1
|
Jensen PJ, Graham JP, Busch TK, Fitz O, Jayanadh S, Pashuck TE, Gonzalez-Fernandez T. Biocompatible composite hydrogel with on-demand swelling-shrinking properties for 4D bioprinting. Biomater Sci 2025. [PMID: 40366314 DOI: 10.1039/d5bm00551e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Hydrogels with tunable swelling and shrinking properties are of great interest in biomedical applications, particularly in wound healing, tissue regeneration, and drug delivery. Traditional hydrogels often fail to achieve high swelling without mechanical failure. In contrast, high-swelling hydrogels can absorb large amounts of liquid, expanding their volume by 10-1000 times, due to low crosslink density and the presence of hydrophilic groups. Additionally, some high-swelling hydrogels can also shrink in response to external stimuli, making them promising candidates for applications like on-demand drug delivery and biosensing. An emerging application of high-swelling hydrogels is four-dimensional (4D) printing, where controlled swelling induces structural transformations in a 3D printed construct. However, current hydrogel systems show limited swelling capacity, restricting their ability to undergo significant shape changes. To address these limitations, we developed a high-swelling composite hydrogel, termed SwellMA, by combining gelatin methacryloyl (GelMA) and sodium polyacrylate (SPA). SwellMA exhibits a swelling capacity over 500% of its original area and can increase its original water weight by 100-fold, outperforming existing materials in 4D bioprinting. Furthermore, SwellMA constructs can cyclically swell and shrink on-demand upon changing the ionic strength of the aqueous solution. Additionally, SwellMA demonstrates superior cytocompatibility and cell culture properties than SPA, along with enhanced 3D printing fidelity. These findings demonstrate SwellMA's potential for advanced 4D printing and a broad range of biomedical applications requiring precise and dynamic control over hydrogel swelling and shrinking.
Collapse
Affiliation(s)
- Peter J Jensen
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Josh P Graham
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Trevor K Busch
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Owen Fitz
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
| | - Sivani Jayanadh
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Thomas E Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
- Polymer Science and Engineering Program, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Tomas Gonzalez-Fernandez
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA.
- Polymer Science and Engineering Program, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
2
|
Wang H, Bai S, Gu G, Zhang C, Wang Y. Chemical Reaction Steers Spatiotemporal Self-Assembly of Supramolecular Hydrogels. Chempluschem 2024; 89:e202400396. [PMID: 38923325 DOI: 10.1002/cplu.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular structures are widespread in living system, which are usually spatiotemporally regulated by sophisticated metabolic processes to enable vital biological functions. Inspired by living system, tremendous efforts have been made to realize spatiotemporal control over the self-assembly of supramolecular materials in synthetic scenario by coupling chemical reaction with molecular self-assembly process. In this review, we focused on the works related to supramolecular hydrogels that are regulated in space and time using chemical reaction. Firstly, we summarized how spatially controlled self-assembly of supramolecular hydrogels can be achieved via chemical reaction-instructed self-assembly, and the application of such a self-assembly methodology in biotherapy was discussed as well. Second, we reviewed dynamic supramolecular hydrogels dictated by chemical reaction networks that can evolve their structures and properties against time. Third, we discussed the recent progresses in the control of the self-assembly of supramolecular hydrogels in both space and time though a reaction-diffusion-coupled self-assembly approach. Finally, we provided a perspective on the further development of spatiotemporally controlled supramolecular hydrogels using chemical reaction in the future.
Collapse
Affiliation(s)
- Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyu Bai
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanyao Gu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyu Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Singh A, Parvin P, Saha B, Das D. Non-equilibrium self-assembly for living matter-like properties. Nat Rev Chem 2024; 8:723-740. [PMID: 39179623 DOI: 10.1038/s41570-024-00640-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 08/26/2024]
Abstract
The soft and wet machines of life emerged as the spatially enclosed ensemble of biomolecules with replicating capabilities integrated with metabolic reaction cycles that operate at far-from-equilibrium. A thorough step-by-step synthetic integration of these elements, namely metabolic and replicative properties all confined and operating far-from-equilibrium, can set the stage from which we can ask questions related to the construction of chemical-based evolving systems with living matter-like properties - a monumental endeavour of systems chemistry. The overarching concept of this Review maps the discoveries on this possible integration of reaction networks, self-reproduction and compartmentalization under non-equilibrium conditions. We deconvolute the events of reaction networks and transient compartmentalization and extend the discussion towards self-reproducing systems that can be sustained under non-equilibrium conditions. Although enormous challenges lie ahead in terms of molecular diversity, information transfer, adaptation and selection that are required for open-ended evolution, emerging strategies to generate minimal metabolic cycles can extend our growing understanding of the chemical emergence of the biosphere of Earth.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Payel Parvin
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Bapan Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | - Dibyendu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India.
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India.
| |
Collapse
|
4
|
Saha NK, Salvia WS, Konkolewicz D, Hartley CS. Transient Covalent Polymers through Carbodiimide-Driven Assembly. Angew Chem Int Ed Engl 2024; 63:e202404933. [PMID: 38772695 DOI: 10.1002/anie.202404933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Biochemical systems make use of out-of-equilibrium polymers generated under kinetic control. Inspired by these systems, many abiotic supramolecular polymers driven by chemical fuel reactions have been reported. Conversely, polymers based on transient covalent bonds have received little attention, even though they have the potential to complement supramolecular systems by generating transient structures based on stronger bonds and by offering a straightforward tuning of reaction kinetics. In this study, we show that simple aqueous dicarboxylic acids give poly(anhydrides) when treated with the carbodiimide EDC. Transient covalent polymers with molecular weights exceeding 15,000 are generated which then decompose over the course of hours to weeks. Disassembly kinetics can be controlled using simple substituent effects in the monomer design. The impact of solvent polarity, carbodiimide concentration, temperature, pyridine concentration, and monomer concentration on polymer properties and lifetimes has been investigated. The results reveal substantial control over polymer assembly and disassembly kinetics, highlighting the potential for fine-tuned kinetic control in nonequilibrium polymerization systems.
