1
|
Xu Q, Wang Q, Yang J, Liu W, Wang A. Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16611-16620. [PMID: 39215385 DOI: 10.1021/acs.est.4c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C-C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10-50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C-H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.
Collapse
Affiliation(s)
- Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Qiandi Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiaqi Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Barik P, Behera SS, Nayak LK, Nanda LN, Nanda SK, Patri P. Transition metal catalysed cascade C-C and C-O bond forming events of alkynes. Org Biomol Chem 2024; 22:5052-5086. [PMID: 38856756 DOI: 10.1039/d3ob02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The past few decades have witnessed the emergence of domino reactions as a powerful tool for the multi-functionalization of alkynes for the rapid and smooth construction of complex molecular architectures. In this context, employing transition metal catalysis, vicinal/geminal cascade functionalization of alkynes involving C-C and C-O bond-formation reactions, has become a preferred strategy for the synthesis of oxygenated motifs. Despite this significant progress, reviews documenting such strategies are either metal/functional group-centric or target-oriented, thus hampering further developments. Therefore, in this review, different conceptual approaches based on C-C and C-O bond-forming events of alkynes such as carboxygenation (C-C and CO bond formation), carboalkoxylation (C-C and C-OR bond formation), and carboacetoxylation (C-C and C-OAc bond formations) are discussed, and examples from the literature from the last two decades are presented. Further, we have presented detailed insights into the mechanism of different transformations.
Collapse
Affiliation(s)
- Padmanava Barik
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Laxmi Kanta Nayak
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Santosh Kumar Nanda
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | - Padmanava Patri
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| |
Collapse
|
3
|
Chen J, Yao J, Li XX, Wang Y, Song W, Cho KB, Lee YM, Nam W, Wang B. Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinping Yao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenxun Song
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
4
|
Nozawa-Kumada K, Ono K, Kurosu S, Shigeno M, Kondo Y. Copper-catalyzed aerobic benzylic C(sp 3)-H lactonization of 2-alkylbenzamides via N-centered radicals. Org Biomol Chem 2022; 20:5948-5952. [PMID: 35262165 DOI: 10.1039/d2ob00281g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we describe the copper-catalyzed aerobic C(sp3)-H functionalization of 2-alkylbenzamides for the synthesis of benzolactones. This reaction proceeds via 1,5-hydrogen atom transfer of N-centered radicals directly generated by N-H bond cleavage and does not require the synthesis of pre-functionalized N-centered radical precursors or the use of strong stoichiometric oxidants.
Collapse
Affiliation(s)
- Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Kanako Ono
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Satoshi Kurosu
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Masanori Shigeno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
5
|
Galeotti M, Salamone M, Bietti M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3)-H functionalization promoted by electrophilic reagents. Chem Soc Rev 2022; 51:2171-2223. [PMID: 35229835 DOI: 10.1039/d1cs00556a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct functionalization of C(sp3)-H bonds represents one of the most investigated approaches to develop new synthetic methodology. Among the available strategies for intermolecular C-H bond functionalization, increasing attention has been devoted to hydrogen atom transfer (HAT) based procedures promoted by radical or radical-like reagents, that offer the opportunity to introduce a large variety of atoms and groups in place of hydrogen under mild conditions. Because of the large number of aliphatic C-H bonds displayed by organic molecules, in these processes control over site-selectivity represents a crucial issue, and the associated factors have been discussed. In this review article, attention will be devoted to the role of electronic effects on C(sp3)-H bond functionalization site-selectivity. Through an analysis of the recent literature, a detailed description of the HAT reagents employed in these processes, the associated mechanistic features and the selectivity patterns observed in the functionalization of substrates of increasing structural complexity will be provided.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| |
Collapse
|
6
|
Zhang H, Wang Q, Wang Y, Yuan Z, Gao F, Britton R. Selective Trifluoromethylthiolation of Unactivated C(sp
3
)−H Bonds Enabled by Excited Ketones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical isotope research center School of basic medical sciences Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Robert Britton
- Department of Chemistry Simon Fraser University Burnaby British Columbia V5 A 1S6 Canada
| |
Collapse
|
7
|
Metal-free iodic acid-triggered cascade cyclization of alkenes with N-hydroxyphthalimide: A simple and mild access to aminooxylated 3,3-disubstituted 2-oxindoles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Yoshii T, Tsuzuki S, Sakurai S, Sakamoto R, Jiang J, Hatanaka M, Matsumoto A, Maruoka K. N-Hydroxybenzimidazole as a structurally modifiable platform for N-oxyl radicals for direct C-H functionalization reactions. Chem Sci 2020; 11:5772-5778. [PMID: 32832053 PMCID: PMC7416693 DOI: 10.1039/d0sc02134b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 11/21/2022] Open
Abstract
A novel class of N-oxy radicals based on flexibly modifiable N-hydroxybenzimidazole skeleton was designed and applied to C–H functionalization reactions.
