1
|
Spicer RL, Evans NH. Pretzelanes, [1]rotaxanes and molecular figures-of-eight - crossing the bridge from fundamentals to functional applications. Org Biomol Chem 2025; 23:2756-2774. [PMID: 39981642 DOI: 10.1039/d5ob00031a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
There are myriad [2]catenanes and [2]rotaxanes that consist of two interlocked molecular components. On occasion, supramolecular chemists prepare interlocked molecules where there are covalent linkages between the interlocked molecular components. In this review, progress on pretzelanes ([1]catenanes), [1]rotaxanes and molecular figures-of-eight is surveyed. Particular attention is paid to the application of such molecules, especially where the interlocked structure and/or the covalent linkage(s) play a key functional role.
Collapse
Affiliation(s)
- Rebecca L Spicer
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
2
|
Barrett SE, Yin S, Jordan P, Brunson JK, Gordon-Nunez J, Costa Machado da Cruz G, Rosario C, Okada BK, Anderson K, Pires TA, Wang R, Shukla D, Burk MJ, Mitchell DA. Substrate interactions guide cyclase engineering and lasso peptide diversification. Nat Chem Biol 2025; 21:412-419. [PMID: 39261643 DOI: 10.1038/s41589-024-01727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Lasso peptides are a diverse class of naturally occurring, highly stable molecules kinetically trapped in a distinctive [1]rotaxane conformation. How the ATP-dependent lasso cyclase constrains a relatively unstructured substrate peptide into a low entropy product has remained a mystery owing to poor enzyme stability and activity in vitro. In this study, we combined substrate tolerance data with structural predictions, bioinformatic analysis, molecular dynamics simulations and mutational scanning to construct a model for the three-dimensional orientation of the substrate peptide in the lasso cyclase active site. Predicted peptide cyclase molecular contacts were validated by rationally engineering multiple, phylogenetically diverse lasso cyclases to accept substrates rejected by the wild-type enzymes. Finally, we demonstrate the utility of lasso cyclase engineering by robustly producing previously inaccessible variants that tightly bind to integrin αvβ8, which is a primary activator of transforming growth factor β and, thus, an important anti-cancer target.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Song Yin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | | - Thomas A Pires
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ruoyang Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Douglas A Mitchell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Al Musaimi O. Lasso peptides realm: Insights and applications. Peptides 2024; 182:171317. [PMID: 39489300 DOI: 10.1016/j.peptides.2024.171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lasso peptides exhibit a range of bioactivities, including antiviral effects, inhibition of the glucagon receptor, blockade of the endothelin type B receptor, inhibition of myosin light chain kinase, and modulation of the atrial natriuretic factor, as well as notable antimicrobial properties. Intriguingly, lasso peptides exhibit remarkable proteolytic and thermal stability, addressing one of the key challenges that traditional peptides often face. The challenge in producing those valuable peptides remains the main hurdle in the way of producing larger quantities or even modifying them with more potent analogues. Genome mining and heterologous expression approaches have greatly facilitated the production of lasso peptides, moving beyond mere isolation techniques. This advancement not only allows for larger quantities but also enables the creation of additional analogues with improved stability and potency. This review aims to explore the unique bioactivities and stability of lasso peptides, along with recent advancements in genome mining and heterologous expression that address production challenges and open pathways for engineering potent analogues.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne UK NE1 7RU, UK; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Barrett SE, Mitchell DA. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet 2024; 40:950-968. [PMID: 39218755 PMCID: PMC11537843 DOI: 10.1016/j.tig.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Schiefelbein K, Lang J, Schuster M, Grigglestone CE, Striga R, Bigler L, Schuman MC, Zerbe O, Li Y, Hartrampf N. Merging Flow Synthesis and Enzymatic Maturation to Expand the Chemical Space of Lasso Peptides. J Am Chem Soc 2024; 146:17261-17269. [PMID: 38759637 PMCID: PMC11212047 DOI: 10.1021/jacs.4c03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Many peptidic natural products, such as lasso peptides, cyclic peptides, and cyclotides, are conformationally constrained and show biological stability, making them attractive scaffolds for drug development. Although many peptides can be synthesized and modified through chemical methods, knot-like lasso peptides such as microcin J25 (MccJ25) and their analogues remain elusive. As the chemical space of MccJ25 analogues accessible through purely biological methods is also limited, we proposed a hybrid approach: flow-based chemical synthesis of non-natural precursor peptides, followed by in vitro transformation with recombinant maturation enzymes, to yield a more diverse array of lasso peptides. Herein, we established the rapid, flow-based synthesis of chemically modified MccJ25 precursor peptides (57 amino acids). Heterologous expression of enzymes McjB and McjC was extensively optimized to improve yields and facilitate the synthesis of multiple analogues of MccJ25, including the incorporation of non-canonical tyrosine and histidine derivatives into the lasso scaffold. Finally, using our chemoenzymatic strategy, we produced a biologically active analogue containing three d-amino acids in the loop region and incorporated backbone N-methylations. Our method provides rapid access to chemically modified lasso peptides that could be used to investigate structure-activity relationships, epitope grafting, and the improvement of therapeutic properties.