Collapse
Affiliation(s)
- Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - William S Salvia
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| |
Collapse
|
5
|
Zhao P, Xu L, Li B, Zhao Y, Zhao Y, Lu Y, Cao M, Li G, Weng TC, Wang H, Zheng Y. Non-Equilibrium Assembly of Atomically-Precise Copper Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311818. [PMID: 38294175 DOI: 10.1002/adma.202311818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Accurate structure control in dissipative assemblies (DSAs) is vital for precise biological functions. However, accuracy and functionality of artificial DSAs are far from this objective. Herein, a novel approach is introduced by harnessing complex chemical reaction networks rooted in coordination chemistry to create atomically-precise copper nanoclusters (CuNCs), specifically Cu11(µ9-Cl)(µ3-Cl)3L6Cl (L = 4-methyl-piperazine-1-carbodithioate). Cu(I)-ligand ratio change and dynamic Cu(I)-Cu(I) metallophilic/coordination interactions enable the reorganization of CuNCs into metastable CuL2, finally converting into equilibrium [CuL·Y]Cl (Y = MeCN/H2O) via Cu(I) oxidation/reorganization and ligand exchange process. Upon adding ascorbic acid (AA), the system goes further dissipative cycles. It is observed that the encapsulated/bridging halide ions exert subtle influence on the optical properties of CuNCs and topological changes of polymeric networks when integrating CuNCs as crosslink sites. CuNCs duration/switch period could be controlled by varying the ions, AA concentration, O2 pressure and pH. Cu(I)-Cu(I) metallophilic and coordination interactions provide a versatile toolbox for designing delicate life-like materials, paving the way for DSAs with precise structures and functionalities. Furthermore, CuNCs can be employed as modular units within polymers for materials mechanics or functionalization studies.
Collapse
Affiliation(s)
- Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Linjie Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bohan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuanfeng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Minghui Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guoqi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Poprawa SM, Stasi M, Kriebisch BAK, Wenisch M, Sastre J, Boekhoven J. Active droplets through enzyme-free, dynamic phosphorylation. Nat Commun 2024; 15:4204. [PMID: 38760374 PMCID: PMC11101487 DOI: 10.1038/s41467-024-48571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Life continuously transduces energy to perform critical functions using energy stored in reactive molecules like ATP or NADH. ATP dynamically phosphorylates active sites on proteins and thereby regulates their function. Inspired by such machinery, regulating supramolecular functions using energy stored in reactive molecules has gained traction. Enzyme-free, synthetic systems that use dynamic phosphorylation to regulate supramolecular processes have not yet been reported, to our knowledge. Here, we show an enzyme-free reaction cycle that consumes the phosphorylating agent monoamidophosphate by transiently phosphorylating histidine and histidine-containing peptides. The phosphorylated species are labile and deactivate through hydrolysis. The cycle exhibits versatility and tunability, allowing for the dynamic phosphorylation of multiple precursors with a tunable half-life. Notably, we show the resulting phosphorylated products can regulate the peptide's phase separation, leading to active droplets that require the continuous conversion of fuel to sustain. The reaction cycle will be valuable as a model for biological phosphorylation but can also offer insights into protocell formation.
Collapse
Affiliation(s)
- Simone M Poprawa
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Brigitte A K Kriebisch
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Monika Wenisch
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Judit Sastre
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
7
|
Rajawasam CWH, Tran C, Sparks JL, Krueger WH, Hartley CS, Konkolewicz D. Carbodiimide-Driven Toughening of Interpenetrated Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202400843. [PMID: 38517330 DOI: 10.1002/anie.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Recent work has demonstrated that temporary crosslinks in polymer networks generated by chemical "fuels" afford materials with large, transient changes in their mechanical properties. This can be accomplished in carboxylic-acid-functionalized polymer hydrogels using carbodiimides, which generate anhydride crosslinks with lifetimes on the order of minutes to hours. Here, the impact of the polymer network architecture on the mechanical properties of transiently crosslinked materials was explored. Single networks (SNs) were compared to interpenetrated networks (IPNs). Notably, semi-IPN precursors that give IPNs on treatment with carbodiimide give much higher fracture energies (i.e., resistance to fracture) and superior resistance to compressive strain compared to other network architectures. A precursor semi-IPN material featuring acrylic acid in only the free polymer chains yields, on treatment with carbodiimide, an IPN with a fracture energy of 2400 J/m2, a fourfold increase compared to an analogous semi-IPN precursor that yields a SN. This resistance to fracture enables the formation of macroscopic complex cut patterns, even at high strain, underscoring the pivotal role of polymer architecture in mechanical performance.
Collapse
Affiliation(s)
| | - Corvo Tran
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Jessica L Sparks
- Department of Chemical Paper and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - William H Krueger
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
8
|
Baretta R, Davidson-Rozenfeld G, Gutkin V, Frasconi M, Willner I. Chemical and Photochemical-Driven Dissipative Fe 3+/Fe 2+-Ion Cross-Linked Carboxymethyl Cellulose Gels Operating Under Aerobic Conditions: Applications for Transient Controlled Release and Mechanical Actuation. J Am Chem Soc 2024; 146:9957-9966. [PMID: 38547022 PMCID: PMC11009950 DOI: 10.1021/jacs.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
A Fe3+-ion cross-linked carboxymethyl cellulose, Fe3+-CMC, redox-active gel exhibiting dissipative, transient stiffness properties is introduced. Chemical or photosensitized reduction of the higher-stiffness Fe3+-CMC to the lower-stiffness Fe2+-CMC gel, accompanied by the aerobic reoxidation of the Fe2+-CMC matrix, leads to the dissipative, transient stiffness, functional matrix. The light-induced, temporal, transient release of a load (Texas red dextran) and the light-triggered, transient mechanical bending of a poly-N-isopropylacrylamide (p-NIPAM)/Fe3+-CMC bilayer construct are introduced, thus demonstrating the potential use of the dissipative Fe3+-CMC gel for controlled drug release or soft robotic applications.
Collapse
Affiliation(s)
- Roberto Baretta
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Gilad Davidson-Rozenfeld
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vitaly Gutkin
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Marco Frasconi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Baretta R, Frasconi M. Electrically Powered Dissipative Hydrogel Networks Reveal Transient Stiffness Properties for Out-of-Equilibrium Operations. J Am Chem Soc 2024; 146:7408-7418. [PMID: 38440849 DOI: 10.1021/jacs.3c12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Living systems use dissipative processes to enable precise spatiotemporal control over various functions, including the transient modulation of the stiffness of tissues, which, however, is challenging to achieve in soft materials. Here, we report a new platform to program hydrogel films with tunable, time-dependent mechanical properties under out-of-equilibrium conditions, powered by electricity. We show that the lifetime of the transient network of a surface-confined hydrogel film can be effectively controlled by programming the generation of an electrochemically oxidized mediator in the presence of a chemical or photoreducing agent in solution. It is, therefore, electrically possible to direct the transient stiffening or softening of the hydrogel film, enabling high modularity of the material functions with precise spatiotemporal control. Temporally controlled operations of the hydrogel films are demonstrated for the on-demand, dose-controlled release of multiple model protein payloads from electrode arrays using the present electrically powered dissipative system. This demonstration of electrically driven transient modulation of the stiffness properties of hydrogel films represents an important step toward the engineering of dissipative materials for developing future biomedical applications that can harness the temporal, adaptive properties of this new class of materials.
