1
|
Okuno Y, Iwasaki Y. Microgel-Based Smart Materials: How Do You Design a Microgel? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7946-7964. [PMID: 40107847 DOI: 10.1021/acs.langmuir.4c04604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Microgels, which are submicrometer- to micrometer-sized hydrogels, have been investigated for more than four decades and are now widely applied in modern advanced smart materials. The "smartness" of microgel-based materials is attributed to their material composition, cross-linking strategy, and responsiveness to stimuli. These characteristics are inherently influenced and constrained by the fabrication method, which, in turn, affects the properties of the resulting microgel particles. While numerous studies have reported on the applications of microgels, the translation of fundamental research findings into practical applications remains limited. For example, while recent research in biomedical applications has focused on controlled and smart drug release based on novel environmentally responsive mechanisms, this Review highlights that the responsiveness still requires further refinement in terms of selectivity and precision. Moreover, the variety of drugs that can be used remains limited, and as this Review clarifies, microgel-based materials frequently do not possess adequate biocompatibility for biomedical applications. This Review initially summarizes the relationship between microgel synthesis techniques and their resulting properties. Furthermore, we observe that recent reports on the applications of microgels fall primarily into the categories of sensing, separation, biomedical applications, and additive manufacturing. These reports highlight recent advances in microgel applications; however, several challenges specific to each application area still need to be addressed. For instance, improving sensitivity and selectivity is a key concern in the sensing field. This Review identifies these challenges and proposes future directions for the advancement of microgel-based smart materials.
Collapse
Affiliation(s)
- Yota Okuno
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
- Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
- Organization for Research & Development of Innovative Science & Technology, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
2
|
Dobroserdova AB, Minina ES, Sánchez PA, Likos CN, Kantorovich SS. Core-shell nanogels: the effects of morphology, electro- and magnetostatic interactions. SOFT MATTER 2024; 20:7797-7810. [PMID: 39018087 DOI: 10.1039/d4sm00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
We study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core. This effect of backfolding is enhanced in charged nanogels, regardless of whether all monomers are charged, or only the core or shell ones. The presence of an experimentally available amount of magnetic nanoparticles in a gel, on the one hand, does not lead to any significant morphological changes. On the other hand, the morphology of the nanogel with magnetic particles has an impact on its magnetic susceptibility. Particular growth of the magnetic response is observed if a long shell of a nanogel is functionalised.
Collapse
Affiliation(s)
| | - Elena S Minina
- Faculty of Physics, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
3
|
Chen E, Wang T, Tu Y, Sun Z, Ding Y, Gu Z, Xiao S. ROS-scavenging biomaterials for periodontitis. J Mater Chem B 2023; 11:482-499. [PMID: 36468674 DOI: 10.1039/d2tb02319a] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontitis is defined as a chronic inflammatory disease in which the continuous activation of oxidative stress surpasses the reactive oxygen species (ROS) scavenging capacity of the endogenous antioxidative defense system. Studies have demonstrated that ROS-scavenging biomaterials should be promising candidates for periodontitis therapy. To benefit the understanding and design of scavenging biomaterials for periodontitis, this review details the relationship between ROS and periodontitis, including direct and indirect damage, the application of ROS-scavenging biomaterials in periodontitis, including organic and inorganic ROS-scavenging biomaterials, and the various dosage forms of fabricated materials currently used for periodontal therapy. Finally, the current situation and further prospects of ROS-scavenging biomaterials in periodontal applications are summarized. Expecting that improved ROS-scavenging biomaterials could be better designed and developed for periodontal and even clinical application.
Collapse
Affiliation(s)
- Enni Chen
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Tu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - ZhiYuan Sun
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yi Ding
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Wei X, Ji T, Zhang S, Xue Z, Lou C, Zhang M, Zhao S, Liu H, Guo X, Yang B, Chen J. Cerium-terephthalic acid metal-organic frameworks for ratiometric fluorescence detecting and scavenging·OH from fuel combustion gas. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129603. [PMID: 35872454 DOI: 10.1016/j.jhazmat.2022.129603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyl radical (•OH) in fuel combustion gas seriously damages human health. The techniques for simultaneously detecting and scavenging •OH in these gases are limited by poor thermal resistance. To meet this challenge, herein, metal organic frameworks (MOFs) with high thermal stability (80-400 °C) and dual function (•OH detection and elimination) are developed by coordinating Ce ions with terephthalic acid (TA) (Ce-BDC). Due to the reversible conversion between Ce3+ and Ce4+, and the high concentration of Ce3+ on the surface of Ce-BDC MOFs (89.6%), an •OH scavenging efficiency over 90% is realized. Ratiometric fluorescence (I440 nm/I355 nm) detection of •OH with a low detection limit of ∼4 μM is established by adopting Ce ions as an internal standard and TA as an •OH-responsive fluorophore. For real applications, the Ce-BDC MOFs demonstrate excellent •OH detection sensitivity and high •OH scavenging efficiency in gas produced from cigarettes, wood fiber and machine oil. Mouse model results show that the damage caused by •OH in cigarette smoke can be greatly reduced by Ce-BDC MOFs. This work provides a promising strategy for sensitively detecting and efficiently eliminating •OH in fuel combustion gas.
