1
|
Wu J, Zuo J, Dou W, Wang K, Long J, Yu C, Miao Y, Liao Y, Li Y, Cao Y, Lu L, Jin Y, Zhang B, Yang J. Rapidly separable bubble microneedle-patch system present superior transdermal mRNA delivery efficiency. Int J Pharm 2025; 674:125427. [PMID: 40074159 DOI: 10.1016/j.ijpharm.2025.125427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Traditional mRNA vaccine formulation loaded by lipid nanoparticle (mRNA-LNP) has several shortcomings in clinical application, including the need for cryopreservation, discomfort associated with intramuscular injections, and the risk of liver aggregation. Dissolvable microneedles (DMNs), as a novel transdermal drug delivery platform, can overcome the skin barrier to deliver drugs directly into the skin in a minimally invasive manner. However, mRNA-LNP is unstable and easily degraded during the solidification of DMN. In this study, we proposed to establish a rapidly dissolvable bubble microneedle patch (bMNP) system for the transdermal delivery of mRNA-LNP. We explored to use polyvinyl alcohol (PVA) and trehalose for the first time as matrix material for preparing microneedles. Our results demonstrate that the stability of the mRNA-LNP was obviously improved. The mRNA in this bMNP system can be stored at room temperature for at least one month. Furthermore, the existence of air bubbles between the needle tip and the dorsal scale of bMNP can achieve dorsal scale separation by applying shear force after inserting into subcutaneous tissue, and effectively target lymph nodes in vivo after releasing mRNA-LNP. Using mRNA that encodes the spike protein from SARS-CoV-2 as a test case, the rapidly separable bMNP system induced the production of significant levels of spike-specific IgG antibodies, neutralizing antibodies, and a Th1-polarized T cell response, providing an alternative route for mRNA delivery. Our research is expected to provide a promising transdermal drug delivery strategy that can improve mRNA vaccine accessibility.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China; Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Jun Zuo
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Wei Dou
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China; Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Ke Wang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jinrong Long
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Changxiao Yu
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yiqi Miao
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yuqin Liao
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yanyan Li
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yiming Cao
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Lu Lu
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Bo Zhang
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China.
| | - Jing Yang
- Bioinformatics Center of AMMS, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Huang J, Wang X, Li Z. Dissolving microneedles: standing out in melanoma treatment. J Mater Chem B 2024; 12:11573-11595. [PMID: 39431729 DOI: 10.1039/d4tb01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Melanoma is one of the most significant and dangerous superficial skin tumors with a high fatality rate, thanks to its high invasion rate, drug resistance and frequent metastasis properties. Unfortunately, researchers for decades have demonstrated that the outcome of using conventional therapies like chemotherapy and immunotherapy with normal drug delivery routes, such as an oral route to treat melanoma was not satisfactory. The severe adverse effects, slow drug delivery efficiency and low drug accumulation at targeted malignancy sites all lead to poor anti-cancer efficacy and terrible treatment experience. As a novel transdermal drug delivery system, microneedles (MNs) have emerged as an effective solution to help improve the low cure rate of melanoma. The excellent characteristics of MNs make it easy to penetrate the stratum corneum (SC) and then locally deliver the drug towards the lesion without drug leakage to mitigate the occurrence of side effects and increase the drug accumulation. Therefore, loading chemotherapeutic drugs or immunotherapy drugs in MNs can address the problems mentioned above, and MNs play a crucial role in improving the curative effect of conventional treatment methods. Notably, novel tumor therapies like photothermal therapy (PTT), photodynamic therapy (PDT) and chemodynamic therapy (CDT) have shown good application prospects in the treatment of melanoma, and MNs provide a valid platform for the combination of conventional therapies and novel therapies by encompassing different therapeutic materials in the matrix of MNs. The synergistic effect of multiple therapies can enhance the therapeutic efficacy compared to single therapies, showing great potential in melanoma treatment. Dissolving MNs have been the most commonly used microneedles in the treatment of melanoma in recent years, mainly because of their simple fabrication procedure and enough drug loading. So, considering the increasing use of dissolving MNs, this review collects research studies published in the last four years (2020-2024) that have rarely been included in other reviews to update the progress of applications of dissolving MNs in anti-melanoma treatment, especially in synergistic therapies. This review also presents current design and fabrication methods of dissolving MNs; the limitations of microneedle technology in the treatment of melanoma are comprehensively discussed. This review can provide valuable guidance for their future development.
Collapse
Affiliation(s)
- Jingting Huang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Xihao Wang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| |
Collapse
|
3
|
Izutsu KI, Yoshida H, Abe Y, Yamamoto E, Sato Y, Ando D. Application of the Thermal Analysis of Frozen Aqueous Solutions to Assess the Miscibility of Hyaluronic Acid and Polymers Used for Dissolving Microneedles. Pharmaceutics 2024; 16:1280. [PMID: 39458610 PMCID: PMC11510125 DOI: 10.3390/pharmaceutics16101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The combination of multiple polymers is anticipated to serve as a means to diversify the physical properties and functionalities of dissolving microneedles. The mixing state of components is considered as a crucial factor in determining their suitability. Objectives: The purpose of this study was to elucidate whether thermal analysis of frozen aqueous solutions can appropriately predict the miscibility of hyaluronic acid (HA) and other polymers used for dissolving microneedles prepared by a micromolding method. Methods: Aliquots of aqueous polymer solutions were applied for thermal analysis by heating the samples from -70 °C at 5 °C/min to obtain the transition temperature of amorphous polymers and/or the crystallization/melting peaks of polymers (e.g., polyethylene glycol (PEG)). Films and dissolving microneedles were prepared by air-drying of the aqueous polymer solutions to assess the polymer miscibility in the solids. Results: The frozen aqueous single-solute HA solutions exhibited a clear Tg' (the glass transition temperature of maximally freeze-concentrated solutes) at approximately -20 °C. The combination of HA with several polymers (e.g., dextran FP40, DEAE-dextran, dextran sulfate, and gelatin) showed a single Tg' transition at temperatures that shifted according to their mass ratio, which strongly suggested the mixing of the freeze-concentrated solutes. By contrast, the observation of two Tg' transitions in a scan strongly suggested the separation of HA and polyvinylpyrrolidone (PVP) or HA and polyacrylic acid (PAA) into different freeze-concentrated phases, each of which was rich in an amorphous polymer. The combination of HA and PEG exhibited the individual physical changes of the polymers. The polymer combinations that showed phase separation in the frozen solution formed opaque films and microneedles upon their preparation by air-drying. Coacervation occurring in certain polymer combinations was also suggested as a factor contributing to the formation of cloudy films. Conclusions: Freezing aqueous polymer solutions creates a highly concentrated polymer environment that mimics the matrix of dissolving microneedles prepared through air drying. This study demonstrated that thermal analysis of the frozen solution offers insights into the mixing state of condensed polymers, which can be useful for predicting the physical properties of microneedles.
