1
|
Sasaki Y, Minami T. Organic Field-Effect Transistors for Interfacial Chemistry: Monitoring Reactions on SAMs at the Solid-Liquid Interface. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40280865 DOI: 10.1021/acsami.5c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Chemical modification of self-assembled monolayers (SAMs) at the solid-liquid interface can effectively impart SAMs with desired functions on demand. However, appropriate methods to monitor organic reactions at the solid-liquid interface have not yet been established. Therefore, this perspective introduces an extended-gate type organic field-effect transistor (EG-OFET)-based detector to monitor chemical reactions at the interface between SAMs on the extended-gate electrode of the OFET and an aqueous solution containing reactants. The EG-OFET is operated by applying gate voltages, enabling the monitoring of organic reactions on the extended-gate electrode through changes in transistor characteristics. Leveraging its amplification ability, the EG-OFET enables the sensitive detection of slight differences in product properties accompanied by variations in the charge and/or dipole moment of the SAM caused by chemical reactions at the interface. This perspective summarizes strategies, including those combined with chemometrics and microfluidic technologies, for monitoring irreversible and reversible chemical reactions at the solid-liquid interface.
Collapse
Affiliation(s)
- Yui Sasaki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku 153-8904, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8505, Tokyo, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8505, Tokyo, Japan
| |
Collapse
|
2
|
Li X, Chen J, Yang Y, Cai H, Ao Z, Xing Y, Li K, Yang K, Guan W, Friend J, Lee LP, Wang N, Guo F. Extracellular vesicle-based point-of-care testing for diagnosis and monitoring of Alzheimer's disease. MICROSYSTEMS & NANOENGINEERING 2025; 11:65. [PMID: 40246821 PMCID: PMC12006457 DOI: 10.1038/s41378-025-00916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 04/19/2025]
Abstract
Extracellular vesicles (EVs) show potential for early diagnosis of Alzheimer's disease (AD) and monitoring of its progression. However, EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers. Here, we report a fully integrated organic electrochemical transistor (OECT) sensor for ultrafast, accurate, and convenient point-of-care testing (POCT) of serum EVs from AD patients. By utilizing acoustoelectric enrichment, the EVs can be quickly propelled, significantly enriched, and specifically bound to the OECT detection area, achieving a gain of over 280 times response in 30 s. The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes. Furthermore, the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse Aβ EVs at different time courses (up to 18 months) and compared with the Aβ accumulation using high-resolution magnetic resonance imaging (MRI). This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer's and other neurodegenerative diseases, and monitoring of disease progression and treatment response.
Collapse
Affiliation(s)
- Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Jie Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yang Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kangle Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Weihua Guan
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - James Friend
- Department of Mechanical and Aerospace Engineering, and Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Bioengineering, and Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA, 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Nian Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
3
|
Sergi I, Sensi M, Zanotti R, Tsironi T, Flemetakis E, Power DM, Bortolotti CA, Biscarini F. Dual-compartment-gate organic transistors for monitoring biogenic amines from food. Biosens Bioelectron 2025; 271:117098. [PMID: 39731819 DOI: 10.1016/j.bios.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain. We propose an electrolyte-gated organic transistor (EGOT) that responds to the release of biogenic amines, like diamines and tyramine, generated by the degradation of protein-rich food. The EGOT sensor features a polymeric poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) gate electrode fabricated in the shape of a miniaturized beaker containing an aqueous solution in the inner side (to be exposed to food) and capacitively coupled through a hydrogel to the transistor channel on the outside (not in contact with food). The hydrogen bonds formed by the water-dissolved amines with PEDOT:PSS modulate the EGOT channel across a wide range of amine concentrations. We demonstrate that our sensor can detect different amines by the combinatorial analysis of the response from different channel materials, PEDOT:PSS and the other DPP-DTT, with a limit of detection as low as 100 pM.
Collapse
Affiliation(s)
- Ilenia Sergi
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Department of Neurosciences and Rehabilitation, Università Degli Studi di Ferrara, Via Fossato di Mortara 17/19, Ferrara, 44121, Italy
| | - Matteo Sensi
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy.
