1
|
Kress T, Duer MJ. Interface-edited solid-state NMR to study cell interfaces. Commun Chem 2025; 8:86. [PMID: 40121356 PMCID: PMC11929740 DOI: 10.1038/s42004-025-01473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Cell membrane interfaces, including the glycocalyx, play a crucial role in regulating signaling and molecular interactions, yet their molecular composition remains challenging to study in intact cells. Existing techniques often require extensive sample preparation or lack specificity for probing interfacial components directly. Here, we introduce a solid-state nuclear magnetic resonance (ssNMR) tool to fingerprint the molecular structure of the cell glycocalyx in intact cells within their native environment, offering insights relevant to drug delivery, tissue engineering, and biomedical research. Building on Goldman-Shen cross-polarization (CP) experiments, which exploit proton spin diffusion to generate 13C spectra near cell membranes, our enhanced approach provides spectral information from the membrane interface and its surroundings, probing a region up to 10 nm. Using interface-edited CP (1D) and PDSD (2D) spectra, we demonstrate spectral fingerprints of the mammalian cell glycocalyx. This method opens new avenues for studying cell interfaces in a dehydrated yet native-like state, preserving membrane composition and advancing structural biology.
Collapse
Affiliation(s)
- Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Chatterjee S, Venkatesh A, Sigurdsson ST, Mentink-Vigier F. Role of Protons in and around Strongly Coupled Nitroxide Biradicals for Cross-Effect Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:2160-2168. [PMID: 38364262 PMCID: PMC11562033 DOI: 10.1021/acs.jpclett.3c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
In magic angle spinning dynamic nuclear polarization (DNP), biradicals such as bis-nitroxides are used to hyperpolarize protons under microwave irradiation through the cross-effect mechanism. This mechanism relies on electron-electron spin interactions (dipolar coupling and exchange interaction) and electron-nuclear spin interactions (hyperfine coupling) to hyperpolarize the protons surrounding the biradical. This hyperpolarization is then transferred to the bulk sample via nuclear spin diffusion. However, the involvement of the protons in the biradical in the cross-effect DNP process has been under debate. In this work, we address this question by exploring the hyperpolarization pathways in and around bis-nitroxides. We demonstrate that for biradicals with strong electron-electron interactions, as in the case of the AsymPols, the protons on the biradical may not be necessary to quickly generate hyperpolarization. Instead, such biradicals can efficiently, and directly, polarize the surrounding protons of the solvent. The findings should impact the design of the next generation of biradicals.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310
| | - Snorri Th. Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik (Iceland)
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL, 32310
| |
Collapse
|
3
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
4
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
5
|
Bergmann W, de Lest CV, Plomp S, Vernooij JCM, Wijnberg ID, Back W, Gröne A, Delany MW, Caliskan N, Tryfonidou MA, Grinwis GCM. Intervertebral disc degeneration in warmblood horses: Histological and biochemical characterization. Vet Pathol 2022; 59:284-298. [PMID: 35291907 PMCID: PMC8928235 DOI: 10.1177/03009858211067463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gross morphology of healthy and degenerated intervertebral discs (IVDs) is largely similar in horses as in dogs and humans. For further comparison, the biochemical composition and the histological and biochemical changes with age and degeneration were analyzed in 41 warmblood horses. From 33 horses, 139 discs and 2 fetal vertebral columns were evaluated and scored histologically. From 13 horses, 73 IVDs were assessed for hydration, DNA, glycosaminoglycans, total collagen, hydroxyl-lysyl-pyridinoline, hydroxylysine, and advanced glycation end-product (AGE) content. From 7 horses, 20 discs were assessed for aggrecan, fibronectin, and collagen type 1 and 2 content. Histologically, tearing of the nucleus pulposus (NP) and cervical annulus fibrosus (AF), and total histological score (tearing and vascular proliferation of the AF, and chondroid metaplasia, chondrocyte-like cell proliferation, presence of notochordal cells, matrix staining, and tearing of the NP) correlated with gross degeneration. Notochordal cells were not seen in IVDs of horses. Age and gross degeneration were positively correlated with AGEs and a fibrotic phenotype, explaining gross degenerative changes. In contrast to dogs and humans, there was no consistent difference in glycosaminoglycan content and hydration between AF and NP, nor decrease of these variables with age or degeneration. Hydroxylysine decrease and collagen 1 and AGEs increase were most prominent in the NP, suggesting degeneration started in the AP. In caudal cervical NPs, AGE deposition was significantly increased in grossly normal IVDs and total collagen significantly increased with age, suggesting increased biomechanical stress and likelihood for spinal disease in this part of the vertebral column.
