1
|
Wittstock G, Bäumer M, Dononelli W, Klüner T, Lührs L, Mahr C, Moskaleva LV, Oezaslan M, Risse T, Rosenauer A, Staubitz A, Weissmüller J, Wittstock A. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem Rev 2023; 123:6716-6792. [PMID: 37133401 PMCID: PMC10214458 DOI: 10.1021/acs.chemrev.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Marcus Bäumer
- University
of Bremen, Institute for Applied
and Physical Chemistry, 28359 Bremen, Germany
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
| | - Wilke Dononelli
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Bremen Center for
Computational Materials Science, Hybrid Materials Interfaces Group, Am Fallturm 1, Bremen 28359, Germany
| | - Thorsten Klüner
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Lukas Lührs
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
| | - Christoph Mahr
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Lyudmila V. Moskaleva
- University
of the Free State, Department of Chemistry, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Mehtap Oezaslan
- Technical
University of Braunschweig Institute of Technical Chemistry, Technical Electrocatalysis Laboratory, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Thomas Risse
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Arnimallee
22, 14195 Berlin, Germany
| | - Andreas Rosenauer
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Anne Staubitz
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| | - Jörg Weissmüller
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
- Helmholtz-Zentrum
Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Arne Wittstock
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| |
Collapse
|
2
|
Lai J, Ding L, Fan C, Wei J, Qian J, Wang K. Zinc vacancy mediated electron-hole separation in ZnO nanorod arrays for high-sensitivity organic photoelectrochemical transistor aptasensor. Chem Commun (Camb) 2022; 59:75-78. [PMID: 36468236 DOI: 10.1039/d2cc05735b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A novel strong solvent coordination leaching method was developed to prepare surface zinc vacancies in ZnO nanorod arrays. Remarkably, the surface-zinc-vacancy-rich ZnO nanorod arrays exhibit high electron-hole separation efficiency and excellent photoelectrochemical performance for use as a promising candidate for the next generation of organic photoelectrochemical transistor aptasensors.
Collapse
Affiliation(s)
- Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
3
|
A separation strategy of Au(III), Pd(II) and Pt(IV) based on hydrophobic deep eutectic solvent from hydrochloric acid media. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Nanoporous gold microelectrode arrays using microchips: A highly sensitive and cost-effective platform for electroanalytical applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Solid–Solution–Solid (SSS) phase transitions for Gram-Scale and High-Throughput synthesis of noble metal nanoparticles in deep eutectic solvents. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Koster HJ, O’Toole HJ, Chiu KL, Rojalin T, Carney RP. Homogenous high enhancement surface-enhanced Raman scattering (SERS) substrates by simple hierarchical tuning of gold nanofoams. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2022; 47:100596. [PMID: 36397833 PMCID: PMC9668102 DOI: 10.1016/j.colcom.2022.100596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface enhanced Raman scattering (SERS) is a powerful tool for vibrational spectroscopy, providing orders of magnitude increase in chemical sensitivity compared to spontaneous Raman scattering. Yet it remains a challenge to synthesize robust, uniform SERS substrates quickly and easily. Lithographic approaches to produce substrates can achieve high, uniform sensitivity but are expensive and complex, thus difficult to scale. Facile solution-phase chemical approaches often result in unreliable SERS substrates due to heterogeneous arrangement of "hot spots" throughout the material. Here we demonstrate the synthesis and characterization of a homogeneous gold nanofoam (AuNF) substrate produced by a rapid, one-pot, four-ingredient synthetic approach. AuNFs are rapidly nucleated with macroscale porosity and then chemically roughened to produce nanoscale features that confer homogeneous and high signal enhancement (~109) across large areas, a comparable performance to lithographically produced substrates.