| | - Rian Zanotti
- Department of Physics, Informatics and Mathematics, Università Degli Studi di Modena e Reggio Emilia, Via Campi 213/a, Modena, 41125, Italy
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, 11855, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, Athens, 11855, Greece
| | - Deborah Mary Power
- Centro de Ciencias Do Mar, Universidade Do Algarve, Campus de Gambelas, 8000-117, Faro, Portugal
| | - Carlo Augusto Bortolotti
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy
| | - Fabio Biscarini
- Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy
| |
Collapse
|
4
|
Minamiki T, Esaka R, Kurita R. Displacement Assay in a Polythiophene Sensor System Based on Supramacromolecuar Disassembly-Caused Emission Quenching. SENSORS (BASEL, SWITZERLAND) 2024; 24:4245. [PMID: 39001024 PMCID: PMC11244502 DOI: 10.3390/s24134245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Exploring new methodologies for simple and on-demand methods of manipulating the emission and sensing ability of fluorescence sensor devices with solid-state emission molecular systems is important for realizing on-site sensing platforms. In this regard, although conjugated polymers (CPs) are some of the best candidates for preparing molecular sensor devices owing to their luminescent and molecular recognition properties, the development of CP-based sensor devices is still in its early stages. In this study, we herein propose a novel strategy for preparing a chemical stimuli-responsive solid-state emission system based on supramacromolecular assembly-induced emission enhancement (SmAIEE). The system was spontaneously developed by mixing only the component polymers (i.e., polythiophene and a transient cross-linking polymer). The proposed strategy can be applied to the facile preparation of molecular sensor devices. The analyte-induced fluorescent response of polythiophene originated from the dynamic displacement of the transient cross-linker in the polythiophene ensemble and the generation of the polythiophene-analyte complex. Our successful demonstration of the spontaneous preparation of the fluorescence sensor system by mixing two component polymers could lead to the development of on-site molecular analyzers including the determination of multiple analytes.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Saitama, Japan
| | - Ryosuke Esaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| | - Ryoji Kurita
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
| |
Collapse
|
5
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Ohshiro K, Sasaki Y, Zhou Q, Didier P, Nezaki T, Yasuike T, Kamiko M, Minami T. A microfluidic organic transistor for reversible and real-time monitoring of H 2O 2 at ppb/ppt levels in ultrapure water. Chem Commun (Camb) 2022; 58:5721-5724. [PMID: 35416219 DOI: 10.1039/d2cc01224c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic organic transistor functionalized with phenylboronic acid firstly succeeded in reversible and real-time monitoring of H2O2 at ppb/ppt levels in ultrapure water, which would be used not only as portable chemical sensors but also as monitoring tools to clarify unknown reaction mechanisms of phenylboronic acid with H2O2.
Collapse
Affiliation(s)
- Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Pierre Didier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,LIMMS/CNRS-IIS(UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Takasuke Nezaki
- Kurita Water Industries Ltd., 4-10-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Tomoharu Yasuike
- Kurita Water Industries Ltd., 4-10-1 Nakano, Nakano-ku, Tokyo, 164-0001, Japan
| | - Masao Kamiko
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan. .,LIMMS/CNRS-IIS(UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
7
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
8
|
|
9
|
|
10
|
Asano K, Didier P, Ohshiro K, Lobato-Dauzier N, Genot AJ, Minamiki T, Fujii T, Minami T. Real-Time Detection of Glyphosate by a Water-Gated Organic Field-Effect Transistor with a Microfluidic Chamber. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7305-7311. [PMID: 34110177 DOI: 10.1021/acs.langmuir.1c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper reports the development of a real-time monitoring system utilizing the combination of a water-gated organic field-effect transistor (WG-OFET) and a microfluidic chamber for the detection of the herbicide glyphosate (GlyP). For the realization of the real-time sensing with the WG-OFET, the surface of a polymer semiconductor was utilized as a sensing unit. The aqueous solution including the target analyte, which is employed as a gate dielectric of the WG-OFET, flows into a designed microfluidic chamber on the semiconductor layer and the gate electrode. As the sensing mechanism, the WG-OFET-based sensor utilizes the competitive complexation among carboxylate-functionalized polythiophene, a copper(II) (Cu2+) ion, and GlyP. The reversible accumulation and desorption of the positively charged Cu2+ ion on the semiconductor surface induced a change in the electrical double-layer capacitance (EDLC). The optimization of the microfluidic chamber enables a uniform water flow and contributes to real-time quantitative sensing of GlyP at a micromolar level. Thus, this study would lead to practical real-time sensing in water for various fields including environmental assessment.
Collapse
Affiliation(s)
- Koichiro Asano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Pierre Didier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Nicolas Lobato-Dauzier
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Anthony J Genot
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Teruo Fujii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
11
|
Minami T. Design of Supramolecular Sensors and Their Applications to Optical Chips and Organic Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
12
|
Sasaki Y, Asano K, Minamiki T, Zhang Z, Takizawa SY, Kubota R, Minami T. A Water-Gated Organic Thin-Film Transistor for Glyphosate Detection: A Comparative Study with Fluorescence Sensing. Chemistry 2020; 26:14525-14529. [PMID: 32803889 DOI: 10.1002/chem.202003529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 12/21/2022]
Abstract
This work reports the design of a highly sensitive solid-state sensor device based on a water-gated organic thin-film transistor (WG-OTFT) for the selective detection of herbicide glyphosate (GlyP) in water. A competitive assay among carboxylate-functionalized polythiophene, Cu2+ , and GlyP was employed as a sensing mechanism. Molecular recognition phenomena and electrical double layer (EDL) (at the polymer/water interface) originated from the field-effect worked cooperatively to amplify the sensitivity for GlyP. The limit of detection of WG-OTFT (0.26 ppm) was lower than that of a fluorescence sensor chip (0.95 ppm) which is the conventional sensing method. In contrast to the previously reported insulated molecular wires to block interchain interactions, molecular aggregates under the field-effect has shown to be effective for amplification of sensitivity through "intra"- and "inter"-molecular wire effects. The opposite strategy in this study could pave the way for fully utilizing the sensing properties of polymer-based solid-state sensor devices.
