1
|
Li Q, Wang L, Yu L, Li C, Xie X, Yan H, Zhou W, Wang C, Liu Z, Hou G, Zhao YQ. Polysaccharide-Based Coating with Excellent Antibiofilm and Repeatable Antifouling-Bactericidal Properties for Treating Infected Hernia. Biomacromolecules 2024; 25:1180-1190. [PMID: 38240673 DOI: 10.1021/acs.biomac.3c01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
In recent years, the utilization of medical devices has gradually increased and implantation procedures have become common treatments. However, patients are susceptible to the risk of implant infections. This study utilized chemical grafting to immobilize polyethylenimine (QPEI) and hyaluronic acid (HA) on the surface of the mesh to improve biocompatibility while being able to achieve antifouling antimicrobial effects. From the in vitro testing, PP-PDA-Q-HA exhibited a high antibacterial ratio of 93% against S. aureus, 93% against E. coli, and 85% against C. albicans. In addition, after five rounds of antimicrobial testing, the coating continued to exhibit excellent antimicrobial properties; PP-PDA-Q-HA also inhibits the formation of bacterial biofilms. In addition, PP-PDA-Q-HA has good hemocompatibility and cytocompatibility. In vivo studies in animal implantation infection models also demonstrated the excellent antimicrobial properties of PP-PDA-Q-HA. Our study provides a promising strategy for the development of antimicrobial surface medical materials with excellent biocompatibility.
Collapse
Affiliation(s)
- Qifen Li
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Leixiang Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Lu Yu
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Chengbo Li
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Huanhuan Yan
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Wenjuan Zhou
- The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai 264003, PR China
| | - Chunhua Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Zhonghao Liu
- The Affiliated Yantai Stomatological Hospital, Binzhou Medical University, Yantai 264003, PR China
| | - Guige Hou
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Yu-Qing Zhao
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| |
Collapse
|
2
|
Zhu Y, Gao M, Su M, Shen Y, Zhang K, Yu B, Xu FJ. A Targeting Singlet Oxygen Battery for Multidrug-Resistant Bacterial Deep-Tissue Infections. Angew Chem Int Ed Engl 2023; 62:e202306803. [PMID: 37458367 DOI: 10.1002/anie.202306803] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the "singlet oxygen battery" CARG-1 O2 and released singlet oxygen without external irradiation or oxygen. CARG-1 O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1 O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1 O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.
Collapse
Affiliation(s)
- Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Minzheng Gao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengrui Su
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhe Shen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Chen L, Zhao Y, Wu W, Zeng Q, Wang JJ. New trends in the development of photodynamic inactivation against planktonic microorganisms and their biofilms in food system. Compr Rev Food Sci Food Saf 2023; 22:3814-3846. [PMID: 37530552 DOI: 10.1111/1541-4337.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
The photodynamic inactivation (PDI) is a novel and effective nonthermal inactivation technology. This review provides a comprehensive overview on the bactericidal ability of endogenous photosensitizers (PSs)-mediated and exogenous PSs-mediated PDI against planktonic bacteria and their biofilms, as well as fungi. In general, the PDI exhibited a broad-spectrum ability in inactivating planktonic bacteria and fungi, but its potency was usually weakened in vivo and for eradicating biofilms. On this basis, new strategies have been proposed to strengthen the PDI potency in food system, mainly including the physical and chemical modification of PSs, the combination of PDI with multiple adjuvants, adjusting the working conditions of PDI, improving the targeting ability of PSs, and the emerging aggregation-induced emission luminogens (AIEgens). Meanwhile, the mechanisms of PDI on eradicating mono-/mixed-species biofilms and preserving foods were also summarized. Notably, the PDI-mediated antimicrobial packaging film was proposed and introduced. This review gives a new insight to develop the potent PDI system to combat microbial contamination and hazard in food industry.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Weiliang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| |
Collapse
|
4
|
Zheng L, Zhu Y, Sun Y, Xia S, Duan S, Yu B, Li J, Xu FJ. Flexible Modulation of Cellular Activities with Cationic Photosensitizers: Insights of Alkyl Chain Length on Reactive Oxygen Species Antimicrobial Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302943. [PMID: 37231625 DOI: 10.1002/adma.202302943] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Cationic photosensitizers have good binding ability with negatively charged bacteria and fungi, exhibiting broad applications potential in antimicrobial photodynamic therapy (aPDT). However, cationic photosensitizers often display unsatisfactory transkingdom selectivity between mammalian cells and pathogens, especially for eukaryotic fungi. It is unclear which biomolecular sites are more efficient for photodynamic damage, owing to the lack of systematic research with the same photosensitizer system. Herein, a series of cationic aggregation-induced emission (AIE) derivatives (CABs) (using berberine (BBR) as the photosensitizers core) with different length alkyl chains are successfully designed and synthesized for flexible modulation of cellular activities. The BBR core can efficiently produce reactive oxygen species (ROS) and achieve high-performance aPDT . Through the precise regulation of alkyl chain length, different bindings, localizations, and photodynamic killing effects of CABs are achieved and investigated systematically among bacteria, fungi, and mammalian cells. It is found that intracellular active substances, not membranes, are more efficient damage sites of aPDT. Moderate length alkyl chains enable CABs to effectively kill Gram-negative bacteria and fungi with light, while still maintaining excellent mammalian cell and blood compatibility. This study is expected to provide systematic theoretical and strategic research guidance for the construction of high-performance cationic photosensitizers with good transkingdom selectivity.