Collapse
Affiliation(s)
- Kevin Schiefelbein
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jakob Lang
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Schuster
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Claire E. Grigglestone
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Robin Striga
- Laboratory
Molecules of Communication and Adaptation of Microorganisms (MCAM).
UMR7245, CNRS-Muséum National d’Histoire
Naturelle (MNHN), Alliance Sorbonne Université, 57 rue Cuvier, 75005 Paris, France
| | - Laurent Bigler
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meredith C. Schuman
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oliver Zerbe
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yanyan Li
- Laboratory
Molecules of Communication and Adaptation of Microorganisms (MCAM).
UMR7245, CNRS-Muséum National d’Histoire
Naturelle (MNHN), Alliance Sorbonne Université, 57 rue Cuvier, 75005 Paris, France
| | - Nina Hartrampf
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
Digal L, Samson SC, Stevens MA, Ghorai A, Kim H, Mifflin MC, Carney KR, Williamson DL, Um S, Nagy G, Oh DC, Mendoza MC, Roberts AG. Nonthreaded Isomers of Sungsanpin and Ulleungdin Lasso Peptides Inhibit H1299 Cancer Cell Migration. ACS Chem Biol 2024; 19:81-88. [PMID: 38109560 PMCID: PMC11832225 DOI: 10.1021/acschembio.3c00525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Lasso peptides are a structurally distinct class of biologically active natural products defined by their short sequences with impressively interlocked tertiary structures. Their characteristic peptide [1]rotaxane motif confers marked proteolytic and thermal resiliency, and reports on their diverse biological functions have been credited to their exceptional sequence variability. Because of these unique properties, taken together with improved technologies for their biosynthetic production, lasso peptides are emerging as a designable scaffold for peptide-based therapeutic discovery and development. Although the defined structure of lasso peptides is recognized for its remarkable properties, the role of the motif in imparting bioactivity is less understood. For example, sungsanpin and ulleungdin are natural lasso peptides that similarly exhibit encouraging cell migration inhibitory activities in A549 lung carcinoma epithelial cells, despite sharing only one-third of the sequence homology. We hypothesized that the shape of the lasso motif is beneficial for the preorganization of the conserved residues, which might be partially retained in variants lacking the threaded structure. Herein, we describe solid-phase peptide synthesis strategies to prepare acyclic, head-to-side chain (branched), and head-to-tail (macrocyclic) cyclic variants based on the sungsanpin (Sun) and ulleungdin (Uln) sequences. Proliferation assays and time-lapse cell motility imaging studies were used to evaluate the cell inhibitory properties of natural Sun compared with the synthetic Sun and Uln isomers. These studies demonstrate that the lasso motif is not a required feature to slow cancer cell migration and more generally show that these nonthreaded isomers can retain similar activity to the natural lasso peptide despite the differences in their overall structures.