Collapse
Affiliation(s)
- Ken-ichi Izutsu
- School of Pharmacy at Narita, International University of Health and Welfare, Kozunomori 4-3, Narita 286-8686, Japan
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Hiroyuki Yoshida
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Eiichi Yamamoto
- Division of Medical Devices, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan;
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| |
Collapse
|
4
|
Duan W, Xu K, Huang S, Gao Y, Guo Y, Shen Q, Wei Q, Zheng W, Hu Q, Shen JW. Nanomaterials-incorporated polymeric microneedles for wound healing applications. Int J Pharm 2024; 659:124247. [PMID: 38782153 DOI: 10.1016/j.ijpharm.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
There is a growing and urgent need for developing novel biomaterials and therapeutic approaches for efficient wound healing. Microneedles (MNs), which can penetrate necrotic tissues and biofilm barriers at the wound and deliver active ingredients to the deeper layers in a minimally invasive and painless manner, have stimulated the interests of many researchers in the wound-healing filed. Among various materials, polymeric MNs have received widespread attention due to their abundant material sources, simple and inexpensive manufacturing methods, excellent biocompatibility and adjustable mechanical strength. Meanwhile, due to the unique properties of nanomaterials, the incorporation of nanomaterials can further extend the application range of polymeric MNs to facilitate on-demand drug release and activate specific therapeutic effects in combination with other therapies. In this review, we firstly introduce the current status and challenges of wound healing, and then outline the advantages and classification of MNs. Next, we focus on the manufacturing methods of polymeric MNs and the different raw materials used for their production. Furthermore, we give a summary of polymeric MNs incorporated with several common nanomaterials for chronic wounds healing. Finally, we discuss the several challenges and future prospects of transdermal drug delivery systems using nanomaterials-based polymeric MNs in wound treatment application.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Keying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, PR China
| | - Wei Zheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Quan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
5
|
Yu X, Wen X, Xu J, Zhou Q, Chen Y, Qu F, He M, Chang H, Zheng C. Rapid Correction of the Hypoglycemia State in Nonhuman Primates Using a Glucagon Long-Dissolving Microneedle Patch. ACS Biomater Sci Eng 2024; 10:3086-3096. [PMID: 38588325 DOI: 10.1021/acsbiomaterials.3c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The timely administration of glucagon is a standard clinical practice for the treatment of severe hypoglycemia. However, the process involves cumbersome steps, including the reconstitution of labile glucagon and filling of the syringe, which cause considerable delays in emergency situations. Moreover, multiple dosages are often required to prevent the recurrence of the hypoglycemic episode because of the short half-life of glucagon in plasma. Herein, we develop a glucagon-loaded long-dissolving microneedle (GLMN) patch that exhibits the properties of fast onset and sustained activity for the effective treatment of severe hypoglycemia. Three types of MN patches were fabricated with different dimensions (long, medium, and short). The longer MN patch packaged a higher dosage of glucagon and exhibited supreme mechanical strength compared to the shorter one. Additionally, the longer MN patch could insert more deeply into the skin, resulting in higher permeability of glucagon across the skin tissue and more rapid systemic absorption as compared with the shorter MN patch. The GLMN patch was observed to reverse the effects of hypoglycemia within 15 min of application in animal models (specifically, rat and rhesus monkey models) and maintained long-term glycemic control, owing to highly efficient drug permeation and the drug reservoir effect of the MN base. The current study presents a promising strategy for the rapid reversal of severe hypoglycemia that exhibits the desirable properties of easy use, high efficiency, and sustained action.
Collapse
Affiliation(s)
- Xiang Yu
- Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Xueyu Wen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jianchen Xu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yingrong Chen
- Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
| | - Fengli Qu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Min He
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chao Zheng
- Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou Central Hospital, Huzhou, Zhejiang 313000, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Futaki M, Inamura K, Nishimura T, Niitsu T, Tojo T, Sugibayashi K, Todo H. A Hollow Microneedle Equipped with a Micropillar for Improved Needle Insertion and Injection of Drug Solution. Pharm Res 2024; 41:819-831. [PMID: 38443630 DOI: 10.1007/s11095-024-03681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Hollow-type microneedles (hMNs) are a promising device for the effective administration of drugs into intradermal sites. Complete insertion of the needle into the skin and administration of the drug solution without leakage must be achieved to obtain bioavailability or a constant effect. In the present study, several types of hMN with or without a rounded blunt tip micropillar, which suppresses skin deformation, around a hollow needle, and the effect on successful needle insertion and administration of a drug solution was investigated. Six different types of hMNs with needle lengths of 1000, 1300, and 1500 µm with or without a micropillar were used. METHODS Needle insertion and the disposition of a drug in rat skin were investigated. In addition, the displacement-force profile during application of hMNs was also investigated using a texture analyzer with an artificial membrane to examine needle factors affecting successful insertion and administration of a drug solution by comparing with in vivo results. RESULTS According to the results with the drug distribution of iodine, hMN1300 with a micropillar was able to successfully inject drug solution into an intradermal site with a high success rate. In addition, the results of displacement-force profiles with an artificial membrane showed that a micropillar can be effective for depth control of the injected solution as well as the prevention of contact between the hMN pedestal and the deformed membrane. CONCLUSION In the present study, hMN1300S showed effective solution delivery into an intradermal site. In particular, a micropillar can be effective for depth control of the injected solution as well as preventing contact between the hMN pedestal and the deformed membrane. The obtained results will help in the design and development of hMNs that ensure successful injection of an administered drug.