Collapse
Affiliation(s)
- Roberto Baretta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
Fu H, Cao N, Zeng W, Liao M, Yao S, Zhou J, Zhang W. Pumping Small Molecules Selectively through an Energy-Assisted Assembling Process at Nonequilibrium States. J Am Chem Soc 2024; 146:3323-3330. [PMID: 38273768 DOI: 10.1021/jacs.3c12228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In living organisms, precise control over the spatial and temporal distribution of molecules, including pheromones, is crucial. This level of control is equally important for the development of artificial active materials. In this study, we successfully controlled the distribution of small molecules in the system at nonequilibrium states by actively transporting them, even against the apparent concentration gradient, with high selectivity. As a demonstration, in the aqueous solution of acid orange (AO7) and TMC10COOH, we found that AO7 molecules can coassemble with transient anhydride (TMC10CO)2O to form larger assemblies in the presence of chemical fuel 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC). This led to a decrease in local free AO7 concentration and caused AO7 molecules from other locations in the solution to move toward the assemblies. Consequently, AO7 accumulates at the location where EDC was injected. By continuously injecting EDC, we could maintain a stable high value of the apparent AO7 concentration at the injection point. We also observed that this process which operated at nonequilibrium states exhibited high selectivity.
Collapse
Affiliation(s)
- Huimin Fu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Nengjie Cao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wang Zeng
- National Centre for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Min Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shenglin Yao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
11
|
Chen X, Soria-Carrera H, Zozulia O, Boekhoven J. Suppressing catalyst poisoning in the carbodiimide-fueled reaction cycle. Chem Sci 2023; 14:12653-12660. [PMID: 38020366 PMCID: PMC10646924 DOI: 10.1039/d3sc04281b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
In biology, cells regulate the function of molecules using catalytic reaction cycles that convert reagents with high chemical potential (fuel) to waste molecules. Inspired by biology, synthetic analogs of such chemical reaction cycles have been devised, and a widely used catalytic reaction cycle uses carboxylates as catalysts to accelerate the hydration of carbodiimides. The cycle is versatile and easy to use, so it is widely applied to regulate motors, pumps, self-assembly, and phase separation. However, the cycle suffers from side reactions, especially the formation of N-acylurea. In catalytic reaction cycles, side reactions are disastrous as they decrease the fuel's efficiency and, more importantly, destroy the molecular machinery or assembling molecules. Therefore, this work tested how to suppress N-acylurea by screening precursor concentration, its structure, carbodiimide structure, additives, temperature, and pH. It turned out that the combination of low temperature, low pH, and 10% pyridine as a fraction of the fuel could significantly suppress the N-acylurea side product and keep the reaction cycle highly effective to regulate successful assembly. We anticipate that our work will provide guidelines for using carbodiimide-fueled reaction cycles to regulate molecular function and how to choose optimal conditions.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Héctor Soria-Carrera
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Oleksii Zozulia
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Science, Technical University of Munich Lichtenbergstrasse 4 85748 Garching bei München Germany
| |
Collapse
|
12
|
Valentini M, Frateloreto F, Conti M, Cacciapaglia R, Del Giudice D, Di Stefano S. A Doubly Dissipative System Driven by Chemical and Radiative Stimuli. Chemistry 2023; 29:e202301835. [PMID: 37326465 DOI: 10.1002/chem.202301835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
The operation of a dissipative network composed of two or three different crown-ether receptors and an alkali metal cation can be temporally driven by the use (combined or not) of two orthogonal stimuli of a different nature. More specifically, irradiation with light at a proper wavelength and/or addition of an activated carboxylic acid, are used to modulate the binding capability of the above crown-ethers towards the metal ion, allowing to control over time the occupancy of the metal cation in the crown-ether moiety of a given ligand. Thus, application of either or both of the stimuli to an initially equilibrated system, where the metal cation is distributed among the crown-ether receptors depending on the different affinities, causes a programmable change in the receptor occupancies. Consequently, the system is induced to evolve to one or more out-of-equilibrium states with different distributions of the metal cation among the different receptors. When the fuel is exhausted or/and the irradiation interrupted, the system reversibly and autonomously goes back to the initial equilibrium state. Such results may contribute to the achievement of new dissipative systems that, taking advantage of multiple and orthogonal stimuli, are featured with more sophisticated operating mechanisms and time programmability.
Collapse
Affiliation(s)
- Matteo Valentini
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Federico Frateloreto
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Matteo Conti
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Roberta Cacciapaglia
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Daniele Del Giudice
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| | - Stefano Di Stefano
- Department of Chemistry, Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
13
|
Chen X, Würbser MA, Boekhoven J. Chemically Fueled Supramolecular Materials. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:416-426. [PMID: 37256081 PMCID: PMC10226104 DOI: 10.1021/accountsmr.2c00244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/10/2023] [Indexed: 06/01/2023]
Abstract
In biology, the function of many molecules is regulated through nonequilibrium chemical reaction cycles. The prototypical example is the phosphorylation of an amino acid in an enzyme which induces a functional change, e.g., it folds or unfolds, assembles or disassembles, or binds a substrate. Such phosphorylation does not occur spontaneously but requires a phosphorylating agent with high chemical potential (for example, adenosine triphosphate (ATP)) to be converted into a molecule with lower chemical potential (adenosine diphosphate (ADP)). When this energy is used to regulate an assembly, we speak of chemically fueled assemblies; i.e., the molecule with high potential, the fuel, is used to regulate a self-assembly process. For example, the binding of guanosine triphosphate (GTP) to tubulin induces self-assembly. The bound GTP is hydrolyzed to guanosine diphosphate (GDP) upon assembly, which induces tubulin disassembly. The result is a dynamic assembly endowed with unique characteristics, such as time-dependent behavior and the ability to self-heal. These intriguing, unique properties have inspired supramolecular chemists to create similar chemically fueled molecular assemblies from the bottom up. While examples have been designed, they remain scarce partly because chemically fueled reaction cycles are rare and often complex. Thus, we recently developed a carbodiimide-driven reaction cycle that is versatile and easy to use, quantitatively understood, and does not suffer from side reactions. In the reaction cycle, a carboxylate precursor reacts with a carbodiimide to form an activated species like an anhydride or ester. The activated state reacts with water and thereby reverts to its precursor state; i.e., the activated state is deactivated. Effectively, the precursor catalyzes carbodiimides' conversion into waste and forms a transient activated state. We designed building blocks to regulate a range of assemblies and supramolecular materials at the expense of carbodiimide fuel. The simplicity and versatility of the reaction cycles have democratized and popularized the field of chemically fueled assemblies. In this Account, we describe what we have "learned" on our way. We introduce the field exemplified by biological nonequilibrium self-assembly. We describe the design of the carbodiimide-driven reaction cycle. Using examples from our group and others, we offer design rules for the building block's structure and strategies to create the desired morphology or supramolecular materials. The discussed morphologies include fibers, colloids, crystals, and oil- and coacervate-based droplets. We then demonstrate how these assemblies form supramolecular materials with unique material properties like the ability to self-heal. Besides, we discuss the concept of reciprocal coupling in which the assembly exerts feedback on its reaction cycle and we also offer examples of such feedback mechanisms. Finally, we close the Account with a discussion and an outlook on this field. This Account aims to provide our fundamental understanding and facilitate further progress toward conceptually new supramolecular materials.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Michaela A. Würbser
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Job Boekhoven
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| |
Collapse
|
14
|