Collapse
Affiliation(s)
- Lori Digal
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shiela C Samson
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| | - Mark A Stevens
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Abhijit Ghorai
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Hyungyu Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Marcus C Mifflin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Keith R Carney
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| | - David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Soohyun Um
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Fernandez HN, Kretsch AM, Kunakom S, Kadjo AE, Mitchell DA, Eustáquio AS. High-Yield Lasso Peptide Production in a Burkholderia Bacterial Host by Plasmid Copy Number Engineering. ACS Synth Biol 2024; 13:337-350. [PMID: 38194362 PMCID: PMC10947786 DOI: 10.1021/acssynbio.3c00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The knotted configuration of lasso peptides confers thermal stability and proteolytic resistance, addressing two shortcomings of peptide-based drugs. However, low isolation yields hinder the discovery and development of lasso peptides. While testing Burkholderia sp. FERM BP-3421 as a bacterial host to produce the lasso peptide capistruin, an overproducer clone was previously identified. In this study, we show that an increase in the plasmid copy number partially contributed to the overproducer phenotype. Further, we modulated the plasmid copy number to recapitulate titers to an average of 160% relative to the overproducer, which is 1000-fold higher than previously reported with E. coli, reaching up to 240 mg/L. To probe the applicability of the developed tools for lasso peptide discovery, we targeted a new lasso peptide biosynthetic gene cluster from endosymbiont Mycetohabitans sp. B13, leading to the isolation of mycetolassin-15 and mycetolassin-18 in combined titers of 11 mg/L. These results validate Burkholderia sp. FERM BP-3421 as a production platform for lasso peptide discovery.
Collapse
Affiliation(s)
- Hannah N. Fernandez
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ashley M. Kretsch
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Adjo E. Kadjo
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Douglas A. Mitchell
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
9
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
10
|
Rodríguez V. Insights into post-translational modification enzymes from RiPPs: A toolkit for applications in peptide synthesis. Biotechnol Adv 2022; 56:107908. [PMID: 35032597 DOI: 10.1016/j.biotechadv.2022.107908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022]
Abstract
The increasing length and complexity of peptide drug candidates foster the development of novel strategies for their manufacture, which should include sustainable and efficient technologies. In this context, including enzymatic catalysis in the production of peptide molecules has gained interest. Here, several enzymes from ribosomally synthesized and post-translationally modified peptides biosynthesis pathways are reviewed, with attention to their capacity to introduce stability-promoting structural features on peptides, providing an initial framework towards their use in therapeutic peptide production processes.
Collapse
Affiliation(s)
- Vida Rodríguez
- Faculty of Engineering, Science and Technology, Bernardo O'Higgins University, Viel 1497, Santiago, Chile.
| |
Collapse
|
11
|
Pilon S, Jørgensen SI, van Maarseveen JH. Covalent [2]Catenane and [2]Rotaxane Synthesis via a δ-Amino Acid Template. ACS ORGANIC & INORGANIC AU 2021; 1:37-42. [PMID: 34870280 PMCID: PMC8640993 DOI: 10.1021/acsorginorgau.1c00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/29/2022]
Abstract
![]()
Despite the advances
in the synthesis of mechanically interlocked
molecules, a generally applicable approach to interlocked natural
products, such as lasso peptides, is yet to be formulated. While amino
acid sequences have been introduced into several rotaxanes, the key
structural components have always been dictated by the method used
for supramolecular preorganization. In this work, we report the use
of an ester-functionalized, aromatic δ-amino acid as the central
covalent templating unit in the synthesis of both a [2]catenane and
a [2]rotaxane from the same multimacrocyclic intermediate. This represents
a key step toward future synthetic peptide-based interlocked products.
