1
|
Huang Z, Yu Z, Guo Z, Shi P, Hu J, Deng H, Huang Z. Selective Cleavage of C β-O-4 Bond for Lignin Depolymerization via Paired-Electrolysis in an Undivided Cell. Angew Chem Int Ed Engl 2024; 63:e202407750. [PMID: 38899860 DOI: 10.1002/anie.202407750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The cleavage of C-O bonds is one of the most promising strategies for lignin-to-chemicals conversion, which has attracted considerable attention in recent years. However, current catalytic system capable of selectively breaking C-O bonds in lignin often requires a precious metal catalyst and/or harsh conditions such as high-pressure H2 and elevated temperatures. Herein, we report a novel protocol of paired electrolysis to effectively cleave the Cβ-O-4 bond of lignin model compounds and real lignin at room temperature and ambient pressure. For the first time, "cathodic hydrogenolysis of Cβ-O-4 linkage" and "anodic C-H/N-H cross-coupling reaction" are paired in an undivided cell, thus the cleavage of C-O bonds and the synthesis of valuable triarylamine derivatives could be simultaneously achieved in an energy-effective manner. This protocol features mild reaction conditions, high atom economy, remarkable yield with excellent chemoselectivity, and feasibility for large-scale synthesis. Mechanistic studies indicate that indirect H* (chemical absorbed hydrogen) reduction instead of direct electron transfer might be the pathway for the cathodic hydrogenolysis of Cβ-O-4 linkage.
Collapse
Affiliation(s)
- Zhenghui Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zihan Yu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, P. R. China
| | - Zhaogang Guo
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Pingsen Shi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Hongbing Deng
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| | - Zhiliang Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, P. R. China
| |
Collapse
|
2
|
Kim S, Lee S. Electrochemical synthesis of sulfinic and sulfonic esters from sulfonyl hydrazides. Org Biomol Chem 2024; 22:4436-4444. [PMID: 38742933 DOI: 10.1039/d4ob00215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An electrochemical synthetic method for the synthesis of sulfinic esters and sulfonic esters from sulfonyl hydrazides was developed. Alkyl sulfinic esters were synthesized by treating sulfonyl hydrazides with trialkyl orthoformate in a DMF solvent at a constant current of 5 mA and then optimizing the reaction conditions. Conversely, alkyl sulfonic esters were exclusively obtained when the reaction was conducted in alkyl alcohol solvents at a constant current of 15 mA. The various substituted arylsulfonyl hydrazides afforded moderate to good yields of the desired sulfinic esters and sulfonic esters. Mechanistic investigations revealed that sulfonyl radicals were formed through electrochemical oxidation and that they react with alkyl radicals or alkoxy radicals to generate the respective ester products.
Collapse
Affiliation(s)
- Suji Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186 Republic of Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186 Republic of Korea.
| |
Collapse
|
3
|
Biswas S, Ghosh S, Das I. Supporting Electrolyte-Free Electrochemical Oxidative C-H Sulfonylation and Thiocyanation of Fused Pyrimidin-4-Ones in an All-Green Electrolytic System. Chemistry 2024; 30:e202303118. [PMID: 37934155 DOI: 10.1002/chem.202303118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
An electrooxidative C-H functionalization is a widely accepted route to obtain sulfur-containing arenes and heteroarenes. However, this process often involves using non-recyclable supporting electrolytes, (co)solvents like hexafluoroisopropanol, additives like acid, or catalysts. The use of additional reagents can increase costs and waste, reducing atom efficiency. Moreover, unlike other nitrogen-containing heterocycles, there have only been sporadic reports of electrochemical C-H functionalization in fused pyrimidin-4-ones, and an electrolyte-free process has yet to be developed. This work demonstrates that such anodic coupling reactions can be performed in an all-green electrolytic system without using such additional electrolytes or HFIP, maintaining a high atom economy. This C-H functionalization strategy utilizes inexpensive sodium sulfinates and ammonium thiocyanate as sulfonylating and thiocyanating agents in an undivided cell at a constant current, using a mixture of CH3 CN/H2 O as solvent at room temperature. Thus, fused pyrimidin-4-ones can be selectively converted into C3-sulfonylated and -thiocyanated derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Sumit Biswas
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
| | - Subhadeep Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
4
|
