1
|
Woolley JM, Rodrigues NDN, Toldo JM, Rioux B, Groves C, Schrama X, Alarcan J, Abiola TT, Mention MM, do Casal MT, Greenough SE, Borja M, Buma WJ, Ashfold MNR, Braeuning A, Munnik T, Franklin KA, Allais F, Barbatti M, Stavros VG. Molecular heaters: a green route to boosting crop yields? Phys Chem Chem Phys 2025; 27:7375-7382. [PMID: 40127252 DOI: 10.1039/d4cp04803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Food production and food security are fast becoming some of the most pressing issues of the 21st century. We are developing environmentally responsible molecular heaters to help boost crop growth and expand geographic areas capable of supporting growth. Sinapic diacid (SDA) is such a molecule, that can act as a light-to-heat agent, converting solar energy into heat delivered to the plant. We have characterised the photophysical properties of SDA extensively, using a combination of steady-state and ultrafast laser spectroscopy techniques complemented with high-level computational studies, and demonstrated both its resilience to prolonged solar irradiation and light-to-heat capabilities. The results we present here illustrate the untapped potential of molecular heaters such as SDA to boost plant yields in existing growing regions and to expand growth into regions hitherto considered too cold for crop growth.
Collapse
Affiliation(s)
- Jack M Woolley
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | - Benjamin Rioux
- URD, Agro-Biotechnologies Industrielles (ABI), CEBB AgroParisTech, 51110 Pomacle, France
| | - Chris Groves
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Xandra Schrama
- Section Plant Cell Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Jimmy Alarcan
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Temitope T Abiola
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Matthieu M Mention
- URD, Agro-Biotechnologies Industrielles (ABI), CEBB AgroParisTech, 51110 Pomacle, France
| | | | - Simon E Greenough
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Marise Borja
- GAB Consulting Spain S.L.U., Calle Gregorio Mayans 3, pta. 10 46005 Valencia, Spain
| | - Wybren J Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Teun Munnik
- Section Plant Cell Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Keara A Franklin
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Florent Allais
- URD, Agro-Biotechnologies Industrielles (ABI), CEBB AgroParisTech, 51110 Pomacle, France
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Tipping MB, Woolley JM, Williams JR, Ward MD. Ultrafast Photoinduced Electron Transfer Between Donor (Eosin-Y) and Acceptor (Naphthoquinone) in a Supramolecular Array Based on a Coordination Cage Host. Chemistry 2025; 31:e202404647. [PMID: 39918015 DOI: 10.1002/chem.202404647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Indexed: 02/21/2025]
Abstract
An octanuclear M8L12 coordination cage host (HPEG ⋅ M) in aqueous solution binds neutral electron-accepting guests such as naphthoquinone (NQ) in its central cavity via the hydrophobic effect, and multiple anionic photosensitisers such as Eosin-Y (EY2-) around the exterior surface due to 16+ charge on the complex cation: this is confirmed by both solution titration experiments and X-ray crystallography. In the three-component assembly HPEG ⋅ Cd/EY2 -/NQ, photoexcitation of EY2 - at 525 nm results in ultrafast (ca. 1 ps) photoinduced EY2-→NQ electron transfer from surface-bound EY2 - to cavity-bound NQ (which have been brought into close proximity by their interactions with different sites on the host cage) to give the charge-separated pair EY⋅-/NQ⋅-, identified by transient absorption spectroscopy: back-ET results in charge recombination in ≈70 ps. The assembly of donor and acceptor components via orthogonal interactions using the host cage as a scaffold presents a promising route into spatial control of multiple components in supramolecular arrays for photophysical applications.
Collapse
Affiliation(s)
- Max B Tipping
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Jack M Woolley
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - James R Williams
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
3
|
González Moreno A, Woolley JM, Domínguez E, de Cózar A, Heredia A, Stavros VG. Synergic photoprotection of phenolic compounds present in tomato fruit cuticle: a spectroscopic investigation in solution. Phys Chem Chem Phys 2023; 25:12791-12799. [PMID: 37129056 DOI: 10.1039/d3cp00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Coumaric acids and flavonoids play pivotal roles in protecting plants against ultraviolet radiation (UVR) exposure. In this work, we focus our photoprotection studies on p-coumaric acid and the flavonoid naringenin chalcone. Photoprotection is well-understood in p-coumaric acid; in contrast, information surrounding photoprotection in naringenin chalcone is lacking. Additionally, and vitally, how these two species work in unison to provide photoprotection across the UV-B and UV-A is unknown. Herein, we employ transient absorption spectroscopy together with steady-state irradiation studies to unravel the photoprotection mechanism of a solution of p-coumaric acid and naringenin chalcone. We find that the excited state dynamics of p-coumaric acid are significantly altered in the presence of naringenin chalcone. This finding concurs with quenching of the p-coumaric acid fluorescence with increasing concentration of naringenin chalcone. We propose a Förster energy transfer mechanism is operative via the formation of dipole-dipole interactions between p-coumaric acid and naringenin chalcone. To our knowledge, this is the first demonstration in plants of a synergic effect between two classes of phenolics to bypass the potentially damaging effects of UVR.
