1
|
Redwan DA, Du K, Yong X. Probing wrapping dynamics of spherical nanoparticles by 3D vesicles using force-based simulations. SOFT MATTER 2024; 20:4548-4560. [PMID: 38502376 DOI: 10.1039/d3sm01600e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Nanoparticles present in various environments can interact with living organisms, potentially leading to deleterious effects. Understanding how these nanoparticles interact with cell membranes is crucial for rational assessment of their impact on diverse biological processes. While previous research has explored particle-membrane interactions, the dynamic processes of particle wrapping by fluid vesicles remain incompletely understood. In this study, we introduce a force-based, continuum-scale model utilizing triangulated mesh representation and discrete differential geometry to investigate particle-vesicle interaction dynamics. Our model captures the transformation of vesicle shape and nanoparticle wrapping by calculating the forces arising from membrane bending energy and particle adhesion energy. Inspired by cell phagocytosis of large particles, we focus on establishing a quantitative understanding of large-scale vesicle deformation induced by the interaction with particles of comparable sizes. We first examine the interactions between spherical vesicles and individual nanospheres, both externally and internally, and quantify energy landscapes across different wrapping fractions of the nanoparticles. Furthermore, we explore multiple particle interactions with biologically relevant fluid vesicles with nonspherical shapes. Our study reveals that initial particle positions and interaction sequences are critical in determining the final equilibrium shapes of the vesicle-particle complexes in these interactions. These findings emphasize the importance of nanoparticle positioning and wrapping fractions in the dynamics of particle-vesicle interactions, providing crucial insights for future research in the field.
Collapse
Affiliation(s)
- Didarul Ahasan Redwan
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, California 92521, USA
| | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.
| |
Collapse
|
2
|
Goh Y, Kim J, Park HS, Jung T, Hong KS, Nam SH, Suh YD, Lee KT. Visualization of intercellular cargo transfer using upconverting nanoparticles. NANOSCALE 2022; 14:14008-14013. [PMID: 36053238 DOI: 10.1039/d2nr01999j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell-cell communication is important for cellular differentiation, organ function, and immune responses. In intercellular communication, the extracellular vesicles (EVs) play a significant role in delivering the cargo molecules such as genes, proteins, and enzymes, to regulate and control the ability of the recipient cells. In this study, the observation of intercellular cargo transfer via dual-colour imaging using upconverting nanoparticles (UCNPs) has been demonstrated. Using this technique, the intercellular transport via contact-dependent and contact-independent signaling in live HeLa cells was clearly visualized with real-time, long-term single-vesicle tracking. Furthermore, it was demonstrated that the endocytosed UCNPs can be transmitted with the encapsulation of EVs labelled with fluorescent proteins.
Collapse
Affiliation(s)
- Yeongchang Goh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
| | - Taeyoung Jung
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Yung Doug Suh
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
| |
Collapse
|
3
|
De R, Song YH, Mahata MK, Lee KT. pH-responsive polyelectrolyte complexation on upconversion nanoparticles: a multifunctional nanocarrier for protection, delivery, and 3D-imaging of therapeutic protein. J Mater Chem B 2022; 10:3420-3433. [PMID: 35389393 DOI: 10.1039/d2tb00246a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The delicate tertiary structure of proteins, their susceptibility to heat- and enzyme-induced irreversible denaturation, and their tendency to get accumulated at the cell membrane during uptake are daunting challenges in proteinaceous therapeutic delivery. Herein, a polyelectrolyte complex having encapsulated therapeutic protein has been designed on the surface of upconverting luminescent nanoparticles (NaYF4:20%Yb3+,2%Er3+). This nanosized complex system has been found to overcome the challenges of protein aggregation at the cell membrane. It has also defended the cargo from denaturation against (a) enzymatic action of proteinase K and (b) heat (up to 60 °C). Additionally, the nanoparticles at the core of the loaded carrier served as near-infrared (980 nm) responsive probe to accomplish extended-duration 3D imaging during protein delivery. The outer layer of polymer played pivotal role to protect/retrieve the protein structure from denaturation as investigated by circular dichroism studies. Both the masked surface-charges of protein and the nanoscale size of the loaded carrier have facilitated their efficient passage through the cell membrane as observed through 3D images/videos. This nanocarrier is the first of its kind for direct delivery of protein. Thus, the findings can be useful to protect and transport various proteinaceous materials to overcome challenges of accumulation at the cell-membrane and low-temperature storage, as nature does.
Collapse
Affiliation(s)
- Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea. .,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Yo Han Song
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| | - Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea. .,Drittes Physikalisches Institut - Biophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| |
Collapse
|
4
|
Trang Le NT, Nguyen NH, Hoang MC, Khoa Nguyen C, Hai Nguyen D, Tran DL. Preparation of liposomal nanocarrier by extruder to enhance tumor accumulation of paclitaxel. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211053926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the wide-spectrum and effective anti-cancer activity of paclitaxel (PTX), their low solubility and side effects are the main challenges in their clinical application. In this study, a model paclitaxel-encapsulated nanoliposome (NLips-PTX) carrier was synthesized to enhance PTX solubility and increase its passive accumulation at the tumor site. Soy lecithin and cholesterol at a 9:1 ratio were used to prepare the nano-sized liposomes through the thin-film hydration followed by extrusion technique. The prepared spherical NLips-PTX liposomes with an average size of about 150 nm and high uniformity were characterized by DLS and TEM. PTX load efficiency of NLips was determined at about 85% by HPLC. NLips-PTX also showed a therapeutic effect toward breast cancer cells (MCF-7) in a dose- and time-dependent manner via in vitro cellular uptake and a cytotoxicity study. This research indicates that extrusion is a simple and convenient method for nano-sizing and homogenising liposome suspension for potentially effective delivery of drug to target tumor sites.