Li C, Chen Z, Guo XY, Wen LR, Li M, Zhang LB. SO 42- ions as a nucleophilic reagent: straightforward electrochemical access to organosulfates. Chem Commun (Camb) 2023; 59:12164-12167. [PMID: 37743839 DOI: 10.1039/d3cc03960a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An electrooxidation direct difunctionalization of alkynes with sulfonyl hydrazides has been developed for the construction of sulfonyl alkenyl sulfates in the absence of metal catalysts and a stoichiometric amount of oxidants. Notably, it is the first example to verify that SO42- ions can act as a nucleophilic reagent for the preparation of organosulfates.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zhuo Chen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xue-Yang Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
5
|
Wang L, Ning Z, Xu Z, Liu R, Du Z. Electrochemical Oxidation Involving Sulfonyl Hydrazine for the Synthesis of 2‐Sulfonyl Quinolines/Pyridines. ChemistrySelect 2023. [DOI: 10.1002/slct.202205013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Luyao Wang
- College of Chemistry and Chemical Engineering Northwest Normal University 967 Anning East Road Lanzhou 730070 China
| | - Zhitao Ning
- College of Chemistry and Chemical Engineering Northwest Normal University 967 Anning East Road Lanzhou 730070 China
| | - Zheng Xu
- College of Chemistry and Chemical Engineering Northwest Normal University 967 Anning East Road Lanzhou 730070 China
| | - Ruikai Liu
- College of Chemistry and Chemical Engineering Northwest Normal University 967 Anning East Road Lanzhou 730070 China
| | - Zhengyin Du
- College of Chemistry and Chemical Engineering Northwest Normal University 967 Anning East Road Lanzhou 730070 China
| |
Collapse
|
6
|
Wang X, Shu S, Wang X, Luo R, Ming X, Wang T, Zhang Z. Access to Saturated Oxygen Heterocycles and Lactones via Electrochemical Sulfonylative Oxycyclization of Alkenes with Sulfonyl Hydrazides. J Org Chem 2023; 88:2505-2520. [PMID: 36751026 DOI: 10.1021/acs.joc.2c02966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A facile electrochemical sulfonylative cycloetherification of linear unsaturated alcohols with sulfonyl hydrazides under mild conditions has been accomplished. This catalyst- and oxidant-free protocol proceeds via electro-oxidation, followed by radical addition, as well as an intramolecular oxygen nucleophilic process. This methodology is compatible with a broad substrate scope and good functional group compatibility, which provides a valuable and convenient synthetic tool for the synthesis of saturated five-, six-, seven-, and eight-membered ring oxygen heterocycles. Furthermore, sulfonylative cycloesterification of linear unsaturated acids toward the lactone products has also been established under this electrochemical system. In addition, control experiments indicated that the N-H bonds of the sulfonyl hydrazide molecule are non-essential.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Shubing Shu
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Renshi Luo
- College of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Xiayi Ming
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
7
|
Yao W, Lv K, Xie Z, Qiu H, Ma M. Catalyst-Free Electrochemical Sulfonylation of Organoboronic Acids. J Org Chem 2023; 88:2296-2305. [PMID: 36727513 DOI: 10.1021/acs.joc.2c02690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A simple and efficient electrochemical sulfonylation of organoboronic acids with sodium arylsulfinate salts has been reported for the first time. A variety of aryl, heteroaryl, and alkenylsulfones were obtained in good to excellent yields via a simple electrochemical sulfonylation of various arylboronic acids, heterocyclic boronic acids, or alkenylboronic acids with sodium arylsulfinate at room temperature in 5 h under the catalyst-free and additive-free conditions. A plausible mechanism has been proposed based on various radical-trapping and CV control experiments.
Collapse
Affiliation(s)
- Weiwei Yao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kang Lv
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zixi Xie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui Qiu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Wei W, Zhan L, Gao L, Huang G, Ma X. Research Progress of Electrochemical Synthesis of C-Sulfonyl Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Tian HD, Fu ZH, Li C, Lin HC, Li M, Ni SF, Wen LR, Zhang LB. Selective Electrochemical Synthesis of 9-Aryl-10-sulfonyl Substituted Phenanthrene from Alkynes and Sulfonyl Hydrazides. Org Lett 2022; 24:9322-9326. [PMID: 36484520 DOI: 10.1021/acs.orglett.2c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient electrochemical synthesis of sulfonated phenanthrenes via the reaction of internal alkynes with sulfonyl hydrazides has been established. The protocol does not require a metal catalyst or external oxidants, providing a green and mild route to functionalized phenanthrenes. Moreover, the compatibility of various functional groups and decagram-scale experimental conditions demonstrate the practicality of the electrochemical strategy.