Methods for direct functionalization of C–H bonds mediated by N-oxyl radicals constitute a powerful tool in modern organic synthesis. While several N-oxyl radicals have been developed to date, the lack of structural diversity for these species has hampered further progress in this field. Here we designed a novel class of N-oxyl radicals based on N-hydroxybenzimidazole, and applied them to the direct C–H functionalization reactions. The flexibly modifiable features of these structures enabled facile tuning of their catalytic performance. Moreover, with these organoradicals, we have developed a metal-free approach for the synthesis of acyl fluorides via direct C–H fluorination of aldehydes under mild conditions.
Collapse
Affiliation(s)
- Tomomi Yoshii
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Saori Tsuzuki
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Shunya Sakurai
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Ryu Sakamoto
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan .
| | - Julong Jiang
- Institute for Research Initiatives , Division for Research Strategy , Graduate School of Materials Science , Data Science Center , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Miho Hatanaka
- Institute for Research Initiatives , Division for Research Strategy , Graduate School of Materials Science , Data Science Center , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan.,PRESTO , Japan Science and Technology (JST) , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Akira Matsumoto
- Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo , Kyoto 606-8501 , Japan
| | - Keiji Maruoka
- Department of Chemistry , Graduate School of Science , Kyoto University , Sakyo , Kyoto 606-8502 , Japan . .,Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo , Kyoto 606-8501 , Japan.,School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| |
Collapse
|
9
|
Hu C, Hong G, Nahide PD, He Y, Zhou C, Kozlowski MC, Wang L. C(sp 3)-H hydroxylation of fluorenes, oxindoles and benzofuranones with a Mg(NO 3) 2-HP(O)Ph 2 oxidation system. Org Chem Front 2019; 6:3167-3171. [PMID: 31516715 PMCID: PMC6739833 DOI: 10.1039/c9qo00778d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel oxidation system in which magnesium nitrate [Mg(NO3)2] is used as an oxidant in the presence of diphe-nylphosphine oxide [HP(O)Ph2] permits the C(sp3)-H hydroxylation of fluorenes, oxindoles, and benzofuranones. This method features high efficiency, good functional group tolerance, and operational simplicity. The synthetic utility is highlighted by further transformations to valuable organic materials.