Collapse
Affiliation(s)
- Liang Zheng
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiwen Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yujie Sun
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuai Xia
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Li
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Gnanasekar S, Kasi G, He X, Zhang K, Xu L, Kang ET. Recent advances in engineered polymeric materials for efficient photodynamic inactivation of bacterial pathogens. Bioact Mater 2023; 21:157-174. [PMID: 36093325 PMCID: PMC9421094 DOI: 10.1016/j.bioactmat.2022.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Nowadays, infectious diseases persist as a global crisis by causing significant destruction to public health and the economic stability of countries worldwide. Especially bacterial infections remain a most severe concern due to the prevalence and emergence of multi-drug resistance (MDR) and limitations with existing therapeutic options. Antibacterial photodynamic therapy (APDT) is a potential therapeutic modality that involves the systematic administration of photosensitizers (PSs), light, and molecular oxygen (O2) for coping with bacterial infections. Although the existing porphyrin and non-porphyrin PSs were effective in APDT, the poor solubility, limited efficacy against Gram-negative bacteria, and non-specific distribution hinder their clinical applications. Accordingly, to promote the efficiency of conventional PSs, various polymer-driven modification and functionalization strategies have been adopted to engineer multifunctional hybrid phototherapeutics. This review assesses recent advancements and state-of-the-art research in polymer-PSs hybrid materials developed for APDT applications. Further, the key research findings of the following aspects are considered in-depth with constructive discussions: i) PSs-integrated/functionalized polymeric composites through various molecular interactions; ii) PSs-deposited coatings on different substrates and devices to eliminate healthcare-associated infections; and iii) PSs-embedded films, scaffolds, and hydrogels for regenerative medicine applications. Synthetic strategies of engineered polymer-based hybrid materials integrated with photosensitizers for APDT. Utilization of photosensitizer-incorporated polymeric materials in health care applications. Challenges and opportunities in the future development of polymeric biomaterials with improved photo-bactericidal properties.
Collapse
|
6
|
Wang A, Duan S, Hu Y, Ding X, Xu FJ. Fluorination of Polyethylenimines for Augmentation of Antibacterial Potency via Structural Damage and Potential Dissipation of Bacterial Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44173-44182. [PMID: 36130111 DOI: 10.1021/acsami.2c12692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of drug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus, MRSA) has continued, making the ″super-bugs″ a formidable threat to global health. Herein, we synthesize a series of fluoroalkylated polyethylenimines (PEI-F) with different grafting degrees of fluoroalkyls via a simple ring-opening reaction and demonstrate for the first time that fluoroalkylated PEIs are able to exert potent antibacterial activity to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Among the fluoroalkylated polymers, PEI-F3.0 shows the strongest antibacterial activity, with a minimum inhibitory concentration (MIC) of 64 μg mL-1, against both E. coli and S. aureus. More importantly, we find that PEI-F3.0 is able to kill over 99.8% of S. aureus within 1 min, which is extremely desirable for the treatment of acute and severe bacterial infections that require quick disinfection. We also demonstrate that the fluoroalkylated PEIs are able to kill bacteria via structural damage of the outer membrane (OM) and cytoplasmic membrane (CM), potential dissipation of CM, and generation of intracellular reactive oxygen species (ROS). The in vivo antibacterial test suggests that commercial Vaseline blended with 6.25 wt % of PEI-F3.0 (VL/PEI-F3.0) is able to efficaciously eradicate MRSA infection on a bacterial infected wound model and promote the healing procedure of the wound site. Therefore, the fluoroalkylated PEIs provide a promising strategy to cope with the major challenges of drug-resistant infections.