Collapse
Affiliation(s)
- Hao-Dong Tian
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zi-Hao Fu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Chen Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Huang-Chu Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Yavari I, Shaabanzadeh S. Benzylic C(sp 3)-H Bonds Play the Dual Role of Starting Material and Oxidation Inhibitor for Hydrazides in the Electrochemical Synthesis of Hydrazones. J Org Chem 2022; 87:15077-15085. [PMID: 36347012 DOI: 10.1021/acs.joc.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The electrooxidation of benzylic C(sp3)-H bonds to produce hydrazones as an alternate for conventional pathways has an enormous dignity. Under the aegis of electricity, instead of hazardous metal catalysts and external oxidants, we unveil an electrochemical process for electrooxidation of various benzylic C(sp3)-H bonds in aqueous media in all pH ranges that subsequently produce hydrazones with further reactions. This electrooxidative reaction strategy provides an acceptable condition for synthesizing hydrazones with various functional groups in good efficiency and amenable to gram-scale synthesis. The electrochemical oxidation condition proves an excellent level of compatibility with super cheap electrolyte NaCl for the oxidation of benzylic C(sp3)-H position despite the highly oxidizable hydrazide group remaining intact in the reaction.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| |
Collapse
|
11
|
Qian BC, Zhu CZ, Shen GB. The Application of Sulfonyl Hydrazides in Electrosynthesis: A Review of Recent Studies. ACS OMEGA 2022; 7:39531-39561. [PMID: 36385900 PMCID: PMC9648049 DOI: 10.1021/acsomega.2c04205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
Sulfonyl hydrazides are viewed as alternatives to sulfinic acids and their salts or sulfonyl halides, which are broadly used in organic synthesis or work as active pharmaceutical substances. Generally, sulfonyl hydrazides are considered good building blocks and show powerful value in a diverse range of reactions to construct C-S bonds or C-C bonds, and even C-N bonds as sulfur, carbon, or nitrogen sources, respectively. As a profound synthetic tool, the electrosynthesis method was recently used to achieve efficient and green applications of sulfonyl hydrazides. Interestingly, many unique and novel electrochemical syntheses using sulfonyl hydrazides as radical precursors have been developed, including cascade reactions, functionalization of heterocycles, as well as a continuous flow method combining with electrochemical synthesis since 2017. Accordingly, it is necessary to specifically summarize the recent developments of electrosynthesis with only sulfonyl hydrazides as radical precursors to more deeply understand and better design novel electrochemical synthesis reactions. Herein, electrosynthesis research using sulfonyl hydrazides as radical precursors since 2017 is reviewed in detail based on the chemical structures of products and reaction mechanisms.
Collapse
Affiliation(s)
- Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Chao-Zhe Zhu
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| |
Collapse
|
12
|
Feng J, Wang Y, Gao L, Yu Y, Baell JB, Huang F. Electrochemical Synthesis of Polysubstituted Sulfonated Pyrazoles via Cascade Intermolecular Condensation, Radical-Radical Cross Coupling Sulfonylation, and Pyrazole Annulation. J Org Chem 2022; 87:13138-13153. [PMID: 36166815 DOI: 10.1021/acs.joc.2c01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical synthesis of polysubstituted sulfonated pyrazoles from enaminones and sulfonyl hydrazides was established under metal-free, exogenous-oxidant-free, and mild conditions. By judicious choice of different electrochemical reaction conditions, NH2-functionalized enaminones or N,N-disubstituted enaminones can react with aryl/alkyl sulfonyl hydrazides to afford tetra- or trisubstituted sulfonated pyrazoles in moderate to good yields, respectively. The gram-scale electrochemical transformation demonstrated the efficiency and practicability of this synthetic strategy. In addition, the sulfonated NH-pyrazole can be obtained via the dissociation of the N-tosyl group. Mechanistic studies reveal that the electrochemical cascade reaction synthesis of polysubstituted sulfonated pyrazoles proceeded via the sequence of intermolecular condensation, radical-radical cross coupling sulfonylation, and pyrazole annulation.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuzhi Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Luoyu Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
13
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
14
|
Kumar Dabaria K, Bai R, Singh Badsara S. Electricity Promoted Chemoselective Functionalization of Alkenes: Diastereoselective Synthesis of Oxindole Containing Thioethers and Selenoethers. ChemistrySelect 2022. [DOI: 10.1002/slct.202202992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kamlesh Kumar Dabaria
- MFOS Laboratory, Department of Chemistry University of Rajasthan JLN Marg, Jaipur Rajasthan India 302004
| | - Rekha Bai
- MFOS Laboratory, Department of Chemistry University of Rajasthan JLN Marg, Jaipur Rajasthan India 302004
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry University of Rajasthan JLN Marg, Jaipur Rajasthan India 302004
| |
Collapse
|
15
|