Collapse
Affiliation(s)
| | | | | | | | - Randy P. Carney
- Corresponding author at: Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA. (R.P. Carney)
| |
Collapse
|
7
|
Amouzadeh Tabrizi M, Fernández-Blázquez JP, Medina DM, Acedo P. An ultrasensitive molecularly imprinted polymer-based electrochemical sensor for the determination of SARS-CoV-2-RBD by using macroporous gold screen-printed electrode. Biosens Bioelectron 2022; 196:113729. [PMID: 34736101 PMCID: PMC8547854 DOI: 10.1016/j.bios.2021.113729] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Herein, a novel molecularly imprinted polymer (MIP) based electrochemical sensor for the determination of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-RBD) has been developed. For this purpose, first, a macroporous gold screen-printed electrode (MP-Au-SPE) has been fabricated. The MIP was then synthesized on the surface of the MP-Au-SPE through the electro-polymerization of ortho-phenylenediamine in the presence of SARS-CoV-2-RBD molecules as matrix polymer, and template molecules, respectively. During the fabrication process, the SARS-CoV-2-RBD molecules were embedded in the polymer matrix. Subsequently, the template molecules were removed from the electrode by using alkaline ethanol. The template molecules removal was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance spectroscopy (ATR). The fabricated MIP film acted as an artificial recognition element for the measurement of SARS-CoV-2-RBD. The EIS technique was used for the measurement of the SARS-CoV-2-RBD in the saliva solution. The electron transfer resistance (Ret) of the MIP-based sensor in a ferri/ferrocyanide solution increased as the SARS-CoV-2-RBD concentration increased due to the occupation of the imprinted cavities by the SARS-CoV-2-RBD. The MIP-based sensor exhibited a good response to the SARS-CoV-2-RBD in the concentration range between 2.0 and 40.0 pg mL-1 with a limit of detection of 0.7 pg mL-1. The obtained results showed that the fabricated MIP sensor has high selectivity sensitivity, and stability.
Collapse
Affiliation(s)
| | | | | | - Pablo Acedo
- Electronic Technology Department, Universidad Carlos III de Madrid, Leganés, Spain.
| |
Collapse
|
8
|
Abstract
Various eutectic systems have been proposed and studied over the past few decades. Most of the studies have focused on three typical types of eutectics: eutectic metals, eutectic salts, and deep eutectic solvents. On the one hand, they are all eutectic systems, and their eutectic principle is the same. On the other hand, they are representative of metals, inorganic salts, and organic substances, respectively. They have applications in almost all fields related to chemistry. Their different but overlapping applications stem from their very different properties. In addition, the proposal of new eutectic systems has greatly boosted the development of cross-field research involving chemistry, materials, engineering, and energy. The goal of this review is to provide a comprehensive overview of these typical eutectics and describe task-specific strategies to address growing demands.
Collapse
Affiliation(s)
- Dongkun Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| | - Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China.
| |
Collapse
|
9
|
Ling Y, Lyu Q, Zhai Q, Zhu B, Gong S, Zhang T, Dyson J, Cheng W. Design of Stretchable Holey Gold Biosensing Electrode for Real-Time Cell Monitoring. ACS Sens 2020; 5:3165-3171. [PMID: 32957779 DOI: 10.1021/acssensors.0c01297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In bioelectronics, gold thin films have been widely used as sensing electrodes for probing biological events due to their high conductivity, chemical inertness, biocompatibility, wide electrochemical window, and facile surface modification. However, they are intrinsically not stretchable, which limits their applications in detecting biological reactions when a soft biological system is mechanically deformed. Here, we report on a nanosphere lithography-based strategy to generate ordered microhole gold thin-film electrodes supported by elastomeric substrates. Both experimental and theoretical studies show that the presence of microholes substantially suppresses the catastrophic crack propagation-the main reason for electrical failure for a continuous gold film. As a result, the holey gold film achieves a ∼94% stretchable limit, after which the conductivity is lost, in contrast to ∼4% for the nonstructured counterpart. Furthermore, the pinhole gold electrode is successfully used to monitor the H2O2 released from living cells under dynamic stretching conditions.