Collapse
Affiliation(s)
- Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P.R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
7
|
Ultrasonic preparation of new nanocomposites poly(GMA)@amino-functionalized Fe3O4: structural, morphological and thermal properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
9
|
He X, Obeng E, Sun X, Kwon N, Shen J, Yoon J. Polydopamine, harness of the antibacterial potentials-A review. Mater Today Bio 2022; 15:100329. [PMID: 35757029 PMCID: PMC9218838 DOI: 10.1016/j.mtbio.2022.100329] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is one of the major causes of morbidity and mortality, triggered by the adhesion of microbes and to some extent the formation of biofilms. This condition has been quite challenging in the health and industrial sector. Conditions and processes required to foil these infectious and resistance are of much concern. The synthesis of PDA material, inspired by the Mytilus edulis foot protein (MEFP)5 possesses unique characteristics that allow for, adhesion, photothermal therapy, synergistic effects with other materials, biocompatibility process, etc. Therefore, their usage holds great potential for dealing with both the infectious nature and the antibiotic resistance processes. Hence, this review provides an overview of the mechanism involved in accomplishing and eradicating bacteria, the recently harnessed antibacterial effect of the PDA through other properties they possess, a way forward in tapping the benefit embedded in the PDA, and the future perspective.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Enoch Obeng
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoshuai Sun
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Nahyun Kwon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
10
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
11
|
Wang H, Nie X, You W, Huang W, Chen G, Gao F, Xia L, Zhang L, Wang L, Shen AZ, Wu KL, Ding SG, You YZ. Tug-of-War between Covalent Binding and Electrostatic Interaction Effectively Killing E. coli without Detectable Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56838-56849. [PMID: 34816709 DOI: 10.1021/acsami.1c15868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance in Gram-negative bacteria has become one of the leading causes of morbidity and mortality and a serious worldwide public health concern due to the fact that Gram-negative bacteria have an additional outer membrane protecting them from an unwanted compound invading. It is still very difficult for antimicrobials to reach intracellular targets and very challenging to treat Gram-negative bacteria with the current strategies. Here, we found that (o-(bromomethyl)phenyl)boronic acid was incorporated into poly((2-N,N-diethyl)aminoethyl acrylate) (PDEA), forming a copolymer (poly(o-Bn-DEA)) having both phenylboronic acid (B) and ((2-N,N-diethyl)amino) (DEA) units. Poly(o-Bn-DEA) exhibits very strong intramolecular B-N coordination, which could highly promote the covalent binding of phenylboronic acid with lipopolysaccharide (LPS) on the outer membrane of E. coli and lodge poly(o-Bn-DEA) on the LPS layer on the surface of E. coli. Meanwhile, the strong electrostatic interaction between poly(o-Bn-DEA) and the negatively charged lipid preferred tugging the poly(o-Bn-DEA) into the lipid bilayer of E. coli. The combating interactions between covalent binding and electrostatic interaction form a tug-of-war action, which could trigger the lysis of the outer membrane, thereby killing Gram-negative E. coli effectively without detectable resistance.