Nikfarjam S, Gibbons R, Burni F, Raghavan SR, Anisimov MA, Woehl TJ. Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules 2023; 24:1131-1140. [PMID: 36795055 DOI: 10.1021/acs.biomac.2c01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cells assemble dynamic protein-based nanostructures far from equilibrium, such as microtubules, in a process referred to as dissipative assembly. Synthetic analogues have utilized chemical fuels and reaction networks to form transient hydrogels and molecular assemblies from small molecule or synthetic polymer building blocks. Here, we demonstrate dissipative cross-linking of transient protein hydrogels using a redox cycle, which exhibit protein unfolding-dependent lifetimes and mechanical properties. Fast oxidation of cysteine groups on bovine serum albumin by hydrogen peroxide, the chemical fuel, formed transient hydrogels with disulfide bond cross-links that degraded over hours by a slow reductive back reaction. Interestingly, despite increased cross-linking, the hydrogel lifetime decreased as a function of increasing denaturant concentration. Experiments showed that the solvent-accessible cysteine concentration increased with increasing denaturant concentration due to unfolding of secondary structures. The increased cysteine concentration consumed more fuel, which led to less direction oxidation of the reducing agent and affected a shorter hydrogel lifetime. Increased hydrogel stiffness, disulfide cross-linking density, and decreased oxidation of redox-sensitive fluorescent probes at a high denaturant concentration provided evidence supporting the unveiling of additional cysteine cross-linking sites and more rapid consumption of hydrogen peroxide at higher denaturant concentrations. Taken together, the results indicate that the protein secondary structure mediated the transient hydrogel lifetime and mechanical properties by mediating the redox reactions, a feature unique to biomacromolecules that exhibit a higher order structure. While prior works have focused on the effects of the fuel concentration on dissipative assembly of non-biological molecules, this work demonstrates that the protein structure, even in nearly fully denatured proteins, can exert similar control over reaction kinetics, lifetime, and resulting mechanical properties of transient hydrogels.
Collapse
Affiliation(s)
- Shakiba Nikfarjam
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Rebecca Gibbons
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Faraz Burni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Mikhail A Anisimov
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20740, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
15
|
Rajawasam CWH, Tran C, Weeks M, McCoy KS, Ross-Shannon R, Dodo OJ, Sparks JL, Hartley CS, Konkolewicz D. Chemically Fueled Reinforcement of Polymer Hydrogels. J Am Chem Soc 2023; 145:5553-5560. [PMID: 36848549 DOI: 10.1021/jacs.3c00668] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Carbodiimide-fueled anhydride bond formation has been used to enhance the mechanical properties of permanently crosslinked polymer networks, giving materials that exhibit transitions from soft gels to covalently reinforced gels, eventually returning to the original soft gels. Temporary changes in mechanical properties result from a transient network of anhydride crosslinks, which eventually dissipate by hydrolysis. Over an order of magnitude increase in the storage modulus is possible through carbodiimide fueling. The time-dependent mechanical properties can be modulated by the concentration of carbodiimide, temperature, and primary chain architecture. Because the materials remain rheological solids, new material functions such as temporally controlled adhesion and rewritable spatial patterns of mechanical properties have been realized.
Collapse
Affiliation(s)
- Chamoni W H Rajawasam
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Corvo Tran
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Michael Weeks
- Instrumentation Laboratory, Miami University, Oxford, Ohio 45056, United States
| | - Kathleen S McCoy
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Robert Ross-Shannon
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - Obed J Dodo
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Jessica L Sparks
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, Ohio 45056, United States
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
16
|
Xu H, Bai S, Gu G, Gao Y, Sun X, Guo X, Xuan F, Wang Y. Bioinspired Self-Resettable Hydrogel Actuators Powered by a Chemical Fuel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43825-43832. [PMID: 36103624 DOI: 10.1021/acsami.2c13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The movements of soft living tissues, such as muscle, have sparked a strong interest in the design of hydrogel actuators; however, so far, typical manmade examples still lag behind their biological counterparts, which usually function under nonequilibrium conditions through the consumption of high-energy biomolecules and show highly autonomous behaviors. Here, we report on self-resettable hydrogel actuators that are powered by a chemical fuel and can spontaneously return to their original states over time once the fuels are depleted. Self-resettable actuation originates from a chemical fuel-mediated transient change in the hydrophilicity of the hydrogel networks. The actuation extent and duration can be programmed by the fuel levels, and the self-resettable actuation process is highly recyclable through refueling. Furthermore, various proof-of-concept autonomous soft robots are created, resembling the movements of soft-bodied creatures in nature. This work may serve as a starting point for the development of lifelike soft robots with autonomous behaviors.
Collapse
Affiliation(s)
- Hao Xu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Shengyu Bai
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Guanyao Gu
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Yuliang Gao
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Xun Sun
- Guizhou Aerospace Institute of Measuring and Testing Technology, Guiyang 550009, P. R. China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Fuzhen Xuan
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Yiming Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| |
Collapse
|
17
|
Zhang C, Lu H, Wang X. Transient Polymer Hydrogels Based on Dynamic Covalent Borate Ester Bonds. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunxiao Zhang
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Haoyue Lu
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| | - Xu Wang
- Shenzhen Research Institute of Shandong University Shenzhen Guangdong 518057 China
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 China
| |
Collapse
|
18
|
Borsley S, Leigh DA, Roberts BMW, Vitorica-Yrezabal IJ. Tuning the Force, Speed, and Efficiency of an Autonomous Chemically Fueled Information Ratchet. J Am Chem Soc 2022; 144:17241-17248. [PMID: 36074864 PMCID: PMC9501901 DOI: 10.1021/jacs.2c07633] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Autonomous chemically fueled molecular machines that
function through
information ratchet mechanisms underpin the nonequilibrium processes
that sustain life. These biomolecular motors have evolved to be well-suited
to the tasks they perform. Synthetic systems that function through
similar mechanisms have recently been developed, and their minimalist
structures enable the influence of structural changes on machine performance
to be assessed. Here, we probe the effect of changes in the fuel and
barrier-forming species on the nonequilibrium operation of a carbodiimide-fueled
rotaxane-based information ratchet. We examine the machine’s
ability to catalyze the fuel-to-waste reaction and harness energy
from it to drive directional displacement of the macrocycle. These
characteristics are intrinsically linked to the speed, force, power,
and efficiency of the ratchet output. We find that, just as for biomolecular
motors and macroscopic machinery, optimization of one feature (such
as speed) can compromise other features (such as the force that can
be generated by the ratchet). Balancing speed, power, efficiency,
and directionality will likely prove important when developing artificial
molecular motors for particular applications.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Benjamin M W Roberts
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | | |
Collapse
|
19
|
Englert A, Vogel JF, Bergner T, Loske J, von Delius M. A Ribonucleotide ↔ Phosphoramidate Reaction Network Optimized by Computer-Aided Design. J Am Chem Soc 2022; 144:15266-15274. [PMID: 35953065 PMCID: PMC9413217 DOI: 10.1021/jacs.2c05861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 12/02/2022]
Abstract
A growing number of out-of-equilibrium systems have been created and investigated in chemical laboratories over the past decade. One way to achieve this is to create a reaction cycle, in which the forward reaction is driven by a chemical fuel and the backward reaction follows a different pathway. Such dissipative reaction networks are still relatively rare, however, and most non-enzymatic examples are based on the carbodiimide-driven generation of carboxylic acid anhydrides. In this work, we describe a dissipative reaction network that comprises the chemically fueled formation of phosphoramidates from natural ribonucleotides (e.g., GMP or AMP) and phosphoramidate hydrolysis as a mild backward reaction. Because the individual reactions are subject to a multitude of interconnected parameters, the software-assisted tool "Design of Experiments" (DoE) was a great asset for optimizing and understanding the network. One notable insight was the stark effect of the nucleophilic catalyst 1-ethylimidazole (EtIm) on the hydrolysis rate, which is reminiscent of the action of the histidine group in phosphoramidase enzymes (e.g., HINT1). We were also able to use the reaction cycle to generate transient self-assemblies, which were characterized by dynamic light scattering (DLS), confocal microscopy (CLSM), and cryogenic transmission electron microscopy (cryo-TEM). Because these compartments are based on prebiotically plausible building blocks, our findings may have relevance for origin-of-life scenarios.