Collapse
Affiliation(s)
- Wilhelmina Bergmann
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chris van de Lest
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Johannes C. M. Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Inge D. Wijnberg
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Willem Back
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Surgery and Anaesthesia of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Andrea Gröne
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Mark W. Delany
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nermin Caliskan
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Current address: Diergezondheidszorg Vlaanderen (DGZ), Torhout, Belgium
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C. M. Grinwis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Molecular conformations and dynamics in the extracellular matrix of mammalian structural tissues: Solid-state NMR spectroscopy approaches. Matrix Biol Plus 2021; 12:100086. [PMID: 34746737 PMCID: PMC8551230 DOI: 10.1016/j.mbplus.2021.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-state NMR spectroscopy probes molecular conformation and dynamics in intact ECM. Collagen conformational dynamics has roles in mechanical properties of fibrils and cell adhesion. Solid-state NMR spectroscopy has shed new light on the chemical structure of bone mineral.
Solid-state NMR spectroscopy has played an important role in multidisciplinary studies of the extracellular matrix. Here we review how solid-state NMR has been used to probe collagen molecular conformations, dynamics, post-translational modifications and non-enzymatic chemical changes, and in calcified tissues, the molecular structure of bone mineral and its interface with collagen. We conclude that NMR spectroscopy can deliver vital information that in combination with data from structural imaging techniques, can result in significant new insight into how the extracellular matrix plays its multiple roles.
Collapse
|
7
|
Chakraborty A, Deligey F, Quach J, Mentink-Vigier F, Wang P, Wang T. Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. Biochem Soc Trans 2020; 48:1089-1099. [PMID: 32379300 PMCID: PMC7565284 DOI: 10.1042/bst20191084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin. These structural features provide an atomic-level understanding of many cellular processes, promoting the development of better biomaterials and inhibitors. It is anticipated that the capabilities of MAS-DNP in biomolecular and biomaterial research will be further enlarged by the rapid development of instrumentation and methodology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jenny Quach
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Lim BJ, Ackermann BE, Debelouchina GT. Targetable Tetrazine-Based Dynamic Nuclear Polarization Agents for Biological Systems. Chembiochem 2020; 21:1315-1319. [PMID: 31746101 PMCID: PMC7445144 DOI: 10.1002/cbic.201900609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 12/13/2022]
Abstract
Dynamic nuclear polarization (DNP) has shown great promise as a tool to enhance the nuclear magnetic resonance signals of proteins in the cellular environment. As sensitivity increases, the ability to select and efficiently polarize a specific macromolecule over the cellular background has become desirable. Herein, we address this need and present a tetrazine-based DNP agent that can be targeted selectively to proteins containing the unnatural amino acid (UAA) norbornene-lysine. This UAA can be introduced efficiently into the cellular milieu by genetic means. Our approach is bio-orthogonal and easily adaptable to any protein of interest. We illustrate the scope of our methodology and investigate the DNP transfer mechanisms in several biological systems. Our results shed light on the complex polarization-transfer pathways in targeted DNP and ultimately pave the way to selective DNP-enhanced NMR spectroscopy in both bacterial and mammalian cells.
Collapse
Affiliation(s)
- Byung Joon Lim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Kanda T, Kitawaki M, Arata T, Matsuki Y, Fujiwara T. Structural analysis of cross-linked poly(vinyl alcohol) using high-field DNP-NMR. RSC Adv 2020; 10:8039-8043. [PMID: 35497820 PMCID: PMC9049923 DOI: 10.1039/d0ra00399a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/08/2020] [Indexed: 11/21/2022] Open
Abstract
Poly(vinyl alcohol) (PVOH) is a water-soluble synthetic polymer, widely used in materials for functional films and moldings, fiber fabric sizing agents, paper coating resins, and adhesives. PVOH is mainly applied in the form of an aqueous solution, yet after its application, insolubility (water resistance) is required. To achieve this, additives are introduced. These additives used with PVOH are cross-linking agents which react with the hydroxyl groups and modified functional groups in PVOH. Because of the poor reactivity of unmodified PVOH, it does not react with cross-linking agents that have functional reactive groups. Therefore, modified PVOH that reacts with a cross-linking agent more successfully is required. These chemical bonding sites are so low in abundance that it is difficult to characterize the cross-linking structure. Solid-state 13C NMR is a powerful technique that can be used for the structural analysis of a polymer material. However, its sensitivity is low, hence it is difficult to determine crosslinking in a polymer, as it makes up only a small proportion of the product. Therefore, solid-state 13C NMR sensitivity can be enhanced by high-field dynamic nuclear polarization (DNP) using strong electron polarization. In this study, the reaction of acetoacetylated PVOH with a cross-linking agent, adipic dihydrazide, was analyzed. This crosslinked PVOH is the most popular vinyl alcohol polymer on the commercial market. The sensitivity enhanced 13C NMR spectra reveal that the carbonyl of the acetoacetyl group of PVOH crosslinks with adipic hydrazide by forming an imine bond (>C[double bond, length as m-dash]N-) this study also shows that the product has only seven crosslinking sites per molecular chain with a polymerization degree of 1000 and is water resistant.