Collapse
Affiliation(s)
- Yunzhi Ling
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Quanxia Lyu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Qingfeng Zhai
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Bowen Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Shu Gong
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tian Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jennifer Dyson
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- New Horizon Research Centre, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Rong K, Wei J, Huang L, Fang Y, Dong S. Synthesis of low dimensional hierarchical transition metal oxides via a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. NANOSCALE 2020; 12:20719-20725. [PMID: 33029600 DOI: 10.1039/d0nr04378h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal oxides (TMOs) are regarded as important materials due to their wide applications in catalysis, sensors, energy storage and conversion devices owing to their advantages of facile synthesis, low cost, and high activity. Here we develop a direct deep eutectic solvent (DES) calcining method to prepare low-dimensional and highly active TMOs for the electrochemical oxygen evolution reaction (OER). Glucose monohydrate and urea can form a glucose-urea DES, which was calcined under a N2 atmosphere to produce 2D N,O-doped graphene. When metal precursors were introduced into the glucose-urea DES and calcined together, the TMOs were templated by graphene flakes and exhibited low-dimensional morphologies. With this method, 2D nanonet-shaped La0.5Sr0.5Co0.8Fe0.2O3 (LSCF), Co3O4, NiCo2O4, and RuO2 and 1D nanowire-shaped Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) were readily synthesized, and their thickness and porosity can be conveniently tuned by adjusting the concentrations of metal salts. Our nanostructured TMOs were further applied for the OER, and they showed quite competitive activities over their counterparts obtained from other methods. The 2D porous LSCF20-DES exhibited the largest specific surface area (28.9 m2 g-1) and the highest OER electrocatalytic activities (0.304 V overpotential at a current density of 10 mA cm-2). These results demonstrate that the DES calcining method is a comprehensive approach to synthesize hierarchical TMOs as highly active OER catalysts.
Collapse
Affiliation(s)
- Kai Rong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. and University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiale Wei
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. and University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. and University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. and University of Science and Technology of China, Hefei, Anhui 230026, P. R. China and University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Shishov A, Pochivalov A, Nugbienyo L, Andruch V, Bulatov A. Deep eutectic solvents are not only effective extractants. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115956] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Panneer Selvam S, Chinnadayyala SR, Cho S, Yun K. Differential Pulse Voltammetric Electrochemical Sensor for the Detection of Etidronic Acid in Pharmaceutical Samples by Using rGO-Ag@SiO 2/Au PCB. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1368. [PMID: 32674260 PMCID: PMC7407910 DOI: 10.3390/nano10071368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/02/2023]
Abstract
An rGO-Ag@SiO2 nanocomposite-based electrochemical sensor was developed to detect etidronic acid (EA) using the differential pulse voltammetric (DPV) technique. Rapid self-assembly of the rGO-Ag@SiO2 nanocomposite was accomplished through probe sonication. The developed rGO-Ag@SiO2 nanocomposite was used as an electrochemical sensing platform by drop-casting on a gold (Au) printed circuit board (PCB). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) confirmed the enhanced electrochemical active surface area (ECASA) and low charge transfer resistance (Rct) of the rGO-Ag@SiO2/Au PCB. The accelerated electron transfer and the high number of active sites on the rGO-Ag@SiO2/Au PCB resulted in the electrochemical detection of EA through the DPV technique with a limit of detection (LOD) of 0.68 μM and a linear range of 2.0-200.0 μM. The constructed DPV sensor exhibited high selectivity toward EA, high reproducibility in terms of different Au PCBs, excellent repeatability, and long-term stability in storage at room temperature (25 °C). The real-time application of the rGO-Ag@SiO2/Au PCB for EA detection was investigated using EA-based pharmaceutical samples. Recovery percentages between 96.2% and 102.9% were obtained. The developed DPV sensor based on an rGO-Ag@SiO2/Au PCB could be used to detect other electrochemically active species following optimization under certain conditions.
Collapse
Affiliation(s)
- Sathish Panneer Selvam
- Department of Electronics Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea; (S.P.S.); (S.R.C.)
| | - Somasekhar R. Chinnadayyala
- Department of Electronics Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea; (S.P.S.); (S.R.C.)
| | - Sungbo Cho
- Department of Electronics Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea; (S.P.S.); (S.R.C.)