Collapse
Affiliation(s)
- Ngoc Thuy Trang Le
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Ngoc Hoi Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Minh Chau Hoang
- Faculty of Pharmacy, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - Cuu Khoa Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi City, Vietnam
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Dieu Linh Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Cai C, Lv M, Xiang P, Fang C, Ma W, Tian X, Xu X, Tian Y, Zhang Q. Multi-photon absorption organotin complex for bioimaging and promoting ROS generation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119923. [PMID: 34015744 DOI: 10.1016/j.saa.2021.119923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/17/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Compared to general fluorescent dyes, multi-photon fluorescent dyes exhibit deeper tissue penetration and lower auto-fluorescence in the bio-imaging field. Therefore, it is necessary to develop an efficient multiphoton imaging agent for deep tissue imaging. In this work, an organotin derivative (HSnBu3) has been designed and synthesized, which shows multiphoton absorption activity. In constrast to the ignorable three-photon activity of the ligand, the complex (HSnBu3) exhibits three-photon activity under NIR excitation (1500 nm). Results of chemical and biological tests confirmed that HSnBu3 was more easily activated by oxygen resulting in a higher level of 1O2, which could induce a decrease in mitochondrial membrane potential in HepG2 cells. It suggests that HSnBu3 has potential in photodynamic therapy.
Collapse
Affiliation(s)
- Changting Cai
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Mengqi Lv
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Pan Xiang
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Chengjian Fang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Wen Ma
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, PR China
| | - Xinsheng Xu
- School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000, PR China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei 230601, PR China
| | - Qiong Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Anhui University, Hefei 230601, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, PR China.
| |
Collapse
|
6
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
7
|
Bartosik PB, Fitzgerald JE, El Khatib M, Yaseen MA, Vinogradov SA, Niedre M. Prospects for the Use of Upconverting Nanoparticles as a Contrast Agent for Enumeration of Circulating Cells in vivo. Int J Nanomedicine 2020; 15:1709-1719. [PMID: 32210561 PMCID: PMC7074808 DOI: 10.2147/ijn.s243157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We recently developed a new fluorescence-based technique called "diffuse in vivo flow cytometry" (DiFC) for enumerating rare circulating tumor cells (CTCs) directly in the bloodstream. Non-specific tissue autofluorescence is a persistent problem, as it creates a background which may obscure signals from weakly-labeled CTCs. Here we investigated the use of upconverting nanoparticles (UCNPs) as a contrast agent for DiFC, which in principle could significantly reduce the autofluorescence background and allow more sensitive detection of rare CTCs. METHODS We built a new UCNP-compatible DiFC instrument (U-DiFC), which uses a 980 nm laser and detects upconverted luminescence in the 520, 545 and 660 nm emission bands. We used NaYF4:Yb,Er UCNPs and several covalent and non-covalent surface modification strategies to improve their biocompatibility and cell uptake. We tested U-DiFC with multiple myeloma (MM) and Lewis lung carcinoma (LLC) cells in tissue-mimicking optical flow phantoms and in nude mice. RESULTS U-DiFC significantly reduced the background autofluorescence signals and motion artifacts from breathing in mice. Upconverted luminescence from NaYF4:Yb,Er microparticles (UμNP) and cells co-incubated with UCNPs were readily detectable with U-DiFC in phantoms, and from UCNPs in circulation in mice. However, we were unable to achieve reliable labeling of CTCs with UCNPs. Our data suggest that most (or all) of the measured U-DIFC signal in vitro and in vivo likely arose from unbound UCNPs or due to the uptake by non-CTC blood cells. CONCLUSION UCNPs have a number of properties that make them attractive contrast agents for high-sensitivity detection of CTCs in the bloodstream with U-DiFC and other intravital imaging methods. More work is needed to achieve reliable and specific labeling of CTCs with UCNPs and verify long-term retention and viability of cells.