Li YN, Wang B, Huang YK, Hu JS, Sun JN. Recent advances in metal catalyst- and oxidant-free electrochemical C-H bond functionalization of nitrogen-containing heterocycles. Front Chem 2022; 10:967501. [PMID: 36059873 PMCID: PMC9437222 DOI: 10.3389/fchem.2022.967501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
The C-H functionalization of nitrogen-containing heterocycles has emerged as a powerful strategy for the construction of carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds. In order to achieve efficient and selective C-H functionalization, electrochemical synthesis has attracted increasing attention. Because electrochemical anodic oxidation is ideal for replacing chemical reagents in C-H functionalization reactions. This mini-review summarizes the current knowledge and recent advances since 2017 in the synthetic utility of electrochemical transformations for the C-H functionalization of nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Ya-Nan Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
- *Correspondence: Ya-Nan Li, ; Jia-Nan Sun,
| | - Bin Wang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Ye-Kai Huang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jin-Song Hu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jia-Nan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
- *Correspondence: Ya-Nan Li, ; Jia-Nan Sun,
| |
Collapse
|
16
|
Wu M, Yan C, Zhuang D, Yan R. Metal-Free C-S Bond Formation in Elemental Sulfur and Cyclobutanol Derivatives: The Synthesis of Substituted Thiophenes. Org Lett 2022; 24:5309-5313. [PMID: 35838239 DOI: 10.1021/acs.orglett.2c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general approach for the metal-free synthesis of thiophenes by tert-cyclobutanols and elemental sulfur has been developed. This protocol provides a strategy for constructing multisubstituted thiophene derivatives via C-S bond formation under air. This reaction shows good functionality tolerance under the reaction conditions, and the mechanism is validated by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Mingzhong Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chaoxian Yan
- College of Chemistry and Chemical Engineering, Ankang University, Ankang 725000, P. R. China
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
17
|
Li D, Zhang W, Zhu L, Yin S, Kambe N, Qiu R. FeO(OH)@C-Catalyzed Selective Hydrazine Substitution of p-Nitro-Aryl Fluorides and their Application for the Synthesis of Phthalazinones. ChemistryOpen 2022; 11:e202200023. [PMID: 35585033 PMCID: PMC9117154 DOI: 10.1002/open.202200023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient hydrazine substitution of p-nitro-aryl fluorides with hydrazine hydrates catalyzed by FeO(OH)@C nanoparticles is described. This hydrazine substitutions of p-nitro-aryl fluorides bearing electron-withdrawing groups proceeded efficiently with high yield and selectivity. Similarly, hydrogenations of p-nitro-aryl fluorides containing electron-donating groups also smoothly proceeded under mild conditions. Furthermore, with these prepared aryl hydrazines, some phthalazinones, interesting as potential structures for pharmaceuticals, have successfully been synthesized in high yields.
Collapse
Affiliation(s)
- Dingzhong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Wensheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Longzhi Zhu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and systems of Ministry of Education/Guangdong ProvinceShenzhen UniversityShenzhen518060P. R. China
| | - Shuang‐Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| |
Collapse
|
18
|
Liu W, Hao L, Zhang J, Zhu T. Progress in the Electrochemical Reactions of Sulfonyl Compounds. CHEMSUSCHEM 2022; 15:e202102557. [PMID: 35174969 DOI: 10.1002/cssc.202102557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Electrosynthesis has recently attracted more and more attention due to its great potential to replace chemical oxidants or reductants in molecule-electrode electron transfer. Sulfonyl compounds such as sulfonyl hydrazides, sulfinic acids (and their salts), sulfonyl halides have been discovered as practical precursors of several radicals. As electrochemical redox reactions can provide green and efficient pathways for the activation of sulfonyl compounds, studies for electrosynthesis have rapidly increased. Several types of radicals can be generated from anodic oxidation or cathodic reduction of sulfonyl compounds and can initiate fluoroalkylation, benzenesulfonylation, cyclization or rearrangement. In this Review, we summarize the electrosynthesis developments involving sulfonyl compounds mainly in the last decade.
Collapse
Affiliation(s)
- Wangsheng Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Hao
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
19
|
Song S, Shi X, Zhu Y, Ren Q, Zhou P, Zhou J, Li J. Electrochemical Oxidative C-H Arylation of Quinoxalin(on)es with Arylhydrazine Hydrochlorides under Mild Conditions. J Org Chem 2022; 87:4764-4776. [PMID: 35319891 DOI: 10.1021/acs.joc.2c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A practical and scalable protocol for electrochemical arylation of quinoxalin(on)es with arylhydrazine hydrochlorides under mild conditions has been developed. This method exhibits high efficiency, easy scalability, and broad functional group tolerance. Various quinoxalin(on)es and arylhydrazines underwent this transformation smoothly in an undivided cell, providing the corresponding aryl-substituted quinoxalin(on)es in moderate to good yields. A radical mechanism is involved in this arylation reaction.