Collapse
Affiliation(s)
- Mika Futaki
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kazuya Inamura
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Tomoya Nishimura
- Processing Development Research Lab., Kao Corp., 2606 Akabane, Ichikai-cho, Haga-gun, Tochigi, 321-3426, Japan
| | - Takatoshi Niitsu
- Processing Development Research Lab., Kao Corp., 2606 Akabane, Ichikai-cho, Haga-gun, Tochigi, 321-3426, Japan
| | - Takehiko Tojo
- Processing Development Research Lab., Kao Corp., 2606 Akabane, Ichikai-cho, Haga-gun, Tochigi, 321-3426, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba-ken, 283-8555, Japan
| | - Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
7
|
Meng S, Wei Q, Chen S, Liu X, Cui S, Huang Q, Chu Z, Ma K, Zhang W, Hu W, Li S, Wang Z, Tian L, Zhao Z, Li H, Fu X, Zhang C. MiR-141-3p-Functionalized Exosomes Loaded in Dissolvable Microneedle Arrays for Hypertrophic Scar Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305374. [PMID: 37724002 DOI: 10.1002/smll.202305374] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Hypertrophic scar (HS) is a common fibroproliferative disease caused by abnormal wound healing after deep skin injury. However, the existing approaches have unsatisfactory therapeutic effects, which promote the exploration of newer and more effective strategies. MiRNA-modified functional exosomes delivered by dissolvable microneedle arrays (DMNAs) are expected to provide new hope for HS treatment. In this study, a miRNA, miR-141-3p, which is downregulated in skin scar tissues and in hypertrophic scar fibroblasts (HSFs), is identified. MiR-141-3p mimics inhibit the proliferation, migration, and myofibroblast transdifferentiation of HSFs in vitro by targeting TGF-β2 to suppress the TGF-β2/Smad pathway. Subsequently, the engineered exosomes encapsulating miR-141-3p (miR-141-3pOE -Exos) are isolated from adipose-derived mesenchymal stem cells transfected with Lv-miR-141-3p. MiR-141-3pOE -Exos show the same inhibitive effects as miR-141-3p mimics on the pathological behaviors of HSFs in vitro. The DMNAs for sustained release of miR-141-3pOE -Exos are further fabricated in vivo. MiR-141OE -Exos@DMNAs effectively decrease the thickness of HS and improve fibroblast distribution and collagen fiber arrangement, and downregulate the expression of α-SMA, COL-1, FN, TGF-β2, and p-Smad2/3 in the HS tissue. Overall, a promising, effective, and convenient exosome@DMNA-based miRNA delivery strategy for HS treatment is provided.
Collapse
Affiliation(s)
- Sheng Meng
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Qian Wei
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengqiu Chen
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shengnan Cui
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Qilin Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Ziqiang Chu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenhua Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Wenzhi Hu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Shiyi Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zihao Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Lige Tian
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China
| | - Haihong Li
- Department of Burns and Plastic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
| |
Collapse
|
8
|
Alrbyawi H, Annaji M, Fasina O, Palakurthi S, Boddu SHS, Hassan N, Tiwari AK, Suryawanshi A, Babu RJ. Rapidly Dissolving Trans-scleral Microneedles for Intraocular Delivery of Cyclosporine A. AAPS PharmSciTech 2024; 25:28. [PMID: 38302687 DOI: 10.1208/s12249-024-02738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Cyclosporine A (CsA) is a cyclic peptide immunosuppressant drug that is beneficial in the treatment of various ocular diseases. However, its ocular bioavailability in the posterior eye is limited due to its poor aqueous solubility. Conventional CsA formulations such as a solution or emulsion permeate poorly across the eye due to various static and dynamic barriers of the eye. Dissolvable microneedle (MN)-based patches can be used to overcome barrier properties and, thus, enhance the ocular bioavailability of CsA in the posterior eye. CsA-loaded dissolvable MN patches were fabricated using polyvinylpyrrolidone (PVP) and characterized for MN uniformity and sharpness using SEM. Further characterization for its failure force, penetration force, and depth of penetration were analyzed using a texture analyzer. Finally, the dissolution time, ex vivo permeation, and ocular distribution of cyclosporine were determined in isolated porcine eyes. PVP MNs were sharp, uniform with good mechanical properties, and dissolved within 5 min. Ocular distribution of CsA in a whole porcine eye perfusion model showed a significant increase of CsA levels in various posterior segment ocular tissues as compared to a topically applied ophthalmic emulsion (Restasis®) (P < 0.001). Dissolving MNs of CsA were prepared, and the MN arrays can deliver CsA to the back of the eye offering potential for treating various inflammatory diseases.
Collapse
Affiliation(s)
- Hamad Alrbyawi
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA
| | - Oladiran Fasina
- Department of Biosystems Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama, 36849, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Texas A&M University, Kingsville, Texas, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, United Arab Emirates.
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates.
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas of Medical Sciences, Little Rock, Arkansas, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, Alabama, 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
9
|
Xu S, Liu W, Peng M, Ma D, Liu Z, Tang L, Li X, Chen S. Biodegradable Microneedles Array with Dual-Release Behavior and Parameter Optimization by Finite Element Analysis. J Pharm Sci 2023; 112:2506-2515. [PMID: 37072050 DOI: 10.1016/j.xphs.2023.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Microneedles (MNs) are particularly attractive for transdermal administration because of the improved safety, patient compliance and convenience. Dissolving MNs could provide rapid transdermal delivery, but with relatively low mechanical strength and almost no sustainability. On the other hand, hydrogel MNs are complicated to fabricate and have risk concerns. Herein, we developed a biodegradable MNs array composed of biocompatible silk fibroin and poly(vinyl alcohol) to overcome these limitations. Finite element analysis was employed for parameter optimization. The MNs array fabricated by the optimal parameters and material displayed sufficient mechanical strength to disrupt stratum corneum and formed microchannels for transdermal delivery. Dual-release profile was observed in the MNs array, with rapid release in the beginning, and prolonged release afterward. This release behavior fits Weibull release model and is favorable for topical application. The initial immediate release can quickly deliver active compounds to reach the therapeutic effective concentration and facilitate skin penetration, and the sustained release may supply the skin with active compounds over a prolonged period. This biodegradable MNs array is easy to fabricate, mechanically robust, could eliminate safety concerns, and provide the sustainability and advantage for large-scale production.