Collapse
Affiliation(s)
- Simone Pilon
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Steen Ingemann Jørgensen
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jan H. van Maarseveen
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
Wang M, Fage CD, He Y, Mi J, Yang Y, Li F, An X, Fan H, Song L, Zhu S, Tong Y. Recent Advances and Perspectives on Expanding the Chemical Diversity of Lasso Peptides. Front Bioeng Biotechnol 2021; 9:741364. [PMID: 34631682 PMCID: PMC8498205 DOI: 10.3389/fbioe.2021.741364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products that exhibit a range of structures and bioactivities. Initially assembled from the twenty proteinogenic amino acids in a ribosome-dependent manner, RiPPs assume their peculiar bioactive structures through various post-translational modifications. The essential modifications representative of each subfamily of RiPP are performed on a precursor peptide by the so-called processing enzymes; however, various tailoring enzymes can also embellish the precursor peptide or processed peptide with additional functional groups. Lasso peptides are an interesting subfamily of RiPPs characterized by their unique lariat knot-like structure, wherein the C-terminal tail is inserted through a macrolactam ring fused by an isopeptide bond between the N-terminal amino group and an acidic side chain. Until recently, relatively few lasso peptides were found to be tailored with extra functional groups. Nevertheless, the development of new routes to diversify lasso peptides and thus introduce novel or enhanced biological, medicinally relevant, or catalytic properties is appealing. In this review, we highlight several strategies through which lasso peptides have been successfully modified and provide a brief overview of the latest findings on the tailoring of these peptides. We also propose future directions for lasso peptide tailoring as well as potential applications for these peptides in hybrid catalyst design.
Collapse
Affiliation(s)
- Mengjiao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Christopher D Fage
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jinhui Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yang Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shaozhou Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
13
|
van Maarseveen JH. Tying peptide ropes. Nat Chem 2021; 13:822-823. [PMID: 34426683 DOI: 10.1038/s41557-021-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan H van Maarseveen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Rowe SM, Spring DR. The role of chemical synthesis in developing RiPP antibiotics. Chem Soc Rev 2021; 50:4245-4258. [DOI: 10.1039/d0cs01386b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This tutorial review discusses the potential of ribosomally synthesised and post-translationally modified peptides (RiPPs) as antimicrobials and looks at the chemical synthesis of three classes of RiPP: lasso peptides, cyclotides, and lanthipeptides.
Collapse
Affiliation(s)
- Sam M. Rowe
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | | |
Collapse
|
15
|
Feng Z, Ogasawara Y, Dairi T. Identification of the peptide epimerase MslH responsible for d-amino acid introduction at the C-terminus of ribosomal peptides. Chem Sci 2020; 12:2567-2574. [PMID: 34164024 PMCID: PMC8179263 DOI: 10.1039/d0sc06308h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A lasso peptide MS-271 is a ribosomally synthesized and post-translationally modified peptide (RiPP) consisting of 21 amino acids with a d-tryptophan (Trp) at its C terminus. The presence of d-amino acids is rare in RiPPs and few mechanisms of d-amino acid introduction have been characterized. Here, we report the identification of MslH, previously annotated as a hypothetical protein, as a novel epimerase involved in the post-translational epimerization of the C-terminal Trp residue of the precursor peptide MslA. MslH is the first epimerase that catalyzes epimerization at the Cα center adjacent to a carboxylic acid in a cofactor-independent manner. We also demonstrate that MslH exhibits broad substrate specificity toward the N-terminal region of the core peptide, showing that MslH-type epimerases offer opportunities in peptide bioengineering.
Collapse
Affiliation(s)
- Zhi Feng
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
16
|
Guerrero-Garzón JF, Madland E, Zehl M, Singh M, Rezaei S, Aachmann FL, Courtade G, Urban E, Rückert C, Busche T, Kalinowski J, Cao YR, Jiang Y, Jiang CL, Selivanova G, Zotchev SB. Class IV Lasso Peptides Synergistically Induce Proliferation of Cancer Cells and Sensitize Them to Doxorubicin. iScience 2020; 23:101785. [PMID: 33294793 PMCID: PMC7689547 DOI: 10.1016/j.isci.2020.101785] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/31/2022] Open
Abstract
Heterologous expression of a biosynthesis gene cluster from Amycolatopsis sp. resulted in the discovery of two unique class IV lasso peptides, felipeptins A1 and A2. A mixture of felipeptins stimulated proliferation of cancer cells, while having no such effect on the normal cells. Detailed investigation revealed, that pre-treatment of cancer cells with a mixture of felipeptins resulted in downregulation of the tumor suppressor Rb, making the cancer cells to proliferate faster. Pre-treatment with felipeptins made cancer cells considerably more sensitive to the anticancer agent doxorubicin and re-sensitized doxorubicin-resistant cells to this drug. Structural characterization and binding experiments showed an interaction between felipeptins resulting in complex formation, which explains their synergistic effect. This discovery may open an alternative avenue in cancer treatment, helping to eliminate quiescent cells that often lead to cancer relapse.