Collapse
Affiliation(s)
- Andreas Englert
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julian F. Vogel
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tim Bergner
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jessica Loske
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
20
|
Barak D, Engelberg S, Assaraf YG, Livney YD. Selective Targeting and Eradication of Various Human Non-Small Cell Lung Cancer Cell Lines Using Self-Assembled Aptamer-Decorated Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14081650. [PMID: 36015276 PMCID: PMC9414336 DOI: 10.3390/pharmaceutics14081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of cancer mortality remains lung cancer (LC), of which non-small cell lung cancer (NSCLC) is the predominant type. Chemotherapy achieves only low response rates while inflicting serious untoward toxicity. Herein, we studied the binding and internalization of S15-aptamer (S15-APT)-decorated polyethylene glycol-polycaprolactone (PEG-PCL) nanoparticles (NPs) by various human NSCLC cell lines. All the NSCLC cell lines were targeted by S15-APT-decorated NPs. Confocal microscopy revealed variable levels of NP binding and uptake amongst these NSCLC cell lines, decreasing in the following order: Adenocarcinoma (AC) A549 cells > H2228 (AC) > H1299 (large cell carcinoma) > H522 (AC) > H1975 (AC). Flow cytometry analysis showed a consistent variation between these NSCLC cell lines in the internalization of S15-APT-decorated quantum dots. We obtained a temperature-dependent NP uptake, characteristic of active internalization. Furthermore, cytotoxicity assays with APT-NPs entrapping paclitaxel, revealed that A549 cells had the lowest IC50 value of 0.03 µM PTX (determined previously), whereas H2228, H1299, H522 and H1975 exhibited higher IC50 values of 0.38 µM, 0.92 µM, 2.31 µM and 2.59 µM, respectively (determined herein). Cytotoxicity was correlated with the binding and internalization of APT-NPs in the various NSCLC cells, suggesting variable expression of the putative S15 target receptor. These findings support the development of APT-targeted NPs in precision nanomedicine for individual NSCLC patient treatment.
Collapse
Affiliation(s)
- Daniel Barak
- Lab of Biopolymers for Food & Health, Department of Biotechnology & Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Engelberg
- Lab of Biopolymers for Food & Health, Department of Biotechnology & Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Lab, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.G.A.); (Y.D.L.)
| | - Yoav D. Livney
- Lab of Biopolymers for Food & Health, Department of Biotechnology & Food Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Y.G.A.); (Y.D.L.)
| |
Collapse
|
21
|
Olivieri E, Gasch B, Quintard G, Naubron JV, Quintard A. Dissipative Acid-Fueled Reprogrammable Supramolecular Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24720-24728. [PMID: 35580903 DOI: 10.1021/acsami.2c01608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart materials reversibly changing properties in response to a stimuli are promising for a broad array of applications. In this article, we report the use of trichloroacetic acid (TCA) as fuel to create new types of time-controlled materials switching reversibly from a gel to a solution (gel-sol-gel cycle). Applying various neutral amines as organogelators, TCA addition induces amine protonation, switching the system to a solution, while TCA decarboxylation over time enables a return to the initial gel state. Consequently, the newly obtained materials possess interesting time-dependent properties applied in the generation of remoldable objects, as an erasing ink, as chiroptical switches, or for the generation of new types of electrical systems.
Collapse
Affiliation(s)
- Enzo Olivieri
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Baptiste Gasch
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Guilhem Quintard
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223, F 69621 Villeurbanne, France
| | - Jean-Valère Naubron
- Aix Marseille Univ, CNRS, Centrale Marseille, Spectropole, FR1739 Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
22
|
Panja S, Adams DJ. Chemical crosslinking in 'reactive' multicomponent gels. Chem Commun (Camb) 2022; 58:5622-5625. [PMID: 35438088 DOI: 10.1039/d2cc00919f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We show that the hydrolysis of EDC can be used to construct a reactive system to trigger permanent covalent crosslinking between the components in multicomponent gels comprising gelators with a carboxylic acid and amine group yielding an amide functionalized gel with enhanced mechanical properties.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
23
|
Schwarz PS, Tena-Solsona M, Dai K, Boekhoven J. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chem Commun (Camb) 2022; 58:1284-1297. [PMID: 35014639 DOI: 10.1039/d1cc06428b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using molecular self-assembly, supramolecular chemists can create Gigadalton-structures with angstrom precision held together by non-covalent interactions. However, despite relying on the same molecular toolbox for self-assembly, these synthetic structures lack the complexity and sophistication of biological assemblies. Those assemblies are non-equilibrium structures that rely on the constant consumption of energy transduced from the hydrolysis of chemical fuels like ATP and GTP, which endows them with dynamic properties, e.g., temporal and spatial control and self-healing ability. Thus, to synthesize life-like materials, we have to find a reaction cycle that converts chemical energy to regulate self-assembly. We and others recently found that this can be done by a reaction cycle that hydrates carbodiimides. This feature article aims to provide an overview of how the energy transduced from carbodiimide hydration can alter the function of molecules and regulate molecular assemblies. The goal is to offer the reader design considerations for carbodiimide-driven reaction cycles to create a desired morphology or function of the assembly and ultimately to push chemically fueled self-assembly further towards the bottom-up synthesis of life.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Marta Tena-Solsona
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Kun Dai
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748, Garching, Germany
| |
Collapse
|
24
|
Burridge KM, Rahman MS, De Alwis Watuthanthrige N, Gordon E, Shah MZ, Chandrarathne BM, Lorigan GA, Page RC, Konkolewicz D. Network polymers incorporating lipid-bilayer disrupting polymers: towards antiviral functionality. Polym Chem 2022. [DOI: 10.1039/d2py00602b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer based solid-state materials capable of disrupting lipid-bilayers are developed. The materials are mechanically robust and capable of outperforming a 10% small-molecule surfactant and modify filter materials.