Collapse
Affiliation(s)
- Shuai Xu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Wenyuan Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China
| | - Zhixiang Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Lingfeng Tang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaoniu Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
10
|
Zhang Z, Du G, Sun X, Zhang Z. Viscoelastic Properties of Polymeric Microneedles Determined by Micromanipulation Measurements and Mathematical Modelling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1769. [PMID: 36902883 PMCID: PMC10003889 DOI: 10.3390/ma16051769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Microneedles, including dissolvable ones made from biocompatible and biodegradable materials, have been widely studied and can potentially be used for transdermal drug delivery, disease diagnosis (sampling), skin care, etc. Characterizing their mechanical properties is essential, as being mechanically strong enough to pierce the skin barrier is one of the most fundamental and crucial requirements for them. The micromanipulation technique was based on compressing single microparticles between two flat surfaces to obtain force and displacement data simultaneously. Two mathematical models had already been developed to calculate the rupture stress and apparent Young's modulus, which can identify variations of these parameters in single microneedles within a microneedle patch. In this study, a new model has been developed to determine the viscoelasticity of single microneedles made of hyaluronic acid (HA) with a molecular weight of 300 kDa loaded with lidocaine by using the micromanipulation technique to gather experimental data. The modelling results from the micromanipulation measurements suggest that the microneedles were viscoelastic and their mechanical behaviour was strain-rate dependent, which implies that the penetration efficiency of viscoelastic microneedles can be improved by increasing their piercing speed into the skin.
Collapse
Affiliation(s)
- Zhihua Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Changzhou Institute of Advanced Manufacturing Technology, Changzhou 213164, China
| | - Guangsheng Du
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Mangang KN, Thakran P, Halder J, Yadav KS, Ghosh G, Pradhan D, Rath G, Rai VK. PVP-microneedle array for drug delivery: mechanical insight, biodegradation, and recent advances. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 34:986-1017. [PMID: 36541167 DOI: 10.1080/09205063.2022.2155778] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microneedle arrays are micron-sized needles usually attached to a supporting base or patch facilitated drug delivery for systemic effects. Polyvinylpyrrolidone (PVP) is a lactam polymer containing an internal amide linkage. Because of its versatility and biocompatibility, it has been widely utilized to treat several skin, bone and eye problems. Due to its specific and unique properties, the researchers realize its utility as a polymer of tremendous potential. PVP-based dissolvable microneedles have widely been utilized as a carrier for delivering DNAs, proteins, vitamins, and several biological macromolecules transdermally. However, it does not get biodegraded into the body. Therefore, the presence of its fragments in the body post-treatment needs proper justification. The adequate justification for the fate of the fragment's end products in the body will allow even better utilization of PVP. This review analyses and illustrates various experimental findings to highlight the most recent advancements and applications of PVP microneedles in drug delivery systems and cosmetology and the potential for PVP microneedles in treating dermal and systemic disorders. This review presents the expected mode of PVP biodegradation in aqueous and soil environments as a waste material, its inertness, biocompatibility, and the importance of PVP as a fabricating material, pharmaceutical uses, and non-toxic profile.
Collapse
Affiliation(s)
- Keisham Nelson Mangang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India.,Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Pragati Thakran
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Jitu Halder
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | | | - Goutam Ghosh
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksa 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Kang H, Zuo Z, Lin R, Yao M, Han Y, Han J. The most promising microneedle device: present and future of hyaluronic acid microneedle patch. Drug Deliv 2022; 29:3087-3110. [PMID: 36151726 PMCID: PMC9518289 DOI: 10.1080/10717544.2022.2125600] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Microneedle patch (MNP) is an alternative to the oral route and subcutaneous injection with unique advantages such as painless administration, good compliance, and fewer side effects. Herein, we report MNP as a prominent strategy for drug delivery to treat local or systemic disease. Hyaluronic acid (HA) has advantageous properties, such as human autologous source, strong water absorption, biocompatibility, and viscoelasticity. Therefore, the Hyaluronic acid microneedle patch (HA MNP) occupies a large part of the MNP market. HA MNP is beneficial for wound healing, targeted therapy of certain specific diseases, extraction of interstitial skin fluid (ISF), and preservation of drugs. In this review, we summarize the benefits of HA and cross-linked HA (x-HA) as an MNP matrix. Then, we introduce the types of HA MNP, delivered substances, and drug distribution. Finally, we focus on the biomedical application of HA MNP as an excellent drug carrier in some specific diseases and the extraction and analysis of biomarkers. We also discuss the future development prospect of HA MNP in transdermal drug delivery systems (TDDS).
Collapse
Affiliation(s)
- Huizhi Kang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuo Zuo
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Ru Lin
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Muzi Yao
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Han
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Han
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Sim J, Kang G, Yang H, Jang M, Kim Y, Ahn H, Kim M, Jung H. Development of Clinical Weekly-Dose Teriparatide Acetate Encapsulated Dissolving Microneedle Patch for Efficient Treatment of Osteoporosis. Polymers (Basel) 2022; 14:polym14194027. [PMID: 36235975 PMCID: PMC9571303 DOI: 10.3390/polym14194027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Teriparatide acetate (TA), which directly promotes bone formation, is subcutaneously injected to treat osteoporosis. In this study, TA with a once-weekly administration regimen was loaded on dissolving microneedles (DMNs) to effectively deliver it to the systemic circulation via the transdermal route. TA activity reduction during the drying process of various TA polymer solutions formulated with hyaluronic acid and trehalose was monitored and homogeneities were assessed. TA-DMN patches fabricated using centrifugal lithography in a two-layered structure with dried pure hyaluronic acid on the base layer and dried TA polymer solution on the top layer were evaluated for their physical properties. Rhodamine-B-loaded TA-DMNs were found to form perforations when inserted into porcine skin using a shooting device. In addition, 87.6% of TA was delivered to the porcine skin after a 5-min TA-DMN patch application. The relative bioavailability of TA via subcutaneous injection was 66.9% in rats treated with TA-DMN patches. The maximal TA concentration in rat plasma was proportional to the number of patches used. Therefore, the TA-DMN patch fabricated in this study may aid in the effective delivery of TA in a patient-friendly manner and enhance medical efficacy in osteoporosis treatment.
