1
|
Verma A, Chattopadhaya A, Gupta P, Tiwari H, Singh S, Kumar L, Gautam V. Integration of Hyphenated Techniques for Characterizing and Chemical Profiling of Natural Products. Chem Biodivers 2025:e202500234. [PMID: 40257985 DOI: 10.1002/cbdv.202500234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
The drug discovery from natural products has played an important role for therapeutic purposes, however, but in the past two decades, there has been a hurdle faced by researchers during purification and characterization. Traditional analytical approaches are insufficient to address the growing number of difficulties in natural product research. The hyphenated approach is a more advanced form that combines the benefits of separation with spectroscopy. The exceptional advancements in hyphenated systems have significantly expanded their applications in the investigation of natural products. The advancement of numerous chromatographic techniques such as HPLC, HPTLC, and GC, as well as spectroscopic techniques such as NMR, MS, FTIR, and UV, in addition to the advent of hyphenated techniques such as LC-MS, GC-MS, and LC-NMR, have significantly transformed the method of drug discovery from natural resources. This study discusses the general concepts and literature applications of productivity tools for natural product isolation and structural elucidation. These hyphenated methodologies will enhance the course of natural product research while reducing the time and cost invested in its investigation, hence speeding up the drug development process.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Lalit Kumar
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Fu SY, Xu S, Li H, Guo XM, Lin JS, Guan B, Chen B, Wang T, Zhang YJ, Li JF. A high sensitivity prostate-specific antigen SERS detection platform based on laser resonance nanoparticles. NANOSCALE 2025; 17:5171-5180. [PMID: 39895472 DOI: 10.1039/d4nr04510f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Accurate quantitative analysis of cancer-related specific biomarkers in clinical serum is very important for the early diagnosis and treatment of cancer. Hospitals often use serum prostate-specific antigen (PSA) as a biomarker associated with prostate cancer diagnosis and prognosis, and prostate cancer cells often produce more PSA than benign cells, leading to elevated PSA levels in the blood. In this study, an immunoassay based on surface-enhanced Raman scattering (SERS) was established for the detection of PSA employing magnetic beads along with SERS nanotags. The hospital currently takes two hours to test the results, the equipment price is high, and the detection price is high, and the penetration rate in township hospitals in China is low. SERS has super-sensitive and fast detection ability, and the availability of the detection result in 10 minutes significantly reduces the waiting time. Besides, the detection method is simple, cheap and portable, making it suitable for township health centers. To evaluate the clinical applicability of this method, 75 male clinical serum samples were tested, most of which were in the gray area of 4.0-10.0 ng mL-1. The experimental results show that our detection method has good agreement with the results measured by the electrochemical luminescence (ECL) system in the hospital clinical laboratory. Our detection limit for actual samples from patients can reach 0.029 ng mL-1. Therefore, our clinical serum PSA marker detection method based on SERS has a great potential market in towns and villages.
Collapse
Affiliation(s)
- Shi-Ying Fu
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Shanshan Xu
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Hongmei Li
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Xian-Ming Guo
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Jia-Sheng Lin
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Bing Guan
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Bin Chen
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Tao Wang
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Yue-Jiao Zhang
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- The Key Laboratory of Urinary Tract Tumours and Calculi, Department of Urology, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China.
- Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005, China
| |
Collapse
|
3
|
Liu M, Xue J, Liu H, Bai Y. Imidazolium-based mass tags for protein biomarker detection using laser desorption ionization mass spectrometry. Chem Commun (Camb) 2023; 59:9996-9999. [PMID: 37522155 DOI: 10.1039/d3cc02907g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Novel imidazolium-based mass tags (IMTs) were designed, synthesized and applied to simultaneous in situ analysis of multiple biomarkers on less than 10 cells. The high sensitivity, flexible extensibility and excellent distinguishability of IMTs open new avenues for designing common mass tag templates suitable for mass spectrometric immunoassay and provide an ideal option for multiplex-sensitive detection at the cellular scale.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jinjuan Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Wu K, Lai K, Chen J, Yao J, Zeng S, Jiang T, Si H, Gu C, Jiang J. Ag NC and Ag NP/PorC Film-Based Surface-Enhanced Raman Spectroscopy-Type Immunoassay for Ultrasensitive Prostate-Specific Antigen Detection. ACS OMEGA 2023; 8:18523-18529. [PMID: 37273592 PMCID: PMC10233843 DOI: 10.1021/acsomega.3c00230] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a spectral detection technology with high sensitivity and detectivity and can be used to detect the fingerprint information of the molecules with ultralow concentration. Herein, a kind of immunostructure constructed by Ag nanoparticle/porous carbon (Ag NP/PorC) films as the immunosubstrate and Ag NCs as the immunoprobes was presented for ultralow level prostate-specific antigen (PSA) detection. Experimentally, the Ag NP/PorC film was first prepared with a facile method by carbonizing the gelatin-AgNO3 film in air, and Ag NCs were synthesized by the hydrothermal method. Then, the Ag NP/PorC film was modified by PSA antibodies as the substrate, while Ag NCs were decorated by R6G and PSA antibodies for probes. The sandwiched SERS detection embodiment was constructed by the immunoreaction between the PSA and PSA antibody predecorated on the substrate and probes. Our results show that the proposed SERS-type immunoassay is highly sensitive and selective to a wide range of PSA concentrations from 10-5 to 10-12 g/mL. Thereafter, it was also implemented to detect the PSA level in human serum, and the results successfully reproduce the PSA levels as those measured by the chemiluminescence method with a recovery rate above 90%. All in all, this SERS-type immunoassay provides a promising method for the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Kerong Wu
- Department
of Urology, Ningbo First Hospital, Ningbo
University, Ningbo, Zhejiang 315010, China
- Key
Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang
Province, Ningbo, Zhejiang 315010, China
| | - Kui Lai
- Department
of Urology, Ningbo First Hospital, Ningbo
University, Ningbo, Zhejiang 315010, China
- The
Research Institute of Advanced Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Junfeng Chen
- Department
of Urology, Ningbo First Hospital, Ningbo
University, Ningbo, Zhejiang 315010, China
| | - Jie Yao
- Department
of Urology, Ningbo First Hospital, Ningbo
University, Ningbo, Zhejiang 315010, China
| | - Shuwen Zeng
- XLIM
Research Institute, CNRS/University of Limoges, Avenue Albert Thomas, 87060 Limoges, France
| | - Tao Jiang
- The
Research Institute of Advanced Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hongjie Si
- Department
of Urology, Traditional Chinese Medical
Hospital of Zhuji, Zhuji, Zhejiang 311899, China
| | - Chenjie Gu
- Department
of Urology, Ningbo First Hospital, Ningbo
University, Ningbo, Zhejiang 315010, China
- The
Research Institute of Advanced Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Junhui Jiang
- Department
of Urology, Ningbo First Hospital, Ningbo
University, Ningbo, Zhejiang 315010, China
- Key
Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang
Province, Ningbo, Zhejiang 315010, China
| |
Collapse
|
5
|
Lab-on-a-chip systems for cancer biomarker diagnosis. J Pharm Biomed Anal 2023; 226:115266. [PMID: 36706542 DOI: 10.1016/j.jpba.2023.115266] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) or micro total analysis system is one of the microfluidic technologies defined as the adaptation, miniaturization, integration, and automation of analytical laboratory procedures into a single instrument or "chip". In this article, we review developments over the past five years in the application of LOC biosensors for the detection of different types of cancer. Microfluidics encompasses chemistry and biotechnology skills and has revolutionized healthcare diagnosis. Superior to traditional cell culture or animal models, microfluidic technology has made it possible to reconstruct functional units of organs on chips to study human diseases such as cancer. LOCs have found numerous biomedical applications over the past five years, including integrated bioassays, cell analysis, metabolomics, drug discovery and delivery systems, tissue and organ physiology and disease modeling, and personalized medicine. This review provides an overview of the latest developments in microfluidic-based cancer research, with pros, cons, and prospects.
Collapse
|
6
|
Yin H, Chu Y, Wang W, Zhang Z, Meng Z, Min Q. Mass tag-encoded nanointerfaces for multiplexed mass spectrometric analysis and imaging of biomolecules. NANOSCALE 2023; 15:2529-2540. [PMID: 36688447 DOI: 10.1039/d2nr06020e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Revealing multiple biomolecules in the physiopathological environment simultaneously is crucial in biological and biomedical research. Mass spectrometry (MS) features unique technical advantages in multiplexed and label-free analyses. However, owing to comparably low abundance and poor ionization efficiency of target biomolecules, direct MS profiling of these biological species in vitro or in situ remains a challenge. An emerging route to solve this issue is to devise mass tag (MT)-encoded nanointerfaces which specifically convert the abundance or activity of biomolecules into amplified ion signals of mass tags, offering an ideal strategy for synchronous MS assaying and mapping of multiple targets in biofluids, cells and tissues. This review provides a thorough and organized overview of recent advances in MT-encoded nanointerfaces elaborately tailored for several practical applications in multiplexed MS bioanalysis and biomedical research. First, we start with elucidation of the structural characteristics and working principle of MT-encoded nanointerfaces in specific labeling and sensing of multiple biological targets. In addition, we further discuss the application scenarios of MT-encoded nanointerfaces particularly in multiplexed biomarker assays, cell analysis, and tissue imaging. Finally, the current challenges are pointed out and future prospects of these nanointerfaces in MS analysis are forecast.