Collapse
Affiliation(s)
| | - Eva Madland
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Shiva Rezaei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden.,Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Gaston Courtade
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Yan-Ru Cao
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Cheng-Lin Jiang
- Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, P.R.China
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
17
|
Zimina M, Babich O, Prosekov A, Sukhikh S, Ivanova S, Shevchenko M, Noskova S. Overview of Global Trends in Classification, Methods of Preparation and Application of Bacteriocins. Antibiotics (Basel) 2020; 9:E553. [PMID: 32872235 PMCID: PMC7559574 DOI: 10.3390/antibiotics9090553] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/05/2023] Open
Abstract
This paper summarizes information about the division of bacteriocins into classes (Gram-negative bacteria, Gram-positive bacteria, and archaea). Methods for producing bacteriocins have been studied. It is known that bacteriocins, most successfully used today are products of secondary metabolism of lactic acid bacteria. It is established that the main method of bacteriocin research is PCR analysis, which makes it possible to quickly and easily identify the presence of bacteriocin encoding genes. The mechanism of cytotoxic action of bacteriocins has been studied. It is proved that the study of cytotoxic (antitumor) activity in laboratory conditions will lead to the clinical use of bacteriocins for cancer treatment in the near future. It is established that the incorporation of bacteriocins into nanoparticles and targeted delivery to areas of infection may soon become an effective treatment method. The delivery of bacteriocins in a concentrated form, such as encapsulated in nanoparticles, will increase their effectiveness and minimize potential toxic side effects. The analysis of publications on this topic confirmed that diverse research on bacteriocins is relevant.
Collapse
Affiliation(s)
- Maria Zimina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (M.Z.); (O.B.); (S.S.); (M.S.); (S.N.)
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (M.Z.); (O.B.); (S.S.); (M.S.); (S.N.)
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (M.Z.); (O.B.); (S.S.); (M.S.); (S.N.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia
| | - Margarita Shevchenko
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (M.Z.); (O.B.); (S.S.); (M.S.); (S.N.)
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (M.Z.); (O.B.); (S.S.); (M.S.); (S.N.)
| |
Collapse
|
18
|
Young MJ, Akien GR, Evans NH. An amide hydrogen bond templated [1]rotaxane displaying a peptide motif - demonstrating an expedient route to synthetic mimics of lasso peptides. Org Biomol Chem 2020; 18:5203-5209. [PMID: 32597913 DOI: 10.1039/d0ob01190h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid synthesis of an amide hydrogen bond templated [1]rotaxane is reported - demonstrating a potential pathway to synthetic analogues of lasso peptides. The structures of the [1]rotaxane and its unthreaded isomer have been characterized by NMR spectroscopy and modelled using DFT calculations.
Collapse
Affiliation(s)
- Matthew J Young
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
19
|
Waliczek M, Wierzbicka M, Arkuszewski M, Kijewska M, Jaremko Ł, Rajagopal P, Szczepski K, Sroczyńska A, Jaremko M, Stefanowicz P. Attempting to synthesize lasso peptides using high pressure. PLoS One 2020; 15:e0234901. [PMID: 32579565 PMCID: PMC7314030 DOI: 10.1371/journal.pone.0234901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Lasso peptides are unique in that the tail of the lasso peptide threads through its macrolactam ring. The unusual structure and biological activity of lasso peptides have generated increased interest from the scientific community in recent years. Because of this, many new types of lasso peptides have been discovered. These peptides can be synthesized by microorganisms efficiently, and yet, their chemical assembly is challenging. Herein, we investigated the possibility of high pressure inducing the cyclization of linear precursors of lasso peptides. Unlike other molecules like rotaxanes which mechanically interlock at high pressure, the threaded lasso peptides did not form, even at pressures the high pressure up to 14 000 kbar.