Collapse
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Koichiro Asano
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Zhoujie Zhang
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
13
|
Minamiki T, Ichikawa Y, Kurita R. Systematic Investigation of Molecular Recognition Ability in FET-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15903-15910. [PMID: 32134238 DOI: 10.1021/acsami.0c00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring new strategies for simple and on-demand methods of manipulating the sensing ability of sensor devices functionalized with artificial receptors embedded in a molecular assembly is important to realizing high-throughput on-site sensing systems based on integrated and miniaturized devices such as field-effect transistors (FETs). Although FET-based chemical sensors can be used for rapid, quantitative, and simultaneous determination of various desired analytes, detectable targets in conventional FET sensors are currently restricted owing to the complicated processes used to prepare sensing materials. In this study, we investigated the relationship between the sensing features of FETs and the nanostructures of mixed self-assembled monolayers (mSAMs) for the detection of biomolecules. The FET devices were systematically functionalized using mixtures of benzenethiol derivatives (4-mercaptobenzoic acid and benzenethiol), which changed the nanostructure of the SAMs formed on gold sensing electrodes. The obtained cross-reactivity in the FETs modified with the mSAMs was derived from the multidimensional variations of the SAM characteristics. Our successful demonstration of continuous control of the molecular recognition ability in the FETs by applying the mSAM system could lead to the development of next-generation versatile analyzers, including chemical sensor arrays for the determination of multiple analytes anytime, anywhere.
Collapse
Affiliation(s)
- Tsukuru Minamiki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuki Ichikawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Ryoji Kurita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
14
|
Dorfman KD, Adrahtas DZ, Thomas MS, Frisbie CD. Microfluidic opportunities in printed electrolyte-gated transistor biosensors. BIOMICROFLUIDICS 2020; 14:011301. [PMID: 32002104 PMCID: PMC6984978 DOI: 10.1063/1.5131365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Printed electrolyte-gated transistors (EGTs) are an emerging biosensor platform that leverage the facile fabrication engendered by printed electronics with the low voltage operation enabled by ion gel dielectrics. The resulting label-free, nonoptical sensors have high gain and provide sensing operations that can be challenging for conventional chemical field effect transistor architectures. After providing an overview of EGT device fabrication and operation, we highlight opportunities for microfluidic enhancement of EGT sensor performance via multiplexing, sample preconcentration, and improved transport to the sensor surface.
Collapse
Affiliation(s)
- Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Demetra Z Adrahtas
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Mathew S Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
15
|
Kubota R, Sasaki Y, Minamiki T, Minami T. Chemical Sensing Platforms Based on Organic Thin-Film Transistors Functionalized with Artificial Receptors. ACS Sens 2019; 4:2571-2587. [PMID: 31475522 DOI: 10.1021/acssensors.9b01114] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic thin-film transistors (OTFTs) have attracted intense attention as promising electronic devices owing to their various applications such as rollable active-matrix displays, flexible nonvolatile memories, and radiofrequency identification (RFID) tags. To further broaden the scope of the application of OTFTs, we focus on the host-guest chemistry combined with the electronic devices. Extended-gate types of OTFTs functionalized with artificial receptors were fabricated to achieve chemical sensing of targets in complete aqueous media. Organic and inorganic ions (cations and anions), neutral molecules, and proteins, which are regarded as target analytes in the field of host-guest chemistry, were electrically detected by artificial receptors. Molecular recognition phenomena on the extended-gate electrode were evaluated by several analytical methods such as photoemission yield spectroscopy in the air, contact angle goniometry, and X-ray photoelectron spectroscopy. Interestingly, the electrical responses of the OTFTs were highly sensitive to the chemical structures of the guests. Thus, the OTFTs will facilitate the selective sensing of target analytes and the understanding of chemical conversions in biological and environmental systems. Furthermore, such cross-reactive responses observed in our studies will provide some important insights into next-generation sensing systems such as OTFT arrays. We strongly believe that our approach will enable the development of new intriguing sensor platforms in the field of host-guest chemistry, analytical chemistry, and organic electronics.