Collapse
Affiliation(s)
- Xue Wei
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Tingshuo Ji
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Zhen Xue
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Chenfang Lou
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Mengyu Zhang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Sijing Zhao
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Huili Liu
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China
| | - Xuming Guo
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China.
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.
| | - Jian Chen
- Henan Key Laboratory of Nanocomposite and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China; Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou, Henan 450006, China.
| |
Collapse
|
5
|
Jiang H, Lin Q, Yu Z, Wang C, Zhang R. Nanotechnologies for Reactive Oxygen Species"Turn-On" Detection. Front Bioeng Biotechnol 2021; 9:780032. [PMID: 34805126 PMCID: PMC8595313 DOI: 10.3389/fbioe.2021.780032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) encompasses a collection of complicated chemical entities characterized by individually specific biological reactivities and physicochemical properties. ROS detection is attracting tremendous attention. The reaction-based nanomaterials for ROS "turn-on" sensing represent novel and efficient tools for ROS detection. These nanomaterials have the advantages of high sensitivity, real-time sensing ability, and almost infinite contrast against background. This review focuses on appraising nanotechnologies with the ROS "turn-on" detection mechanism coupled with the ability for broad biological applications. In this review, we highlighted the weaknesses and advantages in prior sensor studies and raised some guidelines for the development of future nanoprobes.
Collapse
Affiliation(s)
- Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Qian Lin
- Cancer Institute, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Zongjiang Yu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Renshuai Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
6
|
Qiu X, Yu Y, Liu H, Li X, Sun W, Wu W, Liu C, Miao L. Remodeling the periodontitis microenvironment for osteogenesis by using a reactive oxygen species-cleavable nanoplatform. Acta Biomater 2021; 135:593-605. [PMID: 34390848 DOI: 10.1016/j.actbio.2021.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Modestly removing the excessive reactive oxygen species (ROS) plays a crucial role in regulating the microenvironment of periodontitis and provides favorable conditions for osteogenesis. However, the current strategy for scavenging ROS is not controllable, substantially limiting the outcomes in periodontitis. Herein, we introduced a controllable ROS-scavenging nanoplatform by encasing N-acetylcysteine (NAC, (a well-known ROS scavenger) into tailor-made ROS-cleavable amphiphilic polymer nanoparticles (PEG-ss-PCL NPs) as an intracellular delivery carrier. The existing ROS in the inflammatory microenvironment facilitated polymer degradation via breakage of thioketal bonds, and then led to encapsulated NAC release. NAC eliminated all ROS induced by lipopolysaccharide (LPS), while PssL-NAC adjusted the ROS level slightly higher than that of the control group. The percentage of apoptotic cells cultured with NAC and PssL-NAC decreased observably compared with that of cells cultured with 10 µg/ml LPS. The microenvironment regulated by PssL-NAC was highly suitable for osteogenic differentiation based on PCR and Western blot results, which showed higher expression levels of BMP2, Runx2, and PKA. Analysis of ALP activity and Alizarin red S staining showed consistent results. Additionally, the injection of PssL-NAC into the periodontitis area could alleviate the tissue destruction induced by ligation of the maxillary second molar. PssL-NAC showed a better ability to decrease osteoclast activity and inflammation, consequently improving the restoration of destroyed tissue. Our study suggests that ROS-responsive polymer nanoparticles loaded with NAC (PssL-NAC) can be new promising materials for the treatment of periodontitis. STATEMENT OF SIGNIFICANCE: More and more studies indicate that periodontal tissue damage is closely related to the high reactive oxygen species (ROS) environment. Excessive ROS will aggravate periodontal tissue damage and is not conducive to tissue repair. However, as an essential signal molecule in human physiological activities, ROS absence is also useless for tissue repair. In this study, we proposed to improve ROS imbalance in the environment of periodontitis as a strategy to promote periodontal regeneration and successfully synthesized a smart drug-releasing nanoplatform that can respond to ROS. Besides, we validated its ability to regulate the ROS environment and promote osteogenesis through experimental data in vivo and in vitro.