Collapse
Affiliation(s)
- Haili Wang
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei You
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiqiang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Zhang
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Longhai Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ai-Zong Shen
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kai-Le Wu
- Department of Otolaryngology Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Sheng-Gang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ye-Zi You
- The Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Mei L, Shi Y, Cao F, Liu X, Li XM, Xu Z, Miao Z. PEGylated Phthalocyanine-Functionalized Graphene Oxide with Ultrahigh-Efficient Photothermal Performance for Triple-Mode Antibacterial Therapy. ACS Biomater Sci Eng 2021; 7:2638-2648. [PMID: 33938721 DOI: 10.1021/acsbiomaterials.1c00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study proposes a novel multifunctional synergistic antibacterial phototherapy technique for the rapid healing of bacteria-infected wounds. By binding PEGylated phthalocyanines to the surface of graphene oxide via noncovalent functionalization, the photothermal conversion efficiency of the obtained nanocomposites can be significantly increased, which shows that the sample temperature can achieve nearly 100 °C after only 10 min of 450 nm light illumination at a concentration ≥25 μg/mL. Moreover, the nanocomposites can rapidly generate singlet oxygen under 680 nm light irradiation and physically cut bacterial cell membranes. The triple effects are expected to obtain a synergistic antibacterial efficiency and reduce the emergence of bacterial resistance. After dual-light irradiation for 10 min, the generation of hyperthermia and singlet oxygen can cause the death of Gram-positive and Gram-negative bacteria. The results of an in vivo experiment revealed that the as-prepared nanocomposites combined with dual-light-triggered antibacterial therapy can effectively restrain the inflammatory reaction and accelerate the healing of bacteria-infected wounds. These were confirmed by the examination of pathological tissue sections and inflammatory factors in rats with bacteria-infected wounds. This nanotherapeutic platform is a potential photoactivated antimicrobial strategy for the prevention and treatment of bacterial infection.
Collapse
Affiliation(s)
- Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Fengyi Cao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xuan Liu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Xiu-Min Li
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, United States
| | - Zhenlong Xu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| | - Zhiqiang Miao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
| |
Collapse
|
13
|
Ng G, Judzewitsch P, Li M, Pester CW, Jung K, Boyer C. Synthesis of Polymer Brushes Via SI-PET-RAFT for Photodynamic Inactivation of Bacteria. Macromol Rapid Commun 2021; 42:e2100106. [PMID: 33834575 DOI: 10.1002/marc.202100106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Biofilms are a persistent issue in healthcare and industry. Once formed, the eradication of biofilms is challenging as the extracellular polymeric matrix provides protection against harsh environmental conditions and physically enhances resistance to antimicrobials. The fabrication of polymer brush coatings provides a versatile approach to modify the surface to resist the formation of biofilms. Herein, the authors report a facile synthetic route for the preparation of surface-tethered polymeric brushes with antifouling and visible light activated bactericidal properties using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT). Bactericidal property via the generation of singlet oxygen, which can be temporally and spatially controlled, is investigated against both Gram-positive and Gram-negative bacteria. In addition, the antibacterial properties of the surface can be recycled. This work paves the way for the preparation of polymer films that can resist and kill bacterial biofilms.
Collapse
Affiliation(s)
- Gervase Ng
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Peter Judzewitsch
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mingxiao Li
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christian W Pester
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kenward Jung
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
14
|
Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial materials: design, platforms and applications. J Mater Chem B 2021; 9:2802-2815. [PMID: 33710247 DOI: 10.1039/d1tb00109d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the past decades, the morbidity and mortality caused by pathogen invasion remain stubbornly high even though medical care has increasingly improved worldwide. Besides, impacted by the ever-growing multidrug-resistant bacterial strains, the crisis owing to the abuse and misuse of antibiotics has been further exacerbated. Among the wide range of antibacterial strategies, polymeric antibacterial materials with diversified synthetic strategies exhibit unique advantages (e.g., their flexible structural design, processability and recyclability, tuneable platform construction, and safety) for extensive antibacterial fields as compared to low molecular weight organic or inorganic antibacterial materials. In this review, polymeric antibacterial materials are summarized in terms of four structure styles and the most representative material platforms to achieve specific antibacterial applications. The superiority and defects exhibited by various polymeric antibacterial materials are elucidated, and the design of various platforms to elevate their efficacy is also described. Moreover, the application scope of polymeric antibacterial materials is summarized with regard to tissue engineering, personal protection, and environmental security. In the last section, the subsequent challenges and direction of polymeric antibacterial materials are discussed. It is highly expected that this critical review will present an insight into the prospective development of antibacterial functional materials.