Collapse
Affiliation(s)
- Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiangjun Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunsheng Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Quanlei Ren
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Peng Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
20
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
21
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Yu Y, Fang Y, Tang R, Xu D, Dai S, Zhang W. Electrochemical oxidative sulfonylation of N‐arylamides/amine with sodium sulfinates. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingliang Yu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Yang Fang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Rumeng Tang
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Dongping Xu
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Shuaishuai Dai
- Anhui Normal University College of Chemistry and Materials Science CHINA
| | - Wu Zhang
- Anhui Normal University College of Chemistry and Materials Science 1 Beijing Eastroad 241000 Wuhu CHINA
| |
Collapse
|
23
|
Park JK, Oh J, Lee S. Electrochemical Synthesis of Sulfonyl Fluorides from Sulfonyl Hydrazides. Org Chem Front 2022. [DOI: 10.1039/d2qo00651k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of sulfonyl fluorides via the reaction of sulfonyl hydrazides and Et3N3HF under electrochemical conditions is reported. Various sulfonyl fluorides were obtained in good yields under a constant current...
Collapse
|
24
|
Synthesis of arylsulfonyl-substituted indolo[2,1-a]isoquinolin-6(5H)-one derivatives via a TBAI-catalyzed radical cascade cyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Nayek N, Karmakar P, Mandal M, Karmakar I, Brahmachari G. Photochemical and electrochemical regioselective cross-dehydrogenative C(sp 2)–H sulfenylation and selenylation of substituted benzo[ a]phenazin-5-ols. NEW J CHEM 2022. [DOI: 10.1039/d2nj02224a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The essence of photo- and electrochemistry: sulfenylation and selenylation of substituted benzo[a]phenazin-5-ols through cross-dehydrogenative C(sp2)–H functionalization.
Collapse
Affiliation(s)
- Nayana Nayek
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Pintu Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Mullicka Mandal
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India
| |
Collapse
|
26
|
Liang S, Hofman K, Friedrich M, Keller J, Manolikakes G. Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. CHEMSUSCHEM 2021; 14:4878-4902. [PMID: 34476903 PMCID: PMC9292207 DOI: 10.1002/cssc.202101635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Indexed: 06/12/2023]
Abstract
Sulfones play a pivotal role in modern organic chemistry. They are highly versatile building blocks and find various applications as drugs, agrochemicals, or functional materials. Therefore, sustainable access to this class of molecules is of great interest. Herein, the goal was to provide a summary on recent developments in the field of sustainable sulfone synthesis. Advances and existing limitations in traditional approaches towards sulfones were reviewed on selected examples. Furthermore, novel emerging technologies for a more sustainable sulfone synthesis and future directions were discussed.
Collapse
Affiliation(s)
- Shuai Liang
- Department of Medicinal Chemistry, School of PharmacyQingdao University Medical CollegeNo.1 Ningde Road266073QingdaoP. R. China
| | - Kamil Hofman
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Marius Friedrich
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Julian Keller
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| | - Georg Manolikakes
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Str. Geb. 54D-67663KaiserslauternGermany
| |
Collapse
|
27
|
Lin X, Zeng C, Pang X, Zhu C, Liu C, Yang X, Hu Y, Fang Z, Guo K. Electrochemical Synthesis of Selenium‐substituted Benzoxazine
via
Radical Initiated Cyclization. ChemElectroChem 2021. [DOI: 10.1002/celc.202101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinxin Lin
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Cuilian Zeng
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Xinyan Pang
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Chenlong Zhu
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Chengkou Liu
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Xiaobing Yang
- Department: China Biology and Medicine Department Institution: Jiangsu Industrial Technology Research Institute Nanjing 210031 P.R. China
| | - Yujing Hu
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| | - Zheng Fang
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
- Department: State Key Laboratory of Materials-Oriented Chemical Engineering Institution: Nanjing Tech University Address 2 30 Puzhu Rd S. Nanjing 211816 China
| | - Kai Guo
- Department: College of Biotechnology and Pharmaceutical Engineering Institution: Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
- Department: State Key Laboratory of Materials-Oriented Chemical Engineering Institution: Nanjing Tech University Address 2 30 Puzhu Rd S. Nanjing 211816 China
| |
Collapse
|
28
|
Jiang YM, Yu Y, Wu SF, Yan H, Yuan Y, Ye KY. Electrochemical fluorosulfonylation of styrenes. Chem Commun (Camb) 2021; 57:11481-11484. [PMID: 34667999 DOI: 10.1039/d1cc04813a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An environmentally friendly and efficient electrochemical fluorosulfonylation of styrenes has been developed. With the use of sulfonylhydrazides and triethylamine trihydrofluoride, a diverse array of β-fluorosulfones could be readily obtained. This reaction features mild conditions and a broad substrate scope, which could also be conveniently extended to a gram-scale preparation.