Collapse
Affiliation(s)
- Jeeho Sim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Geonwoo Kang
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
| | - Huisuk Yang
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
| | - Mingyu Jang
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
| | - Youseong Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyeri Ahn
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Minkyung Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
- JUVIC Inc., No. 208, Digital-ro 272, Guro-gu, Seoul 08389, Korea
- Correspondence:
| |
Collapse
|
14
|
Yuan A, Gu Y, Bian Q, Wang R, Xu Y, Ma X, Zhou Y, Gao J. Conditioned media-integrated microneedles for hair regeneration through perifollicular angiogenesis. J Control Release 2022; 350:204-214. [PMID: 35961471 DOI: 10.1016/j.jconrel.2022.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Androgenetic alopecia (AGA), the most prevalent type of hair loss in clinic, is induced partly by insufficient perifollicular vascularization. Here we designed a dissolvable microneedles (MNs) patch that was loaded with conditioned media (CM) derived from hypoxia-pretreated mesenchymal stem cells, which contained elevated HIF-1α. The CM-integrated MNs patch (designated as CM-MNs) can puncture the stratum corneum and deliver the pro-angiogenic factors directly into skin in a one-step and minimally invasive manner. Meanwhile, the administration of CM-MNs induced a certain mechanical stimulation on the skin, which can also promote neovascularization. With the combined effects of the pro-angiogenic factors in CM and the mechanical stimulation induced by MNs, CM-MNs successfully boosted perifollicular vascularization, and activated hair follicle stem cells, thereby inducing notably faster hair regeneration at a lower administration frequency on AGA mouse model compared with minoxidil. Furthermore, we proved that the inhibition of perifollicular angiogenesis restrained the awakening of hair follicle stem cells, elucidating the tight correlation between perifollicular angiogenesis and the activation of hair follicle stem cells. The innovative integration of CM and MNs holds great promise for clinical AGA treatment and indicates that boosting angiogenesis around hair follicles is an effective strategy against AGA.
Collapse
Affiliation(s)
- Anran Yuan
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yueting Gu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; College of Pharmacy, Inner Mongolia Medical University, Hohhot 010000, PR China
| | - Ruxuan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yanjun Zhou
- Zhejiang Huanling Pharmaceutical Technology Company, Jinhua 321000, PR China
| | - Jianqing Gao
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, PR China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, PR China.
| |
Collapse
|
15
|
Yu X, Zhu L, Liang X, Yuan B, Li M, Hu S, Ding P, Du L, Guo J, Jin Y. A wearable gamma radiation-responsive granulocyte colony-stimulating factor microneedle system protecting against ionizing radiation-induced injury. Acta Biomater 2022; 146:197-210. [PMID: 35487423 DOI: 10.1016/j.actbio.2022.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Exposure to a nuclear accident or a radiological attack may cause serious death events due to ionizing radiation-induced injury and acute radiation syndrome (ARS). Recombinant human granulocyte colony-stimulating factor (G-CSF) is now used for the treatment of ARS. However, the current injection formulation might not ensure treatment as early as possible after a nuclear accident, resulting in a decrease in therapeutic efficiency. In the present study, we have developed a G-CSF wearable system (GWS) consisting of a commercial microchip, a temperature sensor, a gamma-ray detection sensor, a flexible heater, and a G-CSF temperature-sensitive microneedle (GTSMN) patch. G-CSF-containing hyaluronic acid solutions were cast into the mold to obtain G-CSF microneedles (GMNs), which were coated with a temperature-sensitive layer of dodecanoic acid-cetylamine salt to obtain GTSMNs. The flexible heater was prepared by jet printing Ag nanoparticle inks. The GWS and its components are explored and optimized in the aspects of electronics, mechanics, heat transfer and drug diffusion. The γ radiation signal is sensitively monitored by the GWS. The wearable G-CSF system immediately releases G-CSF into the body in response to signal feedback and provides maximal protection against ionizing radiation-induced injury. Therefore, the GWS is a promising wearable system against emergent ionizing radiation injury. STATEMENT OF SIGNIFICANCE: Ionizing radiation-induced injury is always the very important public health problem all the global people care. Some medicines have been applied to protect the body from the injury. Unfortunately, sometimes the injuries accidently happen and the medicines cannot be administered in time, leading to serious acute radiation syndrome. Here, we design a wearable system loading G-CSF that has been approved by FDA to protect the body from ionizing radiation-induced injury. This system consists of a commercial microchip, a temperature sensor, a Gamma-ray detection sensor, a flexible heater, and a G-CSF temperature-sensitive microneedle patch. It can monitor γ radiation and immediately release G-CSF into the body to protect the body to the maximal extent. Therefore, the system is a promising wearable medical device against emergent ionizing radiation injury.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaohui Liang
- Support Center for Scientific Research, Academy of Military Medical Sciences, Beijing 100850, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Minshu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Pingtian Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Junwang Guo
- Department of Radiation Protection and Health Physics, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
16
|
Sartawi Z, Blackshields C, Faisal W. Dissolving microneedles: Applications and growing therapeutic potential. J Control Release 2022; 348:186-205. [PMID: 35662577 DOI: 10.1016/j.jconrel.2022.05.045] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Microneedles are a rapidly developing method for the transdermal delivery of therapeutic compounds. All types of microneedles, whether solid, hollow, coated, or dissolving function by penetrating the stratum corneum layer of the skin producing a microchannel through which therapeutic agents may be delivered. To date, coated and hollow microneedles have been the most successful, despite suffering from issues such as poor drug loading capabilities and blocked pores. Dissolving microneedles, on the other hand, have superior drug loading as well as other positive attributes that make it an ideal delivery system, including simple methods of fabrication and disposal, and abundantly available materials. Indeed, dissolvable microneedles can even be fabricated entirely from the therapeutic agent itself thus eliminating the requirement for additional excipients. This focused review presents the recent developments and trends of dissolving microneedles as well as potential future directions. The advantages, and disadvantages of dissolving microneedles as well as fabrication materials and methods are discussed. The potential applications of dissolving microneedles as a drug delivery system in different therapeutic areas in both research literature and clinical trials is highlighted. Applications including the delivery of cosmetics, vaccine delivery, diagnosis and monitoring, cancer, pain and inflammation, diabetes, hair and scalp disorders and inflammatory skin diseases are presented. The current trends observed in the microneedle landscape with particular emphasis on contemporary clinical trials and commercial successes as well as barriers impeding microneedle development and commercialisation are also discussed.