Collapse
Affiliation(s)
- Hao Yin
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhen Meng
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
7
|
Liu M, Miao D, Qin S, Liu H, Bai Y. Mass tags-based mass spectrometric immunoassay and its bioanalysis applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol 2021; 16:2068-2086. [PMID: 34724607 DOI: 10.1021/acschembio.1c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive compounds have gained substantial attention in research and have conferred great advancements in the industrial and pharmacological fields. Highly diverse fungi and their metabolome serve as a big platform to be explored for their diverse bioactive compounds. Omics tools coupled with bioinformatics, statistical, and well-developed algorithm tools have elucidated immense knowledge about fungal endophyte derived bioactive compounds. Further, these compounds are subjected to chromatography-gas chromatography and liquid chromatography (LC), spectroscopy-nuclear magnetic resonance (NMR), and "soft ionization" technique-matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) based analytical techniques for structural characterization. The mass spectrometry (MS)-based approach, being highly sensitive, reproducible, and reliable, produces quick and high-profile identification. Coupling these techniques with MS has resulted in a descriptive account of the identification and quantification of fungal endophyte derived bioactive compounds. This paper emphasizes the workflows of the above-mentioned techniques, their advancement, and future directions to study the unraveled area of chemistry of fungal endophyte-derived bioactive compounds.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Brijesh Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
9
|
Sajadpour M, Abbasian S, Siampour H, Bagheri H, Moshaii A. Label-free PSA electrochemical determination by seed-mediated electrochemically-deposited gold nanoparticles on an FTO electrode. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05081-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Lu H, Yin Y, Sun J, Li W, Shen X, Feng X, Ouyang J, Na N. Accelerated plasma degradation of organic pollutants in milliseconds and examinations by mass spectrometry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Hu J, Liu F, Chen Y, Shangguan G, Ju H. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sens 2021; 6:3517-3535. [PMID: 34529414 DOI: 10.1021/acssensors.1c01394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of clinical biomolecules in a multiplexed fashion is of great importance for accurate diagnosis of diseases. Mass spectrometric (MS) approaches are exceptionally suitable for clinical analysis due to its high throughput, high sensitivity, and reliable qualitative and quantitative capabilities. To break through the bottleneck of MS technique for detecting high-molecular-weight substances with low ionization efficiency, the concept of mass spectrometric biosensing has been put forward by adopting mass spectrometric chips to recognize the targets and mass spectrometry to detect the signals switched by the recognition. In this review, the principle of mass spectrometric sensing, the construction of different mass tags used for biosensing, and the typical combination mode of mass spectrometric imaging (MSI) technique are summarized. Future perspectives including the design of portable matching platforms, exploitation of novel mass tags, development of effective signal amplification strategies, and standardization of MSI methodologies are proposed to promote the advancements and practical applications of mass spectrometric biosensing.
Collapse
Affiliation(s)
- Junjie Hu
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guoqiang Shangguan
- College of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272067, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Lin S, Sun H, Cornel EJ, Jiang JH, Zhu YQ, Fan Z, Du JZ. Denting Nanospheres with a Short Peptide. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Zhu L, Zhao Y, Yao S, Xu M, Yin L, Zhai X, Teng X. A colorimetric aptasensor for the simple and rapid detection of human papillomavirus type 16 L1 proteins. Analyst 2021; 146:2712-2717. [PMID: 33688885 DOI: 10.1039/d1an00251a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, a novel colorimetric aptasensor was developed for the rapid detection and visual screening of HPV16 L1 proteins using gold nanoparticles (AuNPs) and an RNA aptamer against HPV16 L1 protein (APTHPV16 L1). The AuNP-APTHPV16 L1 conjugates could be aggregated by the addition of a salt in the presence of HPV16 L1 proteins at the ppb level. At the same time, the surface plasma resonance absorption peaks of AuNPs shifted to a short wavelength, and an observable change in color from red to blue occurred. The relative absorbance (Ablank - Asample/Ablank) at 520 nm exhibited a stable response to HPV16 L1 proteins over a concentration range from 9.6 to 201.6 ng mL-1. The visual detection limit of HPV16 L1 proteins was found to be 9.6 ng mL-1. Finally, the proposed colorimetric aptasensor was successfully applied for the rapid and effective detection of HPV16 L1 proteins in clinical samples and vaccine samples. The validity and reliability of the proposed colorimetric aptasensor were verified by the enzyme-linked immunosorbent assay method. The proposed colorimetric aptasensor provided a promising indicator for screening and quantitative detection of HPV16 L1 proteins in clinical samples.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Yu Zhao
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Shangchen Yao
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Mingzhe Xu
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Lihui Yin
- Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing, 102629, China.