Collapse
Affiliation(s)
- Yi-Min Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shao-Fen Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hong Yan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
29
|
Rao MLN, Islam SS. Copper-catalyzed synthesis of 1-(2-benzofuryl)-N-heteroarenes from o-hydroxy- gem-(dibromovinyl)benzenes and N-heteroarenes. Org Biomol Chem 2021; 19:9076-9080. [PMID: 34622915 DOI: 10.1039/d1ob01765a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of 1-(2-benzofuryl)-N-heteroarenes is developed from o-hydroxy-gem-(dibromovinyl)benzenes and N-heteroarenes under copper-catalyzed tandem reaction conditions. This methodology displayed a broad substrate scope and high yields in the preparation of a variety of 1-(2-benzofuryl)-N-heteroarenes. Further, 1-(2-benzofuryl)-N-heteroarenes were also applied in the synthesis of polycyclic benzofuro-indolo-pyridine scaffolds under palladium-catalyzed dehydrogenative coupling conditions. Overall, the present tandem approach is general, synthetically advantageous and avoids air-sensitive reagents.
Collapse
Affiliation(s)
- Maddali L N Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| | - Sk Shamim Islam
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208 016, India.
| |
Collapse
|
30
|
Ghosh D, Ghosh S, Hajra A. Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry St. Joseph's College (Autonomous) Bangalore 560027 Karnataka India
| | - Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
31
|
Zhang F, Wang Y, Wang Y, Pan Y. Electrochemical Deoxygenative Thiolation of Preactivated Alcohols and Ketones. Org Lett 2021; 23:7524-7528. [PMID: 34519513 DOI: 10.1021/acs.orglett.1c02738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work describes an electrochemically promoted nickel-catalyzed deoxygenative thiolation of alcohols and ketones under mild conditions. Excellent substrate tolerance and good chemical yields can be achieved by graphene/nickel foam electrodes in an undivided cell. Further study to gain mechanistic insight into this electrochemical cross-coupling has been carried out.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yang Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Tian Z, Gong Q, Huang T, Liu L, Chen T. Practical Electro-Oxidative Sulfonylation of Phenols with Sodium Arenesulfinates Generating Arylsulfonate Esters. J Org Chem 2021; 86:15914-15926. [PMID: 33789426 DOI: 10.1021/acs.joc.1c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical and sustainable synthesis of arylsulfonate esters has been developed through electro-oxidation. This reaction employed the stable and readily available phenols and sodium arenesulfinates as the starting materials and took place under mild reaction conditions without additional oxidants. A wide range of arylsulfonate esters including those bearing functional groups were produced in good to excellent yields. This reaction could also be conducted at a gram scale without a decrease of reaction efficiency. Those results well demonstrated the potential synthetic value of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Zhibin Tian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Qihang Gong
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
33
|
Hunjan MK, Panday S, Gupta A, Bhaumik J, Das P, Laha JK. Recent Advances in Functionalization of Pyrroles and their Translational Potential. CHEM REC 2021; 21:715-780. [PMID: 33650751 DOI: 10.1002/tcr.202100010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022]
Abstract
Among the known aromatic nitrogen heterocycles, pyrrole represents a privileged aromatic heterocycle ranging its occurrence in the key component of "pigments of life" to biologically active natural products to active pharmaceuticals. Pyrrole being an electron-rich heteroaromatic compound, its predominant functionalization is legendary to aromatic electrophilic substitution reactions. Although a few excellent reviews on the functionalization of pyrroles including the reports by Baltazzi in 1963, Casiraghi and Rassu in 1995, and Banwell in 2006 are available, they are fragmentary and over fifteen years old, and do not cover the modern aspects of catalysis. A review covering a comprehensive package of direct functionalization on pyrroles via catalytic and non-catalytic methods including their translational potential is described. Subsequent to statutory yet concise introduction, the classical functionalization on pyrroles using Lewis acids largely following an ionic mechanism is discussed. The subsequent discussion follows the various metal-catalyzed C-H functionalization on pyrroles, which are otherwise difficult to implement by Lewis acids. A major emphasize is given on the radical based pyrrole functionalization under metal-free oxidative conditions, which is otherwise poorly highlighted in the literature. Towards the end, the current development of pyrrole functionalization under photocatalyzed and electrochemical conditions is appended. Only a selected examples of substrates and important mechanisms are discussed for different methods highlighting their scopes and limitations. The aromatic nucleophillic substitution on pyrroles (being an electron-rich heterocycle) happened to be the subject of recent investigations, which has also been covered accentuating their underlying conceptual development. Despite great achievements over the past several years in these areas, many challenges and problems are yet to be solved, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Mandeep Kaur Hunjan
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Surabhi Panday
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Anjali Gupta
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| | - Jayeeta Bhaumik
- Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S., Nagar, 140306, Punjab, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, 826004, India
| | - Joydev K Laha
- Department of Pharmaceutial Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Mohali, 160062, India
| |
Collapse
|
34
|
Hu J, Hong H, Qin Y, Hu Y, Pu S, Liang G, Huang Y. Electrochemical Desulfurative Cyclization Accessing Oxazol-2-amine Derivatives via Intermolecular C-N/C-O Bond Formation. Org Lett 2021; 23:1016-1020. [PMID: 33475369 DOI: 10.1021/acs.orglett.0c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical protocol has been established to access diverse oxazol-2-amine derivatives in one step via the electrochemical desulfurative cyclization of isothiocyanates and α-amino ketones. On the basis of the cycle of in situ generation of iodine/desulfurative cyclization/iodide anion regeneration, the reaction is performed under metal-free and external-oxidant-free electrolytic conditions to achieve the formation of intermolecular C-O and C-N bonds, providing oxazol-2-amines in moderate to excellent yields.