Collapse
Affiliation(s)
- Chen Hu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Gang Hong
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pradip D Nahide
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yuchen He
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chen Zhou
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Limin Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
10
|
Nozawa‐Kumada K, Kurosu S, Shigeno M, Kondo Y. Peroxydisulfate‐Mediated Transition‐Metal‐Free Oxidative C(sp
3
)−H Bond Lactonization. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kanako Nozawa‐Kumada
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Satoshi Kurosu
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical SciencesTohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
11
|
Zhou B, Yuan Y, Jin H, Liu Y. I2O5-Mediated Iodocyclization Cascade of N-(1-Arylallyl)pyridine-2-amines with Concomitant C═C Bond Cleavage: A Synthesis of 3-Iodoimidazo[1,2-a]pyridines. J Org Chem 2019; 84:5773-5782. [PMID: 30983338 DOI: 10.1021/acs.joc.9b00765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
12
|
LaMartina KB, Kuck HK, Oglesbee LS, Al-Odaini A, Boaz NC. Selective benzylic C-H monooxygenation mediated by iodine oxides. Beilstein J Org Chem 2019; 15:602-609. [PMID: 30931001 PMCID: PMC6423598 DOI: 10.3762/bjoc.15.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
A method for the selective monooxdiation of secondary benzylic C–H bonds is described using an N-oxyl catalyst and a hypervalent iodine species as a terminal oxidant. Combinations of ammonium iodate and catalytic N-hydroxyphthalimide (NHPI) were shown to be effective in the selective oxidation of n-butylbenzene directly to 1-phenylbutyl acetate in high yield (86%). This method shows moderate substrate tolerance in the oxygenation of substrates containing secondary benzylic C–H bonds, yielding the corresponding benzylic acetates in good to moderate yield. Tertiary benzylic C–H bonds were shown to be unreactive under similar conditions, despite the weaker C–H bond. A preliminary mechanistic analysis suggests that this NHPI-iodate system is functioning by a radical-based mechanism where iodine generated in situ captures formed benzylic radicals. The benzylic iodide intermediate then solvolyzes to yield the product ester.
Collapse
Affiliation(s)
- Kelsey B LaMartina
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Haley K Kuck
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Linda S Oglesbee
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Asma Al-Odaini
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA
| | - Nicholas C Boaz
- Department of Chemistry and Physics, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA.,Department of Chemistry, Frick Chemical Laboratory, Princeton University, Washington Road, Princeton, NJ 08544 USA.,Permanent address: Department of Chemistry, North Central College, 30 N. Brainard Street, Naperville, IL 60540 USA; phone: +1-630-637-5187
| |
Collapse
|
13
|
Zhou B, Yang H, Jin H, Liu Y. I2O5-Mediated 1,5-Cyclization of Aryldiynes with H2O: A Way To Access 3-Acyl-1-indenone Derivatives. J Org Chem 2019; 84:2169-2177. [DOI: 10.1021/acs.joc.8b03151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Huan Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| |
Collapse
|
14
|
Kiyokawa K, Nakamura S, Jou K, Iwaida K, Minakata S. Transition-metal-free Intramolecular C–H amination of sulfamate esters and N-alkylsulfamides. Chem Commun (Camb) 2019; 55:11782-11785. [DOI: 10.1039/c9cc06410a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transition-metal-free intramolecular C–H amination of sulfamate esters and N-alkylsulfamides using iodine oxidants, tert-butyl hypoiodite (t-BuOI) and N-iodosuccinimide (NIS) is reported.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Shogo Nakamura
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Keisuke Jou
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Kohji Iwaida
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Satoshi Minakata
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| |
Collapse
|
15
|
Duhamel T, Muñiz K. Cooperative iodine and photoredox catalysis for direct oxidative lactonization of carboxylic acids. Chem Commun (Camb) 2019; 55:933-936. [DOI: 10.1039/c8cc08594c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
C–H lactonization is enabled by visible light-promoted cooperative catalysis combining molecular iodine and an organic dye.
Collapse
Affiliation(s)
- Thomas Duhamel
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- 43007 Tarragona
- Spain
- Universidad de Oviedo
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute of Science and Technology
- 43007 Tarragona
- Spain
- ICREA
| |
Collapse
|
16
|
Kiyokawa K, Minakata S. Introduction of Oxygen or Nitrogen Functionalities Utilizing Iodine Reagents. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.1310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| |
Collapse
|
17
|
Zheng L, Zhou B, Jin H, Li T, Liu Y. Radical-Triggered Tandem Cyclization of 1,6-Enynes with H2O: A Way to Access Strained 1H-Cyclopropa[b]naph thalene-2,7-diones. Org Lett 2018; 20:7053-7056. [DOI: 10.1021/acs.orglett.8b03007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nangyang, Henan 473061, P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|