Collapse
Affiliation(s)
- Hao Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | | | |
Collapse
|
15
|
Galstyan A. Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials. Chemistry 2021; 27:1903-1920. [PMID: 32677718 PMCID: PMC7894475 DOI: 10.1002/chem.202002703] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Indexed: 12/31/2022]
Abstract
One of the most promising alternatives for treating bacterial infections is antimicrobial photodynamic therapy (aPDT), making the synthesis and application of new photoactive compounds called photosensitizers (PS) a dynamic research field. In this regard, phthalocyanine (Pc) derivatives offer great opportunities due to their extraordinary light-harvesting and tunable electronic properties, structural versatility, and stability. This Review, rather than focusing on synthetic strategies, intends to overview current progress in the structural design strategies for Pcs that could achieve effective photoinactivation of microorganisms. In addition, the Review provides a concise look into the recent developments and applications of nanocarrier-based Pc delivery systems.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft NanoscienceWestfälische Wilhelms-Universität MünsterBusso-Peus-Straße 1048149MünsterGermany
| |
Collapse
|
16
|
Zou Y, Zhang Y, Yu Q, Chen H. Photothermal bactericidal surfaces: killing bacteria using light instead of biocides. Biomater Sci 2021; 9:10-22. [DOI: 10.1039/d0bm00617c] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments of photothermal bactericidal surfaces based on immobilized photothermal agents to kill bacteria through hyperthermia effects are reviewed.
Collapse
Affiliation(s)
- Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital
- Soochow University
- Suzhou
- P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
17
|
Yang Z, Qiao Y, Li J, Wu FG, Lin F. Novel Type of Water-Soluble Photosensitizer from Trichoderma reesei for Photodynamic Inactivation of Gram-Positive Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13227-13235. [PMID: 33119308 DOI: 10.1021/acs.langmuir.0c02109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising alternative to traditional antibiotics for the treatment of bacterial infections, which inactivates a broad spectrum of bacteria. However, many traditional photosensitizers (PSs) are hydrophobic with poor water solubility and easy aggregation. On the other hand, some light sources such as ultraviolet (UV) have poor penetration and high cytotoxicity. Both issues lead to undesired photodynamic therapy efficacy. To overcome these issues, we develop a novel water-soluble natural PS (sorbicillinoids) obtained by microbial fermentation using recombinant filamentous fungus Trichoderma reesei. Sorbicillinoids could effectively generate singlet oxygen (1O2) under UV light irradiation and ultimately display photoinactivation activity on Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus but not Gram-negative ones such as Escherichia coli and Proteus vulgaris. Sorbicillinoids were found to enter S. aureus but not E. coli. S. aureus treated with sorbicillinoids and UV light displayed high levels of intracellular reactive oxygen species (ROS), notable DNA photocleavage, and compromised cell semipermeability without overt cell membrane disruption, none of which was found in the treated E. coli. All these contribute to the sorbicillinoid-based photoinactivation of Gram-positive bacteria. Moreover, the dark toxicity and phototoxicity on mammalian cells or hemolysis activity of sorbicillinoids is negligible, showing its excellent biocompatibility. This study expands the utilization of UV light for surface sterilization to disinfection in solution. Therefore, sorbicillinoids, a type of secondary metabolite from fungus, have a promising future as a new PS for APDT using a nontoxic dose of UV irradiation.