Collapse
Affiliation(s)
- Ziad Sartawi
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Huang Y, Yang P. Application of Cross-Linked and Non-Cross-Linked Hyaluronic Acid Nano-Needles in Cosmetic Surgery. Int J Anal Chem 2022; 2022:4565260. [PMID: 35651502 PMCID: PMC9150987 DOI: 10.1155/2022/4565260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 11/17/2022] Open
Abstract
The common feature of non-cross-linked hyaluronic acid nano-needles is that they penetrate the skin and dissolve rapidly, and the non-cross-linked hyaluronic acid will migrate under the skin, so it is difficult to maintain the long-term expansion effect in a fixed position. In order to achieve the relatively long-term antiwrinkle effect, a kind of cross-linked and non-cross-linked compound hyaluronic acid microne was prepared. By inserting the microne under the skin, dissolving the non-cross-linked part under the skin and introducing the cross-linked gel particles under the skin, the effect of extending the microne was achieved. The mechanical properties, permeability, and degradation rate of cross-linked and non-cross-linked hyaluronic acid composite nano-needles were studied in detail. Experimental results show that the higher the content of CHA, the slower the degradation rate of the microneedle, and the skin swelling of the HA_CHA (1 : 1) microneedle is the most lasting. With the increase of CHA content in microneedle matrix materials, the degree of epidermal expansion decreased. The preparation of cross-linked and non-cross-linked hyaluronic acid microneedles has the potential to be effectively used as dermal fillers in cosmetics or antiaging treatments.
Collapse
Affiliation(s)
- Yiming Huang
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu 730050, China
| | - Ping Yang
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu 730050, China
| |
Collapse
|
18
|
Bletilla striata polysaccharide microneedle for effective transdermal administration of model protein antigen. Int J Biol Macromol 2022; 205:511-519. [PMID: 35217076 DOI: 10.1016/j.ijbiomac.2022.02.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/03/2023]
Abstract
Traditional vaccination relies on subcutaneous injection or intramuscular injection, which requires professional medical personnel and is accompanied by the risk of needle-related diseases and injuries. Therefore, to promote immunization coverage and reduce costs, it is necessary to provide a new method of vaccine administration. Dissolving microneedle (DMN) has been proposed as an alternative to hypodermic needles, providing prospects for self-inoculation and increasing immunogenicity by directly targeting skin dendritic cells. This study reported the successful preparation and characterization of Bletilla striata polysaccharide microneedles (BMNs) and investigated the potential of this natural material-based DMN as a vaccine carrier. The prepared BMNs exhibited more excellent mechanical properties and stability compared with microneedles made of hyaluronic acid and polyvinyl alcohol. BMNs had good cell compatibility, low bacterial skin permeability, slight irritation to the skin, and no infection or inflammation in the body. In addition, as shown by circular dichroism, the molecular structure of the antigen ovalbumin (OVA) loaded in BMN did not change during storage for 21 days. The Franz diffusion cell experiment showed 76.74% of OVA was released to the skin within 3 h. These encouraging findings indicate that the BMNs can be a promising tool for effective vaccine delivery.
Collapse
|
19
|
Intradermal administration of influenza vaccine with trehalose and pullulan-based dissolving microneedle arrays. J Pharm Sci 2022; 111:1070-1080. [PMID: 35122832 DOI: 10.1016/j.xphs.2022.01.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Most influenza vaccines are administered via intramuscular injection which has several disadvantages that might jeopardize the compliance of vaccinees. Intradermal administration of dissolving-microneedle-arrays (dMNAs) could serve as minimal invasive alternative to needle injections. However, during the production process of dMNAs antigens are subjected to several stresses, which may reduce their potency. Moreover, the needles need to have sufficient mechanical strength to penetrate the skin and subsequently dissolve effectively to release the incorporated antigen. Here, we investigated whether blends of trehalose and pullulan are suitable for the production of stable dMNA fulfilling these criteria. Our results demonstrate that production of trehalose/pullulan-based dMNAs rendered microneedles that were sharp and stiff enough to pierce into ex vivo human skin and subsequently dissolve within 15 min. The mechanical properties of the dMNAs were maintained well even after four weeks of storage at temperatures up to 37°C. In addition, immunization of mice with influenza antigens via both freshly prepared dMNAs and dMNAs after storage (four weeks at 4°C or 37°C) resulted in antibody titers of similar magnitude as found in intramuscularly injected mice and partially protected mice from influenza virus infection. Altogether, our results demonstrate the potential of trehalose/pullulan-based dMNAs as alternative dosage form for influenza vaccination.
Collapse
|
20
|
Rehman NU, Song C, Kim J, Noh I, Rhee YS, Chung HJ. Pharmacokinetic Evaluation of a Novel Donepezil-Loaded Dissolving Microneedle Patch in Rats. Pharmaceutics 2021; 14:pharmaceutics14010005. [PMID: 35056902 PMCID: PMC8778454 DOI: 10.3390/pharmaceutics14010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Research on the development of dissolving microneedles (DMNs) has focused on bolus drug delivery, with little attention on sustained release. Here, we evaluated the sustained release, absorption pattern, and effective drug permeation of a novel donepezil-loaded DMN patch through an in vivo investigation on rats. The applications of DMN patches to the shaved skin of rats for 1 week and 1 h were compared with oral donepezil administration to assess their sustained release capabilities. We used a validated liquid chromatography–tandem mass spectrometry method to quantify donepezil in the plasma. We found that the microneedle arrays effectively delivered donepezil across the skin, with dissolution observed within 1 h of application. Furthermore, skin irritation test showed that the patches produced no irritation response. The DMN arrays also effectively increased drug permeation and demonstrated sustained release and absorption of donepezil from DMN patches. These patches allow extended dosing intervals, reduced gastrointestinal adverse effects, and convenient self-administration to mitigate poor drug compliance, making them beneficial for the treatment of elderly patients with Alzheimer’s disease.