Collapse
Affiliation(s)
- Peter B Bartosik
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
8
|
Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115646] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Mahata MK, Lee KT. Development of near-infrared sensitized core-shell-shell upconverting nanoparticles as pH-responsive probes. NANOSCALE ADVANCES 2019; 1:2372-2381. [PMID: 36131991 PMCID: PMC9418008 DOI: 10.1039/c9na00088g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 05/09/2023]
Abstract
Recently, the functionalization of nanoparticles, either within themselves or on the outer surface and its application in medicine, turned out to be the ultimate goal of nanotechnology. By providing these nanoparticles with chemical functional groups, one can force the nanoparticles to target the markers of the particular diseases or to measure the quantity and distribution of various intracellular species. In this paper, we report our development of a pH-responsive nanocomposite based on lanthanide-doped upconverting nanoparticles (UCNPs). Through multiphoton absorption and energy migration between spatially separated Nd3+, Yb3+, and Tm3+ in a three-layered NaYF4 host coated with FITC (fluorescein-5-isothiocyanate), this nanocomposite can measure the pH with high sensitivity. The fundamental acidity measurement is based on the pH-dependent equilibrium of the bright and dark states of FITC. The tremendous advantages of this system, regarding the pH measurement, come from the fact that the versatility of UCNP-imaging can fully be exploited. This includes the fact that (a) the optical wavelengths for the sensitization (980 nm and/or 808 nm) and the emission bands (UV, visible) are well separated, (b) the spectral overlap between FITC (absorption) and Tm3+ (emission) is substantially high, (c) there is no background signal due to the near-infrared laser, and (d) the signals are consistent regardless of the fluctuations by monitoring the ratio of blue band with respect to the unaffected self-reference (red and near-infrared bands). Moreover, the double shell structure is obviously superior to the core-shell structure in that it enhances the spectral separation between the sensitizer and the emitter in the upconversion process, inhibiting any unnecessary contamination in the spectra. Finally, it is noteworthy that Yb3+ plays crucial roles as a sensitizer at 980 nm excitation and a bridge above which 808 nm excitation migrates from Nd3+ to Tm3+ via the Yb3+ excited state.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Korea
| | - Kang Taek Lee
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Korea
| |
Collapse
|
10
|
Two-Dimensional and Three-Dimensional Single Particle Tracking of Upconverting Nanoparticles in Living Cells. Int J Mol Sci 2019; 20:ijms20061424. [PMID: 30901823 PMCID: PMC6471022 DOI: 10.3390/ijms20061424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) are inorganic nanomaterials in which the lanthanide cations embedded in the host matrix can convert incident near-infrared light to visible or ultraviolet light. These particles are often used for long-term and real-time imaging because they are extremely stable even when subjected to continuous irradiation for a long time. It is now possible to image their movement at the single particle level with a scale of a few nanometers and track their trajectories as a function of time with a scale of a few microseconds. Such UCNP-based single-particle tracking (SPT) technology provides information about the intracellular structures and dynamics in living cells. Thus far, most imaging techniques have been built on fluorescence microscopic techniques (epifluorescence, total internal reflection, etc.). However, two-dimensional (2D) images obtained using these techniques are limited in only being able to visualize those on the focal planes of the objective lens. On the contrary, if three-dimensional (3D) structures and dynamics are known, deeper insights into the biology of the thick cells and tissues can be obtained. In this review, we introduce the status of the fluorescence imaging techniques, discuss the mathematical description of SPT, and outline the past few studies using UCNPs as imaging probes or biologically functionalized carriers.
Collapse
|
11
|
Bae H, Lee KT. Effect of tetragonal to cubic phase transition on the upconversion luminescence properties of A/B site erbium-doped perovskite BaTiO3. RSC Adv 2019; 9:2451-2457. [PMID: 35520515 PMCID: PMC9059889 DOI: 10.1039/c8ra09783f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/09/2019] [Indexed: 11/21/2022] Open
Abstract
With the increasing number of applications for upconversion materials, a more detailed understanding of the intrinsic mechanisms of their optical processes is required. Thus far, various lanthanide-doped host materials or nanoparticle systems have been investigated as representative upconversion systems owing to their major advantage as optical probes. As for the energetics of upconversion and the associated upconversion pathways, the role of the host material is very important because it provides a unique microscopic environment; for example, a unique local lattice structure in the case of crystalline samples. In general, the upconversion luminescence intensity decreases as a function of temperature owing to thermally accelerated multiphonon relaxation. Here, we report that the temperature dependence of the upconversion luminescence efficiency is affected differently in an Er3+-doped perovskite material, barium titanate (BaTiO3, BT), than in a general system. We show that Er3+ doped at the A (Ba2+) and B (Ti4+) sites of tetragonal phase BT, referred to as A-BT and B-BT, respectively, show different upconversion behaviors. The slope of the plot of the upconversion emission intensity as a function of temperature changed significantly in case of B-BT, but not for A-BT. This anomalous behavior of Er3+-doped BT is attributed to the phase transition (at ∼120 °C) of BT from tetragonal to cubic phase. Essentially, the temperature-dependent upconversion luminescence trend depends on the doping sites of Er3+, i.e., at A or B sites in BT, which is explained by the difference in the symmetry of the crystalline structure with different crystal phase surrounding the Er3+ ions. At the critical temperature, B-site doping with erbium shows abnormal upconversion efficiency as a function of temperature in perovskite crystals, which was attributed to the symmetry of the crystalline structure around the erbium ions.![]()
Collapse
Affiliation(s)
- Hyeongyu Bae
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju
- Republic of Korea
| | - Kang Taek Lee
- Department of Chemistry
- Gwangju Institute of Science and Technology
- Gwangju
- Republic of Korea
| |
Collapse
|