Collapse
Affiliation(s)
- Zihuayuan Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junying Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fengming Lin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Sharma B, Kaur G, Chaudhary GR, Gawali SL, Hassan PA. High antimicrobial photodynamic activity of photosensitizer encapsulated dual-functional metallocatanionic vesicles against drug-resistant bacteria S. aureus. Biomater Sci 2020; 8:2905-2920. [PMID: 32307486 DOI: 10.1039/d0bm00323a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Developments in the field of photodynamic therapy (PDT) are being made by investigating appropriate photosensitizers (PSs) and enhancing the penetration effect of light by developing new nano-carriers. So, to boost the PDT effect, in the present work, new metallocatanionic vesicles were fabricated by a convenient, efficient, green and inexpensive method to encapsulate PSs and evaluate their antimicrobial PDT against the drug-resistant bacterium Staphylococcus aureus. They were prepared from a combination of a double-chained copper-based cationic metallosurfactant (CuCPCII) and an anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (Aerosol OT or AOT). The surface charge, structure and ability to encapsulate oppositely charged photosensitizers are some crucial factors that need to be controlled for their effective utilization in PDT. In this approach, two of the fractions, one each from a cationic rich and anionic rich side, were selected to encapsulate cationic (methylene blue; MB) and anionic (rose bengal (RB)) PSs after characterization by SAXS, AFM, FESEM, DLS, and zeta-potential, and conductivity measurements. Afterwards, PDT was performed on S. aureus (a multidrug-resistant bacterium) by the colony forming unit (CFU) method using PS encapsulated metallocatanionic vesicles that demonstrated high bactericidal activity by using visible light (532 nm) and facilitated the generation of singlet oxygen. The singlet oxygen generation capability of both the PSs was enhanced under irradiation when encapsulated in metallocatanionic vesicles because the presence of metal accelerated the intersystem crossing of triplet oxygen to singlet oxygen. Furthermore, these studies reveal that the metallocatanionic vesicles have dual functionality i.e. encapsulate PSs and even show dark toxicity against S. aureus. To study the killing of S. aureus, bacterial DNA was extracted and its interactions and conformational changes in the presence of metallocatanionic vesicles were analyzed via., UV-Visible, and circular dichroism (CD) spectroscopy. Comet assay (single-cell gel-electrophoresis) demonstrated the DNA damage after PDT treatment in an individual cell. The bacterial DNA damage was more with the metallosurfactant rich 70 : 30 fraction than with the 30 : 70 fraction, in combination with RB under irradiation. This work provides a new metal hybrid smart material that possesses dual functionality and is prepared by an easy, economical and feasible procedure which resulted in enhanced PDT against a drug-resistant bacterium, thus, providing an alternative for antibacterial therapy.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.
| | | | | | | | | |
Collapse
|
19
|
Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. NANOSCALE 2020; 12:7651-7659. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection has caused a serious threat to human public health. Methicillin-resistant Staphylococcus aureus (MRSA) is a representative drug-resistant bacterium, which is difficult to eradicate completely, resulting in high infection probability with severe mortality. Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are developed for efficient elimination of MRSA infection. Van-OA@PPy nanoparticles are fabricated from the in situ templated formation of polypyrrole (PPy) in the presence of ferric ions (Fe3+) and a polymer template, hydrophilic poly(2-hydroxyethyl methacrylate-co-N,N-dimethyl acrylamide), P(HEMA-co-DMA). PPy nanoparticles are further coated with vancomycin conjugated oleic acid (Van-OA) to afford the resultant pathogen-targeting Van-OA@PPy. A high photothermal conversion efficiency of ∼49.4% is achieved. MRSA can be efficiently killed due to sufficient nanoparticle adhesion and fusion with MRSA, followed by photothermal therapy upon irradiation with an 808 nm laser. Remarkable membrane damage of MRSA is observed, which contributes greatly to the inhibition of MRSA infection. Furthermore, the nanoparticles have high stability and good biocompatibility without causing any detectable side effects. On the other hand, residual Fe3+ and PPy moieties in Van-OA@PPy endow the nanoparticles with magnetic resonance (MR) imaging and photoacoustic (PA) imaging potency, respectively. The current strategy has the potential to inspire further advances in precise diagnosis and efficient elimination of MRSA infection in biomedicine.
Collapse
Affiliation(s)
- Xujuan Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | | | | | | | | |
Collapse
|
20
|
Song J, Liu H, Lei M, Tan H, Chen Z, Antoshin A, Payne GF, Qu X, Liu C. Redox-Channeling Polydopamine-Ferrocene (PDA-Fc) Coating To Confer Context-Dependent and Photothermal Antimicrobial Activities. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8915-8928. [PMID: 31971763 DOI: 10.1021/acsami.9b22339] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbial disinfection associated with medical device surfaces has been an increasing need, and surface modification strategies such as antibacterial coatings have gained great interest. Here, we report the development of polydopamine-ferrocene (PDA-Fc)-functionalized TiO2 nanorods (Ti-Nd-PDA-Fc) as a context-dependent antibacterial system on implant to combat bacterial infection and hinder biofilm formation. In this work, two synergistic antimicrobial mechanisms of the PDA-Fc coating are proposed. First, the PDA-Fc coating is redox-active and can be locally activated to release antibacterial reactive oxygen species (ROS), especially ·OH in response to the acidic microenvironment induced by bacteria colonization and host immune responses. The results demonstrate that redox-based antimicrobial activity of Ti-Nd-PDA-Fc offers antibacterial efficacy of over 95 and 92% against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), respectively. Second, the photothermal effect of PDA can enhance the antibacterial capability upon near-infrared (NIR) irradiation, with over 99% killing efficacy against MRSA and E. coli, and even suppress the formation of biofilm through both localized hyperthermia and enhanced ·OH generation. Additionally, Ti-Nd-PDA-Fc is biocompatible when tested with model pre-osteoblast MC-3T3 E1 cells and promotes cell adhesion and spreading presumably due to its nanotopographical features. The MRSA-infected wound model also indicates that Ti-Nd-PDA-Fc with NIR irradiation can effectively eliminate bacterial infection and suppress host inflammatory responses. We believe that this study demonstrates a simple means to create biocompatible redox-active coatings that confer context-dependent antibacterial activities to implant surfaces.