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si, Gyeonggi-do 13210, Korea
| |
Collapse
|
13
|
New strategy to fabricate a polydopamine functionalized self-supported nanoporous gold film electrode for electrochemical sensing applications. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2019.106622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
14
|
Aravindakshan NP, Johnson KE, East ALL. The origin of the conductivity maximum in molten salts. III. Zinc halides. J Chem Phys 2019; 151:034507. [PMID: 31325937 DOI: 10.1063/1.5109138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In a continuing effort to master the reasons for conductivity maxima vs temperature in semicovalent molten halides, the structure and some transport properties of molten zinc halide are examined with ab initio molecular dynamics. Molten zinc halides are a special class of molten salts, being extremely viscous near their melting point (with a glassy state below it) and low electrical conductivity, and since they are also known (ZnI2) or predicted (ZnBr2 and ZnCl2) to exhibit conductivity maxima, they would be useful additional cases to probe, in case the reasons for their maxima are unique. Strong attractive forces in ZnX2 result in tight tetrahedral coordination, and the known mixture of edge-sharing vs corner-sharing ZnX4 tetrahedra is observed. In the series zinc chloride → bromide → iodide, (i) the ratio of edge-sharing vs corner-sharing tetrahedra increases, (ii) the diffusion coefficient of Zn2+ increases, and (iii) the diffusion coefficient of the anion stays roughly constant. A discussion of conductivity, with focus on the Walden product W = ηΛe, is presented. With predicted Haven ratios of 1-15 when heated toward their conductivity maxima, the physical chemistry behind molten zinc halide conductivity does not appear to be fundamentally different from other semicovalent molten halides.
Collapse
Affiliation(s)
- Nikhil P Aravindakshan
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith E Johnson
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Allan L L East
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
15
|
Xie Y, Schöttle C, Li Y, Carraro C, Zhang X, Katz A, Maboudian R. Synthesis and Electrochemical Stability of Ultrahigh Aspect Ratio Nanoporous Gold after Calixarene-Phosphine Ligand Removal. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15189-15194. [PMID: 30973002 DOI: 10.1021/acsami.9b00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Leveraging our previous report on the synthesis of calixarene-capped ultrahigh aspect-ratio nanoporous gold, we now report a new class of nanoporous gold comprising removed calixarene-phosphine ligands using UV/ozone treatment. The removal of the calixarene ligands by this treatment is supported by XPS measurements. TEM further shows the extraordinary stability of the ∼1 nm building blocks comprising the nanoporous gold wall after UV/ozone treatment and subsequent strongly reducing electrochemical environments. Sensing of nitrobenzene is used as a method of characterization to show that the surface chemistry of the nanoporous gold assemblies has radically changed after the UV/ozone treatment.
Collapse
Affiliation(s)
- Yuhui Xie
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Christian Schöttle
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Ying Li
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing 210096 , China
| | - Carlo Carraro
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Roya Maboudian
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
16
|
Ling Y, Gong S, Zhai Q, Wang Y, Zhao Y, Yang M, Cheng W. Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804853. [PMID: 30821088 DOI: 10.1002/smll.201804853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Electronic skins (e-skins) have the potential to be conformally integrated with human body to revolutionize wearable electronics for a myriad of technical applications including healthcare, soft robotics, and the internet of things, to name a few. One of the challenges preventing the current proof of concept translating to real-world applications is the device durability, in which the strong adhesion between active materials and elastomeric substrate or human skin is required. Here, a new strategy is reported to embed vertically aligned standing gold nanowires (v-AuNWs) into polydimethylsiloxane, leading to a robust e-skin sensor. It is found that v-AuNWs with pinholes can have an adhesion energy 18-fold greater than that for pinhole-free v-AuNWs. Finite element modeling results show that this is due to friction force from interfacial embedment. Furthermore, it is demonstrated that the robust e-skin sensor can be used for braille recognition.
Collapse
Affiliation(s)
- Yunzhi Ling
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Shu Gong
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Qingfeng Zhai
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Yan Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Yunmeng Zhao
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| | - Mingjie Yang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wenlong Cheng
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- The Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, Victoria, 3800, Australia
| |
Collapse
|