Collapse
Affiliation(s)
- Kevin M. Burridge
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Monica S. Rahman
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | | | - Emma Gordon
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Muhammad Zeeshan Shah
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | | | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH 45056, USA
| |
Collapse
|
25
|
Dodo OJ, Petit L, Rajawasam CWH, Hartley CS, Konkolewicz D. Tailoring Lifetimes and Properties of Carbodiimide-Fueled Covalently Cross-linked Polymer Networks. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Obed J. Dodo
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Leilah Petit
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Chamoni W. H. Rajawasam
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - C. Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St., Oxford, Ohio 45056, United States
| |
Collapse
|
26
|
Jayalath IM, Gerken MM, Mantel G, Hartley CS. Substituent Effects on Transient, Carbodiimide-Induced Geometry Changes in Diphenic Acids. J Org Chem 2021; 86:12024-12033. [PMID: 34409831 DOI: 10.1021/acs.joc.1c01385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nucleotide-induced conformational changes in motor proteins are key to many important cell functions. Inspired by this biological behavior, we report a simple chemically fueled system that exhibits carbodiimide-induced geometry changes. Bridging via transient anhydride formation leads to a significant reduction of the twist about the biaryl bond of substituted diphenic acids, giving a simple molecular clamp. The kinetics are well-described by a simple mechanism, allowing structure-property effects to be determined. The kinetic parameters can be used to derive important characteristics of the system such as the efficiencies (anhydride yields), maximum anhydride concentrations, and overall lifetimes. Transient diphenic anhydrides tolerate steric hindrance ortho to the biaryl bond but are significantly affected by electronic effects, with electron-deficient substituents giving lower yields, peak conversions, and lifetimes. The results provide useful guidelines for the design of functional systems incorporating diphenic acid units.
Collapse
Affiliation(s)
- Isuru M Jayalath
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Madelyn M Gerken
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Georgia Mantel
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
27
|
Olivieri E, Quintard G, Naubron JV, Quintard A. Chemically Fueled Three-State Chiroptical Switching Supramolecular Gel with Temporal Control. J Am Chem Soc 2021; 143:12650-12657. [PMID: 34351739 DOI: 10.1021/jacs.1c05183] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent discovery of temporally controlled gels opens broad perspectives to the field of smart functional materials. However, to obtain fully operative systems, the design of simple and robust gels displaying complex functions is desirable. Herein, we fuel dissipative gelating materials through iterative additions of trichloroacetic acid (TCA). This simple fuel enables to switch over time an acid/base-dependent commercially available amino acid gelator/DBU combination between three distinct states (anionic, cationic, and neutral), while liberating volatile CO2 and CHCl3 upon fuel consumption. Of interest, the anionic resting state of the system is obtained through trapping of 1 equiv of CO2 through the formation of a carbamate. The system is tunable, robust, and resilient over time with over 25 consecutive sol-gel-sol cycles possible without significant loss of properties. Most importantly, because of the chiral nature of the amino acid gelator, the system features chiroptical switching properties moving reversibly between three distinct states as observed by ECD. The described system considerably enhances the potential of smart molecular devices for logic gates or data storage by adding a time dimension based on three states to the gelating materials. It is particularly simple in terms of chemical components involved, but it enables sophisticated functions.
Collapse
Affiliation(s)
- Enzo Olivieri
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Guilhem Quintard
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR, CNRS, 5223, F 69621, Villeurbanne, France
| | - Jean-Valère Naubron
- Aix Marseille Univ, CNRS, Centrale Marseille, Spectropole-FR1739, Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
28
|
Lang X, Thumu U, Yuan L, Zheng C, Zhang H, He L, Zhao H, Zhao C. Chemical fuel-driven transient polymeric micelle nanoreactors toward reversible trapping and reaction acceleration. Chem Commun (Camb) 2021; 57:5786-5789. [PMID: 33998623 DOI: 10.1039/d1cc00726b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In most synthetic nanoreactor systems, catalysed products do not promptly diffuse away from the nanoreactor, which leads to lower than expected catalytic efficiencies. To address the diffusion problem, transient polymer micelle nanoreactor systems were achieved using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as the fuel and activated esters as the energy dissipating units. These demonstrated pathway-dependent catalytic properties for transient micelles: product inhibition was observed or efficiently eliminated depending on EDC reloading in the metastable stage or after full dissipation for transient micelles.
Collapse
Affiliation(s)
- Xianhua Lang
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Panpan Li
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
- Key Laboratory of Colloid and Interface Chemistry Shandong University Ministry of Education Jinan Shandong 250100 P. R. China
| |
Collapse
|
30
|
Schwarz PS, Laha S, Janssen J, Huss T, Boekhoven J, Weber CA. Parasitic behavior in competing chemically fueled reaction cycles. Chem Sci 2021; 12:7554-7560. [PMID: 34163846 PMCID: PMC8171353 DOI: 10.1039/d1sc01106e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Non-equilibrium, fuel-driven reaction cycles serve as model systems of the intricate reaction networks of life. Rich and dynamic behavior is observed when reaction cycles regulate assembly processes, such as phase separation. However, it remains unclear how the interplay between multiple reaction cycles affects the success of emergent assemblies. To tackle this question, we created a library of molecules that compete for a common fuel that transiently activates products. Often, the competition for fuel implies that a competitor decreases the lifetime of these products. However, in cases where the transient competitor product can phase-separate, such a competitor can increase the survival time of one product. Moreover, in the presence of oscillatory fueling, the same mechanism reduces variations in the product concentration while the concentration variations of the competitor product are enhanced. Like a parasite, the product benefits from the protection of the host against deactivation and increases its robustness against fuel variations at the expense of the robustness of the host. Such a parasitic behavior in multiple fuel-driven reaction cycles represents a lifelike trait, paving the way for the bottom-up design of synthetic life.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Sudarshana Laha
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | - Jacqueline Janssen
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | - Tabea Huss
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
- Institute for Advanced Study, Technical University of Munich Lichtenbergstraße 2a 85748 Garching Germany
| | - Christoph A Weber
- Biological Physics, Max Planck Institute for the Physics of Complex Systems Nöthnitzer Straße 38 01187 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| |
Collapse
|
31
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
32
|
Heckel J, Loescher S, Mathers RT, Walther A. Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angew Chem Int Ed Engl 2021; 60:7117-7125. [PMID: 33340387 PMCID: PMC8048534 DOI: 10.1002/anie.202014417] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Indexed: 11/17/2022]
Abstract
Microgels are soft colloids that show responsive behavior and are easy to functionalize for applications. They are considered key components for future smart colloidal material systems. However, so far microgel systems have almost exclusively been studied in classical responsive switching settings using external triggers, while internally organized, autonomous control mechanisms as found in supramolecular chemistry and DNA nanotechnology relying on fuel-driven out-of-equilibrium concepts have not been implemented into microgel systems. Here, we introduce chemically fueled transient volume phase transitions (VPTs) for poly(methacrylic acid) (PMAA) microgels, where the collapsed hydrophobic state can be programmed using the fuel concentration in a cyclic reaction network. We discuss details of the system behavior as a function of pH and fuel amount, unravel kinetically trapped regions and showcase transient encapsulation and time-programmed release as a first application.