Collapse
|
21
|
Gomes KB, D'Souza B, Vijayanand S, Menon I, D'Souza MJ. A Dual-Delivery Platform for Vaccination using Antigen-loaded Nanoparticles in Dissolving Microneedles. Int J Pharm 2021; 613:121393. [PMID: 34929312 DOI: 10.1016/j.ijpharm.2021.121393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Effective vaccines delivered via painless methods would revolutionize the way people approach vaccinations. This study focused on the development of fast-dissolving microneedles (MNs) to deliver antigen-loaded sustained release polymeric nanoparticles (NPs), achieving a dual-delivery platform for vaccination through the skin. The platform utilizes dissolving MNs (dMNs), which penetrate to the epidermal layer of the skin and rapidly dissolve, releasing the antigen-loaded NPs. In this study, seven dissolving microneedle formulations were tested based on screening of various biocompatible and biodegradable polymers and sugars. The lead dMN formulation was selected based on optimal mechanical strength and dissolution of the needles and was loaded with poly(lactic-co-glycolic) acid (PLGA) NPs encapsulating a model influenza matrix 2 (M2) protein antigen. Antigen-loading efficiency in the needles was determined by centrifugation of the lead formulation containing various concentrations of antigen nanoparticles. Next, the reproducibility and translatability of ex vivo mechanical strength and dissolvability of the lead M2 PLGA NP-loaded dMN formulation was assessed by formulating and testing two different microneedle arrays on murine and porcine skin. Finally, the lead microneedle array was loaded with fluorescent dye NPs and evaluated for pore formation and closure in vivo in a murine model. This proof-of-concept study yielded an easy-to-formulate, well-characterized, translatable antigen NP-loaded dMN platform for transdermal vaccine administration.
Collapse
Affiliation(s)
- Keegan Braz Gomes
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA
| | - Bernadette D'Souza
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, College of Health Sciences, Samford University, Birmingham, AL USA
| | - Sharon Vijayanand
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA
| | - Ipshita Menon
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA
| | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery, Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA USA.
| |
Collapse
|
22
|
Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J Control Release 2021; 338:341-357. [PMID: 34428480 DOI: 10.1016/j.jconrel.2021.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Microneedle arrays have recently received much attention as cancer detection and treatment platforms, because invasive injections and detection of the biopsy are not needed, and drug metabolism by the liver, as well as adverse effects of systemic drug administration, are diminished. Microneedles have been used for diagnosis, vaccination, and in targeted drug delivery of breast cancer. In this review, we summarize the recent progress in diagnosis and targeted drug delivery for breast cancer treatment, using microneedle arrays to deliver active molecules through the skin. The results not only suggest that health and well-being of patients are improved, but also that microneedle arrays can deliver anticancer compounds in a relatively noninvasive manner, based on body weight, breast tumor size, and circulation time of the drug. Moreover, microneedles could allow simultaneous loading of multiple drugs and enable controlled release, thus effectively optimizing or preventing drug-drug interactions. This review is designed to encourage the use of microneedles for diagnosis and treatment of breast cancer, by describing general properties of microneedles, materials used for construction, mechanism of action, and principal benefits. Ongoing challenges and future perspectives for the application of microneedle array systems in breast cancer detection and treatment are highlighted.
Collapse
|
23
|
Saha I, Rai VK. Hyaluronic acid based microneedle array: Recent applications in drug delivery and cosmetology. Carbohydr Polym 2021; 267:118168. [PMID: 34119141 DOI: 10.1016/j.carbpol.2021.118168] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Microneedles are micron-sized arrays of needles that facilitate drug delivery for local and systemic effects. Hyaluronic acid (HA) is a glycosaminoglycan and is an indigenous component of the connective tissues and dermis. Owing to its versatility and biocompatibility, it has widely been used against various bone, eye, and skin disorders. Therefore, fabricating HA-microneedles is fetching massive global attention. HA based dissolvable microneedles have been immensely explored due to their biodegradable nature. Its degradation residues are very safe. Several attempts have been made to deliver vitamins, proteins, DNAs, and biological macromolecules by HA-microneedles. Here we present the recent advancements in HA-microneedles based application on drug delivery and cosmetology. Its bio-degradation pathways, the receptors on which HA and its derivatives interact, the biological half-lives, and their importance as useful materials for various applications are highlighted. The literature reports identify HA-microneedle as an useful carrier for the delivery of pharmaceuticals.
Collapse
Affiliation(s)
- Ivy Saha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
24
|
Kang NW, Kim S, Lee JY, Kim KT, Choi Y, Oh Y, Kim J, Kim DD, Park JH. Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin Drug Deliv 2021; 18:929-947. [PMID: 32975144 DOI: 10.1080/17425247.2021.1828860] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A microneedle array patch (MAP) has been studied as a means for delivering drugs or vaccines and has shown superior delivery efficiency compared to the conventional transdermal drug delivery system (TDD). This paper reviews recent advancements in the development of MAPs, with a focus on their size, shapes, and materials in preclinical and clinical studies for pharmaceutics. AREA COVERED We classified MAPs for drug delivery into four types: coated, dissolving, separable, and swellable. We covered their recent developments in materials and geometry in preclinical and clinical studies. EXPERT OPINION The design of MAPs needs to be determined based on what properties would be effective for the target diseases and purposes. In addition, in preclinical studies, it is necessary to consider not only the novelty of the formulations but also the feasibility of clinical application. Currently, clinical studies of microneedles loaded with various drugs and vaccines are in progress. When the regulation of pharmaceutical microneedles is established and more clinical studies are published, more drugs will be developed as microneedle products and clinical research will proceed. With these considerations, the microneedle array patch will be a better option for drug delivery.
Collapse
Affiliation(s)
- Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Taek Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Yuji Choi
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Yujeong Oh
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Jongchan Kim
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
25
|
Moniz T, Costa Lima SA, Reis S. Marine polymeric microneedles for transdermal drug delivery. Carbohydr Polym 2021; 266:118098. [PMID: 34044917 DOI: 10.1016/j.carbpol.2021.118098] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Transdermal drug delivery is considered one of the most attractive routes for administration of pharmaceutic and cosmetic active ingredients due to the numerous advantages, especially over oral and intravenous methodologies. However, some limitations still exist mainly regarding the need to improve the drugs permeation across the skin. For this, several strategies have been described, considering the application of chemical permeation enhancers, drugs' nanoformulations and physical methods. Of these, microneedles have been proposed in the last years as promising strategies to enhance transdermal drug delivery. In this review, different types of microneedles are described, and the most commonly used methods of fabrication systematized, as well as the materials typically used and their main therapeutical applications. A special attention is paid to polymeric microneedles, particularly those made from sustainable marine polysaccharides like chitosan, alginate and hyaluronic acid. The applications of marine based polymeric microneedle devices for transdermal drug delivery are examined in detail and the perspectives of translation from the clinical trials to the market demonstrated.