Collapse
Affiliation(s)
- Riku Kubota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153−8505, Japan
| |
Collapse
|
16
|
Liu N, Chen R, Wan Q. Recent Advances in Electric-Double-Layer Transistors for Bio-Chemical Sensing Applications. SENSORS 2019; 19:s19153425. [PMID: 31387221 PMCID: PMC6696065 DOI: 10.3390/s19153425] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
As promising biochemical sensors, ion-sensitive field-effect transistors (ISFETs) are used widely in the growing field of biochemical sensing applications. Recently, a new type of field-effect transistor gated by ionic electrolytes has attracted intense attention due to the extremely strong electric-double-layer (EDL) gating effect. In such devices, the carrier density of the semiconductor channel can be effectively modulated by an ion-induced EDL capacitance at the semiconductor/electrolyte interface. With advantages of large specific capacitance, low operating voltage and sensitive interfacial properties, various EDL-based transistor (EDLT) devices have been developed for ultrasensitive portable sensing applications. In this article, we will review the recent progress of EDLT-based biochemical sensors. Starting with a brief introduction of the concepts of EDL capacitance and EDLT, we describe the material compositions and the working principle of EDLT devices. Moreover, the biochemical sensing performances of several important EDLTs are discussed in detail, including organic-based EDLTs, oxide-based EDLTs, nanomaterial-based EDLTs and neuromorphic EDLTs. Finally, the main challenges and development prospects of EDLT-based biochemical sensors are listed.
Collapse
Affiliation(s)
- Ning Liu
- Nanchang Institute of Technology, Nanchang 330099, China
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China
| | - Ru Chen
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Qing Wan
- School of Electronic Science & Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
Liu Q, Mukherjee S, Huang R, Liu K, Liu T, Liu K, Miao R, Peng H, Fang Y. Naphthyl End-Capped Terthiophene-Based Chemiresistive Sensors for Biogenic Amine Detection and Meat Spoilage Monitoring. Chem Asian J 2019; 14:2751-2758. [PMID: 31210030 DOI: 10.1002/asia.201900622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Indexed: 01/12/2023]
Abstract
A reliable and sensitive detection of biogenic amines (BAs) is essential to ensure food safety and maintain public health. In this study, two naphthyl end-capped terthiophene derivatives, namely, 5-(naphthalen-1-yl)-2,2':5',2''-terthiophene (NA-3T) and 5,5''-di(naphthalen-1-yl)-2,2':5',2''-terthiophene (NA-3T-NA), were employed to develop chemiresistive sensors for detecting gaseous BAs. In contrast to NA-3T, the NA-3T-NA-based sensor showed a higher sensitivity for trimethylamine (TMA) with an experimental detection limit lower than 22 ppm, and for aromatic BAs, including dopamine, histamine, tryptamine, and tyramine. Additionally, the recovery time for TMA was found to be shorter than 23 s. In addition, both sensors were successfully used for an in situ evaluation of meat freshness by monitoring the concentration of relevant volatile BAs. The difference in the sensing performances of the two chemiresistive sensors was tentatively ascribed to different packing structures of the derivatives and the adlayer structures of the films developed with the compounds.
Collapse
Affiliation(s)
- Quan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.,Shaanxi Province Key Laboratory of Catalytic Foundation, and Applications, School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, P.R. China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China
| |
Collapse
|
18
|
Krishnaveni K, Murugesan S, Siva A. Dual-mode recognition of biogenic amine tryptamine and fluoride ions by a naphthyl hydrazone platform: application in fluorescence imaging of HeLa cells and zebrafish embryos. NEW J CHEM 2019. [DOI: 10.1039/c9nj01688k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new type of selective and sensitive naphthyl hydrazone anchored Schiff base derivative (PYNA) was synthesized and applied to the fluorogenic and chromogenic recognition of both tryptamine (TryptA) and F−ions, further it has good cell permeability and biocompatibility in zebrafish embryos and HeLa cells.
Collapse
Affiliation(s)
- Karuppiah Krishnaveni
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry, School of Chemistry
- Madurai Kamaraj University
- Madurai-21
- India
| | - Sepperumal Murugesan
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry, School of Chemistry
- Madurai Kamaraj University
- Madurai-21
- India
| | - Ayyanar Siva
- Supramolecular and Organometallic Chemistry Lab
- Department of Inorganic Chemistry, School of Chemistry
- Madurai Kamaraj University
- Madurai-21
- India
| |
Collapse
|
19
|
Sasaki Y, Minamiki T, Minami T. Development of Supramolecular Sensor Devices Based on Organic Transistors. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yui Sasaki
- Institute of Industrial Science, The University of Tokyo
| | - Tsukuru Minamiki
- Institute of Industrial Science, The University of Tokyo
- National Institute of Advanced Industrial Science and Technology
| | | |
Collapse
|