Collapse
Affiliation(s)
- Jialin Song
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhanyi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Artem Antoshin
- Institute for Regenerative Medicine , Sechenov University , 8-2 Trubetskaya Street , Moscow 119991 , Russia
| | - Gregory F Payne
- Department of Bioengineering , Institute for Biosystems and Biotechnology Research and Fischell , 5115 Plant Sciences Building, College Park , Maryland 20742 , United States
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, School of Material Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
21
|
Tong W, Yao X, Duan S, Yu B, Ding X, Ding X, Xu FJ. Gradient Functionalization of Various Quaternized Polyethylenimines on Microfluidic Chips for the Rapid Appraisal of Antibacterial Potencies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:354-361. [PMID: 31826611 DOI: 10.1021/acs.langmuir.9b02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to appraise antibacterial potencies of surface-immobilized bactericidal polymers is still a major challenge in the engineering of antibacterial surfaces to combat hospital-acquired (nosocomial) infections. In this work, we fabricated a microfluidic platform with gradiently immobilized bactericidal polymers to enable the rapid appraisal of antibacterial potencies by in situ live/dead staining of bacteria. To this end, a variety of synthetic quaternary polymers, named QPEI-C1, QPEI-C6, QPEI-C8, and QPEI-C10, were gradiently immobilized in microfluidic channels, and their surface densities at different distances along the channels were quantified by using fluorescein-labeled polymers. We found that the surface densities of quaternary polymers could be well-tuned, and the length of the channel, resulting in a 50% reduction of live bacteria (L50), can be used to appraise the antibacterial potency of each bactericidal polymer. For instance, the L50 values of QPEI-C6-, QPEI-C8-, and QPEI-C10-modified channels against Escherichia coli were 35.5, 44.7, and 49.2 mm, respectively, indicating that QPEI-C10 exerted the most potent antibacterial efficacy. More importantly, this microfluidic platform enabled the rapid discrimination of antibacterial potencies of polymers (e.g., QPEI-C8, and QPEI-C10) while the conventional live/dead staining method found no significant difference. This work provides a powerful toolkit by combining advances of microfluidic systems and polymer science for the rapid screening of antibacterial coatings, which would find applications in surface modification of medical devices to combat bacterial infections.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xin Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
22
|
Kim D, Byun J, Park J, Lee Y, Shim G, Oh YK. Biomimetic polymeric nanoparticle-based photodynamic immunotherapy and protection against tumor rechallenge. Biomater Sci 2020; 8:1106-1116. [DOI: 10.1039/c9bm01704f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we sought to design a bionanomaterial that could exert anticancer effects against primary tumors and protect against rechallenged tumorsviaphotodynamic immunotherapy.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Yeon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Gayong Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
23
|
Zhang Y, Zhang X, Zhao YQ, Zhang XY, Ding X, Ding X, Yu B, Duan S, Xu FJ. Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties. Biomater Sci 2020; 8:997-1006. [DOI: 10.1039/c9bm01666j] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties were readily constructed for the therapy of catheter-associated infection.