Collapse
Affiliation(s)
- Taiji Kanda
- Mitsubishi Chemical Corporation 2-13-1, Muroyama Ibaraki Osaka Japan
- Institute for Protein Research, Osaka University 3-2, Yamadaoka Suita Osaka Japan
| | - Mayuka Kitawaki
- Mitsubishi Chemical Corporation 2-13-1, Muroyama Ibaraki Osaka Japan
| | - Toshiaki Arata
- Institute for Protein Research, Osaka University 3-2, Yamadaoka Suita Osaka Japan
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University 3-2, Yamadaoka Suita Osaka Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University 3-2, Yamadaoka Suita Osaka Japan
| |
Collapse
|
10
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros‐Silva J, Gelain F, Weingarth M. Design Parameters of Tissue‐Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shehrazade Jekhmane
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Marek Prachar
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - João Medeiros‐Silva
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
11
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros-Silva J, Gelain F, Weingarth M. Design Parameters of Tissue-Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019; 58:16943-16951. [PMID: 31573131 PMCID: PMC6899630 DOI: 10.1002/anie.201907880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Indexed: 01/08/2023]
Abstract
Stem-cell behavior is regulated by the material properties of the surrounding extracellular matrix, which has important implications for the design of tissue-engineering scaffolds. However, our understanding of the material properties of stem-cell scaffolds is limited to nanoscopic-to-macroscopic length scales. Herein, a solid-state NMR approach is presented that provides atomic-scale information on complex stem-cell substrates at near physiological conditions and at natural isotope abundance. Using self-assembled peptidic scaffolds designed for nervous-tissue regeneration, we show at atomic scale how scaffold-assembly degree, mechanics, and homogeneity correlate with favorable stem cell behavior. Integration of solid-state NMR data with molecular dynamics simulations reveals a highly ordered fibrillar structure as the most favorable stem-cell scaffold. This could improve the design of tissue-engineering scaffolds and other self-assembled biomaterials.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Marek Prachar
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
12
|
Craig HC, Blamires SJ, Sani MA, Kasumovic MM, Rawal A, Hook JM. DNP NMR spectroscopy reveals new structures, residues and interactions in wild spider silks. Chem Commun (Camb) 2019; 55:4687-4690. [PMID: 30938741 DOI: 10.1039/c9cc01045a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNP solid state NMR spectroscopy allows non-targeted analysis of wild spider silk in unprecedented detail at natural abundance, revealing hitherto unreported features across several species. A >50-fold signal enhancement for each silk, enables the detection of novel H-bonding networks and arginine conformations, and the post-translational modified amino acid, hydroxyproline.
Collapse
Affiliation(s)
- Hamish C Craig
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, 2052, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Goldberga I, Li R, Chow WY, Reid DG, Bashtanova U, Rajan R, Puszkarska A, Oschkinat H, Duer MJ. Detection of nucleic acids and other low abundance components in native bone and osteosarcoma extracellular matrix by isotope enrichment and DNP-enhanced NMR. RSC Adv 2019; 9:26686-26690. [PMID: 35528564 PMCID: PMC9070537 DOI: 10.1039/c9ra03198g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
Sensitivity enhancement by isotope enrichment and DNP NMR enables detection of minor but biologically relevant species in native intact bone, including nucleic acids, choline from phospholipid headgroups, and histidinyl and hydroxylysyl groups. Labelled matrix from the aggressive osteosarcoma K7M2 cell line confirms the assignments of nucleic acid signals arising from purine, pyrimidine, ribose, and deoxyribose species. Detection of these species is an important and necessary step in elucidating the atomic level structural basis of their functions in intact tissue. Towards elucidating their biological roles in intact tissue, DNP NMR reveals nucleic acids, and other important low abundance biomolecules in a complex biomaterial, bone, and in cancer extracellular matrix.![]()
Collapse
Affiliation(s)
- Ieva Goldberga
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Rui Li
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Wing Ying Chow
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
- Berlin 13125
- Germany
| | - David G. Reid
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | | | - Rakesh Rajan
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Anna Puszkarska
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
- Berlin 13125
- Germany
| | - Melinda J. Duer
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|