Collapse
Affiliation(s)
- Jonas Heckel
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Sebastian Loescher
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Robert T. Mathers
- Department of ChemistryPennsylvania State UniversityNew KensingtonPA15068USA
| | - Andreas Walther
- ABMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
33
|
Borsley S, Leigh DA, Roberts BMW. A Doubly Kinetically-Gated Information Ratchet Autonomously Driven by Carbodiimide Hydration. J Am Chem Soc 2021; 143:4414-4420. [DOI: 10.1021/jacs.1c01172] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Benjamin M. W. Roberts
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
34
|
Pragya A, Mutalik S, Younas MW, Pang SK, So PK, Wang F, Zheng Z, Noor N. Dynamic cross-linking of an alginate-acrylamide tough hydrogel system: time-resolved in situ mapping of gel self-assembly. RSC Adv 2021; 11:10710-10726. [PMID: 35423570 PMCID: PMC8695775 DOI: 10.1039/d0ra09210j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are a popular class of biomaterial that are used in a number of commercial applications (e.g.; contact lenses, drug delivery, and prophylactics). Alginate-based tough hydrogel systems, interpenetrated with acrylamide, reportedly form both ionic and covalent cross-links, giving rise to their remarkable mechanical properties. In this work, we explore the nature, onset and extent of such hybrid bonding interactions between the complementary networks in a model double-network alginate-acrylamide system, using a host of characterisation techniques (e.g.; FTIR, Raman, UV-vis, and fluorescence spectroscopies), in a time-resolved manner. Further, due to the similarity of bonding effects across many such complementary, interpenetrating hydrogel networks, the broad bonding interactions and mechanisms observed during gelation in this model system, are thought to be commonly replicated across alginate-based and broader double-network hydrogels, where both physical and chemical bonding effects are present. Analytical techniques followed real-time bond formation, environmental changes and re-organisational processes that occurred. Experiments broadly identified two phases of reaction; phase I where covalent interaction and physical entanglements predominate, and; phase II where ionic cross-linking effects are dominant. Contrary to past reports, ionic cross-linking occurred more favourably via mannuronate blocks of the alginate chain, initially. Evolution of such bonding interactions was also correlated with the developing tensile and compressive properties. These structure-property findings provide mechanistic insights and future synthetic intervention routes to manipulate the chemo-physico-mechanical properties of dynamically-forming tough hydrogel structures according to need (i.e.; durability, biocompatibility, adhesion, etc.), allowing expansion to a broader range of more physically and/or environmentally demanding biomaterials applications.
Collapse
Affiliation(s)
- Akanksha Pragya
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Suhas Mutalik
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Muhammad Waseem Younas
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Siu-Kwong Pang
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Pui-Kin So
- The Hong Kong Polytechnic University, University Research Facility in Life Sciences Hung Hom Kowloon Hong Kong SAR China
| | - Faming Wang
- The Hong Kong Polytechnic University, University Research Facility in Life Sciences Hung Hom Kowloon Hong Kong SAR China
- Central South University, School of Architecture and Art Changsha China
| | - Zijian Zheng
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| | - Nuruzzaman Noor
- The Hong Kong Polytechnic University, Institute of Textiles and Clothing, Materials Synthesis and Processing Lab Hung Hom Kowloon Hong Kong SAR China
| |
Collapse
|
35
|
Heckel J, Loescher S, Mathers RT, Walther A. Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonas Heckel
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Sebastian Loescher
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Robert T. Mathers
- Department of Chemistry Pennsylvania State University New Kensington PA 15068 USA
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
36
|
Kariyawasam LS, Hossain MM, Hartley CS. The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
37
|
Kariyawasam LS, Hossain MM, Hartley CS. The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angew Chem Int Ed Engl 2021; 60:12648-12658. [PMID: 33264456 DOI: 10.1002/anie.202014678] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Biochemical systems accomplish many critical functions with by operating out-of-equilibrium using the energy of chemical fuels. The formation of a transient covalent bond is a simple but very effective tool in designing analogous reaction networks. This Minireview focuses on the fuel chemistries that have been used to generate transient bonds in recent demonstrations of abiotic nonequilibrium systems (i.e., systems that do not make use of biological components). Fuel reactions are divided into two fundamental classifications depending on whether the fuel contributes structural elements to the activated state, a distinction that dictates how they can be used. Reported systems are further categorized by overall fuel reaction (e.g., hydrolysis of alkylating agents, carbodiimide hydration) and illustrate how similar chemistry can be used to effect a wide range of nonequilibrium behavior, ranging from self-assembly to the operation of molecular machines.
Collapse
Affiliation(s)
- Lasith S Kariyawasam
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | | | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
38
|
|
39
|
Mondal S, Haldar D. A transient non-covalent hydrogel by a supramolecular gelator with dynamic covalent bonds. NEW J CHEM 2021. [DOI: 10.1039/d0nj05992g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In aqueous solution, equilibrium self-assembly and gelation occur at higher concentration but on addition of EDC non-equilibrium self-assembly and transient hydrogels are formed at low concentration, which dissolve upon anhydride hydrolysis.