Collapse
Affiliation(s)
- Yidan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xiang Zhang
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xin-Yang Zhang
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
- Ministry of Education
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
| |
Collapse
|
24
|
Lian J, Xu H, Duan S, Ding X, Hu Y, Zhao N, Ding X, Xu FJ. Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules 2019; 21:732-742. [DOI: 10.1021/acs.biomac.9b01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiamin Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
25
|
Tong C, Li L, Xiao F, Fan J, Zhong X, Liu X, Liu B, Wu Z, Zhou J. Daptomycin and AgNP co-loaded rGO nanocomposites for specific treatment of Gram-positive bacterial infection in vitro and in vivo. Biomater Sci 2019; 7:5097-5111. [PMID: 31524205 DOI: 10.1039/c9bm01229j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to improve the stability of AgNPs and decrease the dosage of Daptomycin for killing bacteria, a reduced graphene oxide (rGO) was used for simultaneously anchoring AgNPs and Daptomycin to prepare rGO@Ag@Dap nanocomposites. In vitro experiments showed that the nanocomposites can efficiently kill four kinds of pathogenic bacteria, especially two kinds of Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) through damaging cell integrity, producing ROS, decreasing ATP and GSH and disrupting bacterial metabolism. Against Gram-positive bacteria, the rGO@Ag@Dap nanocomposites showed a cooperative antibacterial effect. Moreover, in vivo experiments showed that rGO@Ag@Dap can improve the healing of wounds infected with bacteria by efficiently killing the bacteria on the wounds and further promoting skin regeneration and dense collagen deposition. In summary, the above results suggest that the cooperative function of AgNPs with Daptomycin can significantly improve antibacterial efficiency against infectious diseases caused by bacteria, especially for therapies made ineffective due to the drug resistance of pathogenic bacteria.
Collapse
Affiliation(s)
- Chunyi Tong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Li Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Feng Xiao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Jialong Fan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Xianghua Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Bin Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, 410082, PR China.
| | - Zhaohui Wu
- Hunan Hybrid Rice Research Center/State key Laboratory of Hybrid Rice, Changsha, 410125, PR China.
| | - Jianqun Zhou
- Hunan Institute of Agricultural Information and Engineering, Changsha, 410125, PR China
| |
Collapse
|
26
|
Zhang R, Li Y, Zhou M, Wang C, Feng P, Miao W, Huang H. Photodynamic Chitosan Nano-Assembly as a Potent Alternative Candidate for Combating Antibiotic-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26711-26721. [PMID: 31287648 DOI: 10.1021/acsami.9b09020] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fact that increasing antibiotic resistance of pathogenic bacteria and a lack of new potent broad-spectrum antibiotics call for the development of alternative approaches for treating infectious diseases. With the merits of great efficacy, safety, and facile implementation, antibacterial photodynamic therapy (APDT) represents an attractive modality for this purpose. Here, we report that the newly fabricated photodynamic chitosan nano-assembly, designated CS-Ce6, could synergistically kill antibiotic-resistant bacteria with superior potency to vancomycin. CS-Ce6 nano-assembly, obtained from covalent conjugate of chlorin e6 (Ce6) with chitosan, exhibited strong association with bacteria, thus altering their morphologies and mediating great delivery efficiency of Ce6. Upon light irradiation, localized generation of singlet oxygen by CS-Ce6 nano-assembly has a remarkable bactericidal effect toward both drug-resistance Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Acinetobacter baumannii, which was greater than that the free Ce6 and antibiotics had. We also confirmed that APDT-treated MRSA neither developed resistance to APDT nor altered their resistance to methicillin. Our in vivo studies demonstrated that the CS-Ce6 nano-assembly had comparable therapeutic efficacy with vancomycin in MRSA-infected mice. These results suggest that APDT by photodynamic chitosan nano-assembly hold great potential in combating antibiotic-resistant bacteria and hopefully in reducing the need of antibiotics in the future.
Collapse
|
27
|
Guo L, Wang H, Wang Y, Feng L. Facile core–shell nanoparticles with controllable antibacterial activity assembled by chemical and biological molecules. Biomater Sci 2019; 7:5528-5534. [DOI: 10.1039/c9bm01367a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A newly switchable antibacterial self-assembly was developed by conjugated polymer nanoparticles, DNA, Hoechst 33258 and deoxyribonuclease I.
Collapse
Affiliation(s)
- Lixia Guo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| | - Haoping Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| | - Yunxia Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P.R. China
| |
Collapse
|