Collapse
Affiliation(s)
- Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Huanliang Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yongwei Qin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Suyun Pu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Gen Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
35
|
Dong D, Han Q, Yang S, Song J, Li N, Wang Z, Xu X. Recent Progress in Sulfonylation via Radical Reaction with Sodium Sulfinates, Sulfinic Acids, Sulfonyl Chlorides or Sulfonyl Hydrazides. ChemistrySelect 2020. [DOI: 10.1002/slct.202003650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dao‐Qing Dong
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Qing‐Qing Han
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Shao‐Hui Yang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Jing‐Cheng Song
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Zu‐Li Wang
- College of Chemistry and Pharmaceutical Sciences Qingdao Agricultural University Qingdao 266109 P.R. China
| | - Xin‐Ming Xu
- College ofChemistry and Chemical Engineering Yantai University Yantai 264005 P.R. China
| |
Collapse
|
36
|
Lamaa D, Hauguel C, Lin HP, Messe E, Gandon V, Alami M, Hamze A. Sequential One-Pot Synthesis of 3-Arylbenzofurans from N-Tosylhydrazones and Bromophenol Derivatives. J Org Chem 2020; 85:13664-13673. [PMID: 33091298 DOI: 10.1021/acs.joc.0c01835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent and efficient one-pot sequence allowing direct access to 3-arylbenzofuran derivatives has been developed. The process, involving N-tosylhydrazones and bromophenols, proceeds via a palladium-catalyzed Barluenga-Valdés cross-coupling, followed by an aerobic, copper-catalyzed, radical cyclization to form Csp2-Csp2 and O-Csp2 bonds. 3-Arylated benzofurans bearing various substituents were obtained with good to excellent yields (up to 90%). Mechanistic investigation strongly supports a radical process for the cyclization step.
Collapse
Affiliation(s)
- Diana Lamaa
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Camille Hauguel
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Hsin-Ping Lin
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Estelle Messe
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Vincent Gandon
- Institut de Chimie Moleculaire et des Materiaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Batiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
37
|
Breton‐Patient C, Naud‐Martin D, Mahuteau‐Betzer F, Piguel S. Three‐Component C–H Bond Sulfonylation of Imidazoheterocycles by Visible‐Light Organophotoredox Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chloé Breton‐Patient
- CNRS UMR9187, Inserm U1196 Université Paris‐Saclay 91400 Orsay France
- CNRS UMR9187, Inserm U1196 Institut Curie, Université PSL 91400 Orsay France
| | | | | | - Sandrine Piguel
- CNRS UMR9187, Inserm U1196 Université Paris‐Saclay 91400 Orsay France
- CNRS UMR9187, Inserm U1196 Institut Curie, Université PSL 91400 Orsay France
| |
Collapse
|
38
|
An Q, He C, Fan X, Hou C, Zhao J, Liu Y, Liu H, Ma J, Sun Z, Chu W. Synthesis of Benzazoles through Electrochemical Oxidative Cyclization Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qi An
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Chaoyin He
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Xiaodong Fan
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Chuanfu Hou
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Jian Zhao
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Yue Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Hao Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Junjie Ma
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| |
Collapse
|
39
|
Li G, Kong X, Liang Q, Lin L, Yu K, Xu B, Chen Q. Metal‐Free Electrochemical Coupling of Vinyl Azides: Synthesis of Phenanthridines and
β
‐Ketosulfones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guodong Li
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
- School of Chemical Engineering and Materials Changzhou Institute of Technology No. 666 Liaohe Road 213032 Changzhou China
| | - Qi Liang
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Long Lin
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Ke Yu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Bo Xu
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco‐Textile Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology Donghua University 201620 Shanghai China
| |
Collapse
|
40
|
Mulina OM, Ilovaisky AI, Parshin VD, Terent'ev AO. Oxidative Sulfonylation of Multiple Carbon‐Carbon bonds with Sulfonyl Hydrazides, Sulfinic Acids and their Salts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexey I. Ilovaisky
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Vadim D. Parshin
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt 47 119991 Moscow Russian Federation
| |
Collapse
|
41
|
Zhao S, Chen K, Zhang L, Yang W, Huang D. Sulfonyl Hydrazides in Organic Synthesis: A Review of Recent Studies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000466] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuangte Zhao