| | - Xihai Zhai
- Institute of Plant Protection, Heilongjiang Academy of Agriculture Science, Harbin 150086, China
| | - Xu Teng
- AIE Institute, Guangzhou 510530, China.
| |
Collapse
|
15
|
António M, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021; 230:122345. [PMID: 33934794 DOI: 10.1016/j.talanta.2021.122345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Urine is a biofluid easy to collect through a non-invasive technique that allows collecting a large volume of sample. The use of urine for disease diagnosis is not yet well explored. However, it has gained attention over the last three years. It has been applied in the diagnosis of several illnesses such as kidney disease, bladder cancer, prostate cancer and cardiovascular diseases. In the last decade, gold nanoparticles (Au NPs) have attracted attention in biosensors' development for the diagnosis of diseases due to their electrical and optical properties, ability to conjugate with biomolecules, high sensitivity, and selectivity. Therefore, this article aims to present a comprehensive view of state of the art on the advances made in the quantification of analytes in urinary samples using AuNPs based assays, with a focus on protein analysis. The type of diagnosis methods, the Au NPs synthesis approaches and the strategies for surface modification aiming at selectivity towards the different targets are highlighted.
Collapse
Affiliation(s)
- Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Vitorino
- iBiMED-Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal; Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal; LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
16
|
YANG JW, WANG CY, LUO L, GUO L, XIE JW. Applications and Prospects of Oligonucleotide Aptamers in Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Direct identification and metabolomic analysis of Huanglongbing associated with Candidatus Liberibacter spp. in navel orange by MALDI-TOF-MS. Anal Bioanal Chem 2020; 412:3091-3101. [DOI: 10.1007/s00216-020-02555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
|
18
|
He H, Guo Z, Wen Y, Xu S, Liu Z. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Anal Chim Acta 2019; 1090:1-22. [DOI: 10.1016/j.aca.2019.08.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
|
19
|
Zhang YJ, Chen S, Yu YL, Wang JH. A miniaturized photoacoustic device with laptop readout for point-of-care testing of blood glucose. Talanta 2019; 209:120527. [PMID: 31892079 DOI: 10.1016/j.talanta.2019.120527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 01/27/2023]
Abstract
Photoacoustic (PA) effect has been widely applied in many fields, e.g., physics, chemistry and biomedicine. Herein, a miniaturized PA device is developed by integrating laser source, photo chopper, PA cell, microphone, and laptop for point-of-care testing in bioassay. With glucose assay as model, a piece of paper strip preloading chitosan, starch-potassium iodide (KI) and glucose oxidase (GOD) as lab-on-paper is employed for loading sample prior to PA detection. In the presence of glucose, the product generated on the paper strip would give rise to a strong PA signal in the PA cell under the irradiation of frequency-modulated laser at 520 nm via laptop readout. With a sample volume of 20 μL, a detection limit of 0.03 mM is obtained for glucose assay, along with a linear range of 0.08-1 mM. The accuracy and practicability of the present PA device is well demonstrated by detecting glucose in whole blood. Differing from the conventional PA instrument, the present PA device is really small in bulk with competitive sensitivity and excellent stability, offering a promising tool for point-of-care testing in bioassay.