Collapse
Affiliation(s)
| | | | | | - Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Wroclaw, Poland
| | - Łukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Priyadharshni Rajagopal
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Faculty of Chemistry, University of Wrocław, Wroclaw, Poland
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
20
|
Acevedo-Jake A, Ball AT, Galli M, Kukwikila M, Denis M, Singleton DG, Tavassoli A, Goldup SM. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. J Am Chem Soc 2020; 142:5985-5990. [PMID: 32155338 PMCID: PMC8016193 DOI: 10.1021/jacs.0c01670] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/22/2022]
Abstract
We present a simple strategy for the synthesis of main chain oligonucleotide rotaxanes with precise control over the position of the macrocycle. The novel DNA-based rotaxanes were analyzed to assess the effect of the mechanical bond on their properties.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Andrew T. Ball
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Marzia Galli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mikiembo Kukwikila
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mathieu Denis
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Daniel G. Singleton
- ATDBio
Ltd, School of Chemistry, University of
Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Ali Tavassoli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Stephen M. Goldup
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
21
|
Abstract
Burkholderia bacteria are an emerging source of natural products with applications in agriculture and medicine. The heterologous expression of biosynthetic gene clusters can streamline natural product discovery; however, production yields with the commonly used Escherichia coli host are usually low. Following the current paradigm that one host does not fit all, we aim to develop a Burkholderia host to ultimately tap into the biosynthetic potential of Burkholderia genomes, which can contain up to 27 biosynthetic gene clusters per genome. Because a close phylogenetic relationship is expected to improve the odds of success due to compatible gene expression and precursor supply, we tested Burkholderia sp. FERM BP-3421, a nonpathogenic isolate previously used to produce natural products at industrial scales. We show here that FERM BP-3421 can produce the model lasso peptide capistruin in yields that are at least 65 times and up to 580 times higher than the previously used E. coli host.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
22
|
Meade E, Slattery MA, Garvey M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics (Basel) 2020; 9:antibiotics9010032. [PMID: 31963311 PMCID: PMC7168330 DOI: 10.3390/antibiotics9010032] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Despite highly specialized international interventions and policies in place today, the rapid emergence and dissemination of resistant bacterial species continue to occur globally, threatening the longevity of antibiotics in the medical sector. In particular, problematic nosocomial infections caused by multidrug resistant Gram-negative pathogens present as a major burden to both patients and healthcare systems, with annual mortality rates incrementally rising. Bacteriocins, peptidic toxins produced by bacteria, offer promising potential as substitutes or conjugates to current therapeutic compounds. These non-toxic peptides exhibit significant potency against certain bacteria (including multidrug-resistant species), while producer strains remain insusceptible to the bactericidal peptides. The selectivity and safety profile of bacteriocins have been highlighted as superior advantages over traditional antibiotics; however, many aspects regarding their efficacy are still unknown. Although active at low concentrations, bacteriocins typically have low in vivo stability, being susceptible to degradation by proteolytic enzymes. Another major drawback lies in the feasibility of large-scale production, with these key features collectively limiting their current clinical application. Though such limitations require extensive research, the concept of expanding bacteriocins from food preservation to human health opens many fascinating doors, including novel drug delivery systems and anticancer treatment applications.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland;
| | - Mark Anthony Slattery
- Mark Anthony Slattery MVB, Veterinary Practice, Manorhamilton, F91 DP62 Leitrim, Ireland;
| | - Mary Garvey
- Department of Life Science, Sligo Institute of Technology, F91 YW50 Sligo, Ireland;
- Mark Anthony Slattery MVB, Veterinary Practice, Manorhamilton, F91 DP62 Leitrim, Ireland;
- Correspondence: ; Tel.: +353-071-9305529
| |
Collapse
|