Collapse
|
7
|
Abstract
Hydrogels, swellable hydrophilic polymer networks fabricated through chemical cross-linking or physical entanglement are increasingly utilized in various biomedical applications over the past few decades. Hydrogel-based microparticles, dressings and microneedle patches have been explored to achieve safe, sustained and on-demand therapeutic purposes toward numerous skin pathologies, through incorporation of stimuli-responsive moieties and therapeutic agents. More recently, these platforms are expanded to fulfill the diagnostic and monitoring role. Herein, the development of hydrogel technology to achieve diagnosis and monitoring of pathological skin conditions are highlighted, with proteins, nucleic acids, metabolites, and reactive species employed as target biomarkers, among others. The scope of this review includes the characteristics of hydrogel materials, its fabrication procedures, examples of diagnostic studies, as well as discussion pertaining clinical translation of hydrogel systems.
Collapse
|
8
|
Jiang Q, Liu Y, Wang L, Adkins GB, Zhong W. Rapid Enrichment and Detection of Extracellular Vesicles Enabled by CuS-Enclosed Microgels. Anal Chem 2019; 91:15951-15958. [PMID: 31742386 PMCID: PMC7417204 DOI: 10.1021/acs.analchem.9b04485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous vesicles that exist in nearly all biological fluids, including blood and urine; and carry a great number of cargo molecules such as protein, nucleic acids, and lipid. They may play important roles in cell-cell communication and modulation of pathological processes, which, however, are not yet well understood, calling for highly sensitive, specific, and rapid methods for EV detection and quantification in biological samples. Here, we report the CuS-enclosed microgels that not only help enrich EVs carrying specific protein markers from complex biomatrices, but also produce strong chemiluminescence (CL) to realize sensitive detection of the target EVs. A detection limit of 104 EV particles/mL was achieved with these microgels by targeting EV proteins like CD63 and HER2, with a dynamic range up to 108 particles/mL. Direct detection of EVs in human serum and cell culture medium without tedious sample preparation was demonstrated, consuming much less sample compared to ELISA and Western Blot. We envision that our method will be valuable for quick quantification of EVs in biological samples, benefiting disease monitoring and functional study.
Collapse
|
9
|
Ballance WC, Qin EC, Chung HJ, Gillette MU, Kong H. Reactive oxygen species-responsive drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials 2019; 217:119292. [PMID: 31279098 PMCID: PMC7081518 DOI: 10.1016/j.biomaterials.2019.119292] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases and disorders seriously impact memory and cognition and can become life-threatening. Current medical techniques attempt to combat these detrimental effects mainly through the administration of neuromedicine. However, drug efficacy is limited by rapid dispersal of the drugs to off-target sites while the site of administration is prone to overdose. Many neuropathological conditions are accompanied by excessive reactive oxygen species (ROS) due to the inflammatory response. Accordingly, ROS-responsive drug delivery systems have emerged as a promising solution. To guide intelligent and comprehensive design of ROS-responsive drug delivery systems, this review article discusses the two following topics: (1) the biology of ROS in both healthy and diseased nervous systems and (2) recent developments in ROS-responsive, drug delivery system design. Overall, this review article would assist efforts to make better decisions about designing ROS-responsive, neural drug delivery systems, including the selection of ROS-responsive functional groups.
Collapse
Affiliation(s)
- William C Ballance
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
10
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
11
|
Zhang Z, Li Y, Zhang X, Liu J. Molecularly imprinted nanozymes with faster catalytic activity and better specificity. NANOSCALE 2019; 11:4854-4863. [PMID: 30820498 DOI: 10.1039/c8nr09816f] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanozymes are nanomaterials mimicking the activity of natural enzymes, while most nanozymes lack substrate specificity. Molecular imprinting on nanozymes provides a simple solution to this problem, and the catalytic activity is also enhanced. To understand enhanced activity, a surface science approach is taken by dissecting the nanozyme reaction into adsorption of substrates, reaction, and product release. Each step is individually studied using reaction kinetics measurement, dynamic light scattering, UV-vis spectrometry. Enrichment of local substrate concentration due to imprinting is around 8-fold, and increased substrate concentration could contribute to increased activity. Diffusion of the substrate across the imprinted gel layer is studied by a pre-incubation experiment, also highlighting the difference between imprinted and non-imprinted gel layers. The activation energy is measured and a substrate-imprinted sample had the lowest activation energy of 13.8 kJ mol-1. Product release is also improved after imprinting as indicated by isothermal titration calorimetry using samples respectively imprinted with the substrate and the product. This study has rationalized improved activity and specificity of molecularly imprinted nanozymes and may guide further rational design of such materials.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada.
| | | | | | | |
Collapse
|
12
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|