Collapse
Affiliation(s)
- Tânia Moniz
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Lee J, van der Maaden K, Gooris G, O'Mahony C, Jiskoot W, Bouwstra J. Engineering of an automated nano-droplet dispensing system for fabrication of antigen-loaded dissolving microneedle arrays. Int J Pharm 2021; 600:120473. [PMID: 33737094 DOI: 10.1016/j.ijpharm.2021.120473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Dissolving microneedle arrays (dMNAs) are promising devices for intradermal vaccine delivery. The aim of this study was to develop a reproducible fabrication method for dMNAs based on an automated nano-droplet dispensing system that minimizes antigen waste. First, a polymer formulation was selected to dispense sufficiently small droplets (<18 nL) that can enter the microneedle cavities (base diameter 330 µm). Besides, three linear stages were assembled to align the dispenser with the cavities, and a vacuum chamber was designed to fill the cavities with dispensed droplets without entrapped air. Lastly, the dispenser and stages were incorporated to build a fully automated system. To examine the function of dMNAs as a vaccine carrier, ovalbumin was loaded in dMNAs by dispensing a mixture of ovalbumin and polymer formulation, followed by determining the ovalbumin loading and release into the skin. The results demonstrate that functional dMNAs which can deliver antigen into the skin were successfully fabricated via the automatic fabrication system, and hardly any antigen waste was encountered. Compared to the method that centrifuges the mould, it resulted in a 98.5% volume reduction of antigen/polymer solution and a day shorter production time. This system has potential for scale-up of manufacturing to an industrial scale.
Collapse
Affiliation(s)
- Jihui Lee
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Koen van der Maaden
- Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands; TECO Development GmbH, 53359 Rheinbach, Germany
| | - Gerrit Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Joke Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 2300, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
27
|
Wei S, Quan G, Lu C, Pan X, Wu C. Dissolving microneedles integrated with pH-responsive micelles containing AIEgen with ultra-photostability for enhancing melanoma photothermal therapy. Biomater Sci 2020; 8:5739-5750. [PMID: 32945301 DOI: 10.1039/d0bm00914h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photothermal therapy (PTT) based on aggregation-induced emission luminogen (AIEgen) is very promising for superficial tumor therapy due to the superior photostability and photothermal conversion efficiency of AIEgens. However, the systemic administration of AIEgen remains challenging, mainly because of solubility dissatisfaction and biodistribution. Here, a dissolving microneedle (MN) system loaded with AIEgen (NIR950) was developed for topical administration to treat malignant skin tumor melanoma. Firstly, NIR950-loaded polymeric micelles (NIR950@PMs) were prepared via a nanoprecipitation method to increase the drug solubility. Then, micelles were concentrated on needle tips of MN (NIR950@PMs@MN) by a two-step molding method. NIR950@PMs showed no distinct decline in emission intensity under continuous laser irradiation for an hour. Moreover, the pH-responsive micelles can be protonated in an acidic tumor microenvironment to facilitate the intracellular uptake. By virtue of dissolving MN, NIR950@PMs could rapidly accumulate at the tumor site and reach a suitable temperature for killing cancer cells under laser irradiation. With only single administration and one-time laser irradiation, the NIR950@PMs@MN could notably eliminate melanoma tumors with a low dose of NIR950. Overall, this dissolving MN system loaded with NIR950 showed remarkable photostability and also achieved a valid photothermal effect, which indicate great potential for clinical superficial tumor therapy.
Collapse
Affiliation(s)
- Sihui Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | | | | | | | | |
Collapse
|
28
|
Yu X, Li M, Zhu L, Li J, Zhang G, Fang R, Wu Z, Jin Y. Amifostine-loaded armored dissolving microneedles for long-term prevention of ionizing radiation-induced injury. Acta Biomater 2020; 112:87-100. [PMID: 32450231 DOI: 10.1016/j.actbio.2020.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/05/2020] [Accepted: 05/16/2020] [Indexed: 01/25/2023]
Abstract
Amifostine is a cytoprotective agent against the hematopoietic damage induced by ionizing radiation, although the intravenous injection of amifostine is a unique administration method with strict dosing time limitation. Hence, the fields of application of amifostine are greatly limited. Here, we developed an amifostine-loaded armored microneedle (AAMN) with long-term prevention of hematopoietic injury induced by ionizing radiation. First, amifostine-loaded hyaluronic acid microneedles (AMNs) were fabricated, and the AMNs were then dipped in an N-vinyl-2-pyrrolidone (NVP) solution followed by ultraviolet (UV) photocuring to obtain AAMNs. AAMNs were nail-shaped with much higher mechanical strength compared to the conical shape and weak strength of AMNs, which was verified by their in silico simulation. In the in vitro release experiment, more than 55% of amifostine was released from AAMNs within 10 min, and 95% was released in 60 min. Drug skin permeation of AAMNs was also high, at twice that of AMNs. AAMNs provided long-term protection of the hematopoietic system from radiation within 3-7 h pre-radiation compared to the unique amifostine injection 0.5 h pre-radiation because topical application of AAMNs led to the long-term maintenance of the in vivo effective drug concentration. More importantly, AAMNs led to the survival of all irradiated mice due to intravenous amifostine. AAMNs are a promising transdermal delivery system of amifostine for long-term protection against ionizing radiation-induced injury. STATEMENT OF SIGNIFICANCE: An amifostine-loaded dissolving armored microneedle (AAMN) patch is developed for long-term prevention of ionizing radiation-induced injury. High drug loads in microneedles (MNs) with adequate mechanical strength is a challenge. We fabricated armors on the surface of high amifostine-loaded hyaluronic acid microneedles (AMNs) by dipping the tips of AMNs in N-vinyl-2-pyrrolidone (NVP) solutions and then subjecting them to UV irradiation, and high-strength armored AMNs (AAMNs) were obtained. AAMNs show deeper skin insertion and much higher drug permeation than AMNs. The controlled drug release from AAMNs in the mouse skins provides a long-term protection of radiation-induced injury with 3-7 h administration pre-radiation compared to the merely 0.5-h point of amifostine injection.
Collapse
|
29
|
Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review. Int J Pharm 2020; 578:119127. [DOI: 10.1016/j.ijpharm.2020.119127] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
|
30
|
Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials 2020; 232:119733. [DOI: 10.1016/j.biomaterials.2019.119733] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 01/08/2023]
|
31
|
|
32
|
Cho Lee AR. Microneedle-mediated delivery of cosmeceutically relevant nucleoside and peptides in human skin: challenges and strategies for dermal delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00438-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|