematic toxicity need to be addressed. To this end, by encapsulating the miR-451 mimic and PARP1 inhibitor in the same cationic liposome, we examined the potential of enhancing the response of PARP1 inhibition on BRCA1-deficient breast cancer by regulating the PI3K pathway. Our results revealed that in BRCA1-deficient human breast cancer cell line, PARP1 inhibition resulted in DNA damage with viability decrease, G2/M arrest as well as apoptosis. In contrast, single PI3K inhibition induced G1 arrest along with retarded cell proliferation. However, it was noted that combination of PARP inhibitor and PI3K regulator could exert synergetic function to evidently decrease cell proliferation compared with PARP inhibition alone, which was also confirmed by in vivo antitumor assay using xenograft tumor models. Collectively, our results offer an alternative but superior strategy for the therapy of BRCA1-deficient human breast cancers which may benefit the clinical applications.
Collapse
Affiliation(s)
- Haipeng Zhang
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Na Yu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Yan Chen
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Kaowen Yan
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xiaozhen Wang
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Xiong H, Wu Y, Jiang Z, Zhou J, Yang M, Yao J. pH-activatable polymeric nanodrugs enhanced tumor chemo/antiangiogenic combination therapy through improving targeting drug release. J Colloid Interface Sci 2019; 536:135-148. [PMID: 30366179 DOI: 10.1016/j.jcis.2018.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
It was widely accepted that polymeric nanodrugs held superiority in enhancing antitumor efficacy, reducing side effect and achieving better long-term prognosis. However, there still existed disputes that whether their therapeutic efficiency was closely related to insure effective release of hydrophobic drug located in their hydrophobic core in tumor site. In order to investigate this controversy, we constructed two polymeric nanodrugs (pH-activatable sLMWH-UOA and non-sensitive LMWH-UOA) with low molecular weight heparin (LMWH) and ursolic acid (UOA) for chemo-and anti-angiogenic combination therapy in hepatocellular carcinoma. The degradation ratio of pH-activatable sLMWH-UOA increased by 33% compared with non-sensitive LMWH-UOA in in vitro degradation study. Besides, confocal microscopy captured that sLMWH-UOA could effectively release drug in acidic microenvironment of lysosome while LMWH-UOA nearly could not. More importantly, in contrast with LMWH-UOA, sLMWH-UOA presented pH-dependent cytotoxicity, indicating that promoting drug release played a key role in enhancing the cytotoxicity of polymeric nanodrugs. Additionally, in vivo pharmacodynamic evaluation showed that although non-sensitive LMWH-UOA had benefited from enhanced tumor targeting drug delivery ability to achieve absolute advantage over free drug combination therapy in antitumor combination therapy, sLMWH-UOA could acquire further optimized combined therapeutic effect with better drug release in tumor. All above, application of tumor-triggered chemical bonds to construct polymeric nanodrugs held vast prospect for improving the therapeutic efficiency for tumor cells.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yuanyuan Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhijie Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Min Yang
- Jiangsu Institute of Nuclear Medicine, Molecular Imaging Center, Jiangsu Institute of Nuclear Medicine, 20 Qianrong Rd, Wuxi 214063, China.
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
33
|
Wang H, He L, Zhang P, Zhang J, Chen Z, Ren X, Mei X. Folate-modified hydroxyapatite nanorods induce apoptosis in MCF-7 cells through a mitochondrial-dependent pathway. NEW J CHEM 2019. [DOI: 10.1039/c9nj03653a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted delivery of therapeutic drugs into cancer cells is a facile method to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Huiping Wang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Libang He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Peng Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Jie Zhang
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Zhenhua Chen
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xiuli Ren
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| | - Xifan Mei
- Jinzhou Medical University
- Jinzhou
- People's Republic of China
| |
Collapse
|