Collapse
Affiliation(s)
- Ya-Jie Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
20
|
Chen G, Fan M, Liu Y, Sun B, Liu M, Wu J, Li N, Guo M. Advances in MS Based Strategies for Probing Ligand-Target Interactions: Focus on Soft Ionization Mass Spectrometric Techniques. Front Chem 2019; 7:703. [PMID: 31709232 PMCID: PMC6819514 DOI: 10.3389/fchem.2019.00703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The non-covalent interactions between small drug molecules and disease-related proteins (ligand-target interactions) mediate various pharmacological processes in the treatment of different diseases. The development of the analytical methods to assess those interactions, including binding sites, binding energies, stoichiometry and association-dissociation constants, could assist in clarifying the mechanisms of action, precise treatment of targeted diseases as well as the targeted drug discovery. For the last decades, mass spectrometry (MS) has been recognized as a powerful tool to study the non-covalent interactions of the ligand-target complexes with the characteristics of high sensitivity, high-resolution, and high-throughput. Soft ionization mass spectrometry, especially the electrospray mass spectrometry (ESI-MS) and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS), could achieve the complete transformation of the target analytes into the gas phase, and subsequent detection of the small drug molecules and disease-related protein complexes, and has exerted great advantages for studying the drug ligands-protein targets interactions, even in case of identifying active components as drug ligands from crude extracts of medicinal plants. Despite of other analytical techniques for this purpose, such as the NMR and X-ray crystallography, this review highlights the principles, research hotspots and recent applications of the soft ionization mass spectrometry and its hyphenated techniques, including hydrogen-deuterium exchange mass spectrometry (HDX-MS), chemical cross-linking mass spectrometry (CX-MS), and ion mobility spectrometry mass spectrometry (IMS-MS), in the study of the non-covalent interactions between small drug molecules and disease-related proteins.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meixian Liu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
21
|
Zhu L, Han J, Wang Z, Yin L, Zhang W, Peng Y, Nie Z. Competitive adsorption on gold nanoparticles for human papillomavirus 16 L1 protein detection by LDI-MS. Analyst 2019; 144:6641-6646. [PMID: 31595888 DOI: 10.1039/c9an01612k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The detection of the HPV L1 protein provides information about the infection status of the virus, reflects the replication status of the HPV virus in cervical cells, and helps understand the regression and progress of cervical lesions. Herein, we report a novel laser desorption ionization mass spectrometry (LDI MS) method for the sensitive detection of the HPV 16 L1 protein, based on non-covalent competitive adsorption between the HPV 16 L1 aptamer and melamine on gold nanoparticles (AuNPs). The intensity of the MS signal corresponding to the mass tag shows a linear relationship with the HPV 16 L1 concentration in the range 2-80 ng mL-1, with a limit of detection (LOD) of 58.8 pg mL-1. Using this method, the HPV 16 L1 protein is quantitatively analyzed in both clinical and vaccine samples. The described method is simple and has high sensitivity and good reliability.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Chemical Resource Engineering, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. and National Institutes for Food and Drug Control, Beijing 102629, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lihui Yin
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Wei Zhang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - You Peng
- Department of Chemistry and Environment Engineering, Jiujiang University, Jiujiang, 332005 China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
22
|
Gao R, Lv Z, Mao Y, Yu L, Bi X, Xu S, Cui J, Wu Y. SERS-Based Pump-Free Microfluidic Chip for Highly Sensitive Immunoassay of Prostate-Specific Antigen Biomarkers. ACS Sens 2019; 4:938-943. [PMID: 30864786 DOI: 10.1021/acssensors.9b00039] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly sensitive analysis of cancer biomarkers demonstrates an important impact in early diagnosis and therapies of cancer. A novel surface-enhanced Raman scattering (SERS) based immunoassay using microfluidic technique was reported for rapid analysis of prostate-specific antigen (PSA) biomarker. It is a useful screening test to discriminate prostate cancer and other diseases related to prostate. A "sandwich" immunoassay based on SERS nanotags, PSA biomarkers, and magnetic beads was applied on a pump-free microfluidic sensor. Magnetic immunocomplexes are isolated and trapped at the detection chamber by a permanent magnet integrated into the chip. The PBS buffer washed magnetic immunocomplexes and brought the free gold nanoparticles to the downsteam channel for waste. Our results show a good linear response in the range from 0.01 to 100 ng mL-1. The limit of detection of the PSA level is estimated to be below 0.01 ng mL-1 using this chip. This detection level of PSA biomarker in human serum can be accomplished in 5 min without manual incubation and a heavy syringe pump. To the best of our knowledge, this is the first SERS-based immunoassay which applied a pump-free microfluidic chip as a detection platform. We believe that the proposed method reveals a valuable potential tool for the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Rongke Gao
- School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zeyuan Lv
- School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuanshuo Mao
- School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liandong Yu
- School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaobai Bi
- School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shenghao Xu
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiewu Cui
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|