Collapse
Affiliation(s)
- Sahabaj Mondal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| |
Collapse
|
40
|
Mondal S, Podder D, Nandi SK, Roy Chowdhury S, Haldar D. Acid-responsive fibrillation and urease-assisted defibrillation of phenylalanine: a transient supramolecular hydrogel. SOFT MATTER 2020; 16:10115-10121. [PMID: 32761013 DOI: 10.1039/d0sm00774a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of proteins and peptides into fibrils is associated with many neurodegenerative diseases in humans, including Alzheimer's disease, Parkinson's disease and non-neurological type-II diabetes. A better understanding of the fibril formation process and defibrillation using biochemical tools is highly important for therapeutics. Under physiological conditions, acidic pH promotes the formation of toxic fibrils. Here, a mimic of living systems has been achieved by the acid-responsive assembly of benzyloxycarbonyl-l-phenylalanine to fibrils, as well as the urease-assisted disassembly of the said fibrils. The simultaneous incorporation of the two triggers helped to prepare a transient supramolecular hydrogel from benzyloxycarbonyl-l-phenylalanine-entangled fibrils with a high degree of control over the self-assembly lifetime and mechanical properties. Further, under acidic pH, the compound formed the O-HO[double bond, length as m-dash]C hydrogen-bonded dimer. The dimers were further self-assembled by intermolecular N-HO[double bond, length as m-dash]C hydrogen bonds and π-π stacking interactions to form fibrils with high mechanical properties, from this simple molecule. However, the self-assembly process is dynamic. Hence, the in situ-generated NH3 uniformly increased the pH and led to the homogeneous disassembly of the fibrils. Thus, this report provides a valuable approach to defibrillation.
Collapse
Affiliation(s)
- Sahabaj Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| | | | | | | | | |
Collapse
|
41
|
Leng Z, Peng F, Hao X. Chemical-Fuel-Driven Assembly in Macromolecular Science: Recent Advances and Challenges. Chempluschem 2020; 85:1190-1199. [PMID: 32584522 DOI: 10.1002/cplu.202000192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Indexed: 12/17/2022]
Abstract
In the past decade, chemical-fuel-driven processes have been integrated with synthetic self-assembled systems, in which both the formation and properties can be carefully controlled. This strategy can drive systems far away from equilibrium, tailor the lifetime window of transient self-assembled systems, thus holding promise for future smart, adaptive, self-regulated, and life-like systems. By judging whether the building blocks or transient self-assembled systems participate in the fuel-to-waste conversion, the reported systems can be divided into two classes: dissipative self-assembly and self-assembly under dissipative conditions. Among these systems, the utilization of macromolecular building blocks to design non-equilibrium self-assemblied systems is becoming common. Macromolecular systems capable of dissipating energy with a programmed time domain have found widespread application, and have therefore been an active field of scientific inquiry. This Minireview aims to highlight the recent progress and opportunities of chemical-fuel-driven assembly in macromolecules. We envision that chemical-fuel-driven approach will play an increasingly important role in polymer science in the near future.
Collapse
Affiliation(s)
- ZeJian Leng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
42
|
Jayalath IM, Wang H, Mantel G, Kariyawasam LS, Hartley CS. Chemically Fueled Transient Geometry Changes in Diphenic Acids. Org Lett 2020; 22:7567-7571. [PMID: 32961060 DOI: 10.1021/acs.orglett.0c02757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transient changes in molecular geometry are key to the function of many important biochemical systems. Here, we show that diphenic acids undergo out-of-equilibrium changes in dihedral angle when reacted with a carbodiimide chemical fuel. Treatment of appropriately functionalized diphenic acids with EDC (N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride) yields the corresponding diphenic anhydrides, reducing the torsional angle about the biaryl bond by ∼45°, regardless of substitution. In the absence of steric resistance, the reaction is well-described by a simple mechanism; the resulting kinetic parameters can be used to derive important properties of the system, such as yields and lifetimes. The reaction tolerates steric hindrance ortho to the biaryl bond, although the competing formation of (transient) byproducts complicates quantitative analysis.
Collapse
Affiliation(s)
- Isuru M Jayalath
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Hehe Wang
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Georgia Mantel
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Lasith S Kariyawasam
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
43
|
Affiliation(s)
- Fabian Schnitter
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
- Institute for Advanced Study Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
44
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020; 59:13807-13813. [PMID: 32384209 DOI: 10.1002/anie.202001523] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Dissipative assembly has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single short-lived covalent bond. Herein, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycles are assembled efficiently as a consequence of both fuel-dependent and fuel-independent mechanisms; they undergo slower decomposition, building up as the fuel recycles the components, and are a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.
Collapse
Affiliation(s)
| | - Joshua L Atkinson
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
45
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Joshua L. Atkinson
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
46
|
Bal S, Ghosh C, Ghosh T, Vijayaraghavan RK, Das D. Non-Equilibrium Polymerization of Cross-β Amyloid Peptides for Temporal Control of Electronic Properties. Angew Chem Int Ed Engl 2020; 59:13506-13510. [PMID: 32348633 DOI: 10.1002/anie.202003721] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Indexed: 11/09/2022]
Abstract
Hydrophobic collapse plays crucial roles in protein functions, from accessing the complex three-dimensional structures of native enzymes to the dynamic polymerization of non-equilibrium microtubules. However, hydrophobic collapse can also lead to the thermodynamically downhill aggregation of aberrant proteins, which has interestingly led to the development of a unique class of soft nanomaterials. There remain critical gaps in the understanding of the mechanisms of how hydrophobic collapse can regulate such aggregation. Demonstrated herein is a methodology for non-equilibrium amyloid polymerization through mutations of the core sequence of Aβ peptides by a thermodynamically activated moiety. An out of equilibrium state is realized because of the negative feedback from the transiently formed cross-β amyloid networks. Such non-equilibrium amyloid nanostructures were utilized to access temporal control over its electronic properties.
Collapse
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Tapan Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
47
|
Bal S, Ghosh C, Ghosh T, Vijayaraghavan RK, Das D. Non‐Equilibrium Polymerization of Cross‐β Amyloid Peptides for Temporal Control of Electronic Properties. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Tapan Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Ratheesh K. Vijayaraghavan
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| |
Collapse
|
48
|
Singh N, Formon GJM, De Piccoli S, Hermans TM. Devising Synthetic Reaction Cycles for Dissipative Nonequilibrium Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906834. [PMID: 32064688 DOI: 10.1002/adma.201906834] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Indexed: 05/04/2023]
Abstract
Fuel-driven reaction cycles are found in biological systems to control the assembly and disassembly of supramolecular materials such as the cytoskeleton. Fuel molecules can bind noncovalently to a self-assembling building block or they can react with it, resulting in covalent modifications. Overall the fuel can either switch the self-assembly process on or off. Here, a closer look is taken at artificial systems that mimic biological systems by making and breaking covalent bonds in a self-assembling motif. The different chemistries used so far are highlighted in chronological order and the pros and cons of each system are discussed. Moreover, the desired traits of future reaction cycles, their fuels, and waste management are outlined, and two chemistries that have not been explored up to now in chemically fueled dissipative self-assembly are suggested.
Collapse
Affiliation(s)
- Nishant Singh
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Georges J M Formon
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Serena De Piccoli
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Thomas M Hermans
- Université de Strasbourg, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
49
|
|
50
|
Affiliation(s)
- Guangtong Wang
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing Harbin Institute of Technology Harbin 150080 P. R. China
| | - Shaoqin Liu
- MOE Key Laboratory of Micro-systems and Micro-structures Manufacturing Harbin Institute of Technology Harbin 150080 P. R. China
| |
Collapse
|