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Kaijun Chen
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Ling Zhang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Weiguang Yang
- The Marine Biomedical Research InstituteGuangdong Medical University Zhanjiang 524023, Guangdong Province
| | - Dayun Huang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| |
Collapse
|
42
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
43
|
Gao Y, Wu Z, Yu L, Wang Y, Pan Y. Alkyl Carbazates for Electrochemical Deoxygenative Functionalization of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:10859-10863. [DOI: 10.1002/anie.202001571] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yongyuan Gao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Zhengguang Wu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Lei Yu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
44
|
Xu Z, Li Y, Mo G, Zheng Y, Zeng S, Sun PH, Ruan Z. Electrochemical Oxidative Phosphorylation of Aldehyde Hydrazones. Org Lett 2020; 22:4016-4020. [DOI: 10.1021/acs.orglett.0c01343] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongnan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yueheng Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Guangquan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Yucheng Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Shaogao Zeng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Ping-Hua Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, P.R. China
| | - Zhixiong Ruan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
45
|
Burmistrova DA, Smolyaninov IV, Berberova NT. Redox Properties and Reactivity of Organic Trisulfides in Reactions with Alkenes. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
De Abreu M, Selkti M, Belmont P, Brachet E. Phosphoramidates as Transient Precursors of Nitrogen‐Centered Radical Under Visible‐Light Irradiation: Application to the Synthesis of Phthalazine Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maxime De Abreu
- Université de ParisCiTCoM, UMR CNRS 8038 F-75006 Paris France
| | - Mohamed Selkti
- Université de ParisCiTCoM, UMR CNRS 8038 F-75006 Paris France
| | | | - Etienne Brachet
- Université de ParisCiTCoM, UMR CNRS 8038 F-75006 Paris France
| |
Collapse
|
47
|
Mo Z, Zhang Y, Huang G, Wang X, Pan Y, Tang H. Electrochemical Sulfonylation of Alkynes with Sulfonyl Hydrazides: A Metal‐ and Oxidant‐Free Protocol for the Synthesis of Alkynyl Sulfones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901607] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zu‐Yu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004, People's Republic of China
| | - Yu‐Zhen Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004, People's Republic of China
| | - Guo‐Bao Huang
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science ofYulin Normal University Yulin 537000 People's Republic of China
| | - Xin‐Yu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004, People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004, People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004, People's Republic of China
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science ofYulin Normal University Yulin 537000 People's Republic of China
| |
Collapse
|
48
|
Mahanty K, Maiti D, De Sarkar S. Regioselective C–H Sulfonylation of 2H-Indazoles by Electrosynthesis. J Org Chem 2020; 85:3699-3708. [PMID: 32003566 DOI: 10.1021/acs.joc.9b03330] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kingshuk Mahanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
49
|
Xu J, Yang Z, Hua J, Lin Y, Bian M, Li Y, Liu C, He W, Fang Z, Guo K. The continuous-flow electrosynthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2H,4H)-diones from N-alkyl-N-methacryloyl benzamides under metal-free and oxidant-free conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00909a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and green electrochemical continuous flow approach has been developed for the synthesis of 4-(sulfonylmethyl)isoquinoline-1,3(2H,4H)-diones through sulfonylation of alkenes under metal-free and oxidant-free conditions.
Collapse
Affiliation(s)
- Jia Xu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhao Yang
- College of Engineering
- China Pharmaceutical University
- Nanjing 210003
- China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yang Lin
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yuguang Li
- Institute of Nanjing Advanced Biomaterials &Processing Equipment
- Nanjing 211200
- China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
50
|
Balgotra S, Verma PK, Vishwakarma RA, Sawant SD. Catalytic advances in direct functionalizations using arylated hydrazines as the building blocks. CATALYSIS REVIEWS 2019. [DOI: 10.1080/01614940.2019.1702191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shilpi Balgotra
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Praveen Kumar Verma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ram A. Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sanghapal D. Sawant
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|