Collapse
Affiliation(s)
- Ana González Moreno
- IHSM-UMA-CSIC La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga (UMA), 29071, Málaga, Spain.
| | - Jack M Woolley
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Eva Domínguez
- IHSM-UMA-CSIC La Mayora, Plant breeding and Biotechnology, CSIC, 29750 Algarrobo-Costa, Málaga, Spain
| | - Abel de Cózar
- Departamento de Química Orgánica I/Kimika Organikoa I Saila, Facultad de Química/Kimika Fakultatea, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P. K, 1072, 20018 San Sebastián - Donostia, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Antonio Heredia
- IHSM-UMA-CSIC La Mayora, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga (UMA), 29071, Málaga, Spain.
| | | |
Collapse
|
4
|
Abiola TT, Toldo JM, do Casal MT, Flourat AL, Rioux B, Woolley JM, Murdock D, Allais F, Barbatti M, Stavros VG. Direct structural observation of ultrafast photoisomerization dynamics in sinapate esters. Commun Chem 2022; 5:141. [PMID: 36697608 PMCID: PMC9814104 DOI: 10.1038/s42004-022-00757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/13/2022] [Indexed: 01/27/2023] Open
Abstract
Sinapate esters have been extensively studied for their potential application in 'nature-inspired' photoprotection. There is general consensus that the relaxation mechanism of sinapate esters following photoexcitation with ultraviolet radiation is mediated by geometric isomerization. This has been largely inferred through indirect studies involving transient electronic absorption spectroscopy in conjunction with steady-state spectroscopies. However, to-date, there is no direct experimental evidence tracking the formation of the photoisomer in real-time. Using transient vibrational absorption spectroscopy, we report on the direct structural changes that occur upon photoexcitation, resulting in the photoisomer formation. Our mechanistic analysis predicts that, from the photoprepared ππ* state, internal conversion takes place through a conical intersection (CI) near the geometry of the initial isomer. Our calculations suggest that different CI topographies at relevant points on the seam of intersection may influence the isomerization yield. Altogether, we provide compelling evidence suggesting that a sinapate ester's geometric isomerization can be a more complex dynamical process than originally thought.
Collapse
Affiliation(s)
- Temitope T. Abiola
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
| | - Josene M. Toldo
- grid.462456.70000 0004 4902 8637Aix Marseille Université, CNRS, ICR, Marseille, France
| | - Mariana T. do Casal
- grid.462456.70000 0004 4902 8637Aix Marseille Université, CNRS, ICR, Marseille, France
| | - Amandine L. Flourat
- grid.417885.70000 0001 2185 8223URD Agro-Biotechnologies (ABI), CEBB, AgroParisTech, 51110 Pomacle, France
| | - Benjamin Rioux
- grid.417885.70000 0001 2185 8223URD Agro-Biotechnologies (ABI), CEBB, AgroParisTech, 51110 Pomacle, France
| | - Jack M. Woolley
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
| | - Daniel Murdock
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
| | - Florent Allais
- grid.417885.70000 0001 2185 8223URD Agro-Biotechnologies (ABI), CEBB, AgroParisTech, 51110 Pomacle, France
| | - Mario Barbatti
- grid.462456.70000 0004 4902 8637Aix Marseille Université, CNRS, ICR, Marseille, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France, 75231 Paris, France
| | - Vasilios G. Stavros
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
| |
Collapse
|
5
|
González Moreno A, de Cózar A, Prieto P, Domínguez E, Heredia A. Radiationless mechanism of UV deactivation by cuticle phenolics in plants. Nat Commun 2022; 13:1786. [PMID: 35379806 PMCID: PMC8979964 DOI: 10.1038/s41467-022-29460-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Hydroxycinnamic acids present in plant cuticles, the interphase and the main protective barrier between the plant and the environment, exhibit singular photochemical properties that could allow them to act as a UV shield. Here, we employ transient absorption spectroscopy on isolated cuticles and leaf epidermises to study in situ the photodynamics of these molecules in the excited state. Based on quantum chemical calculations on p-coumaric acid, the main phenolic acid present in the cuticle, we propose a model in which cuticle phenolics display a photoprotective mechanism based in an ultrafast and non-radiative excited state deactivation combined with fluorescence emission. As such, the cuticle can be regarded as the first and foremost protective barrier against UV radiation. This photostable and photodynamic mechanism seems to be universal in land plants giving a special role and function to the presence of different aromatic domains in plant cuticles and epidermises. Phenolics are abundant in plant cuticles. Here, via transient absorption spectroscopy and quantum chemical calculations, the authors propose a model by which cuticle phenolics provide photoprotection due to ultrafast and non-radiative excited state deactivation combined with fluorescence emission.
Collapse
|
6
|
Nomoto A, Inai N, Yanai T, Okuno Y. Substituent and Solvent Effects on the Photoisomerization of Cinnamate Derivatives: An XMS-CASPT2 Study. J Phys Chem A 2022; 126:497-505. [PMID: 35067053 DOI: 10.1021/acs.jpca.1c08504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cinnamate derivatives show a variety of photo-induced reactions. Among them is trans-cis photoisomerization, which may involve the nonradiative decay (NRD) process. The extended multistate complete active space second-order perturbation (XMS-CASPT2) method was used in this study as a suitable theory for treating multireference electronic nature, which was frequently manifested in the photoisomerization process. The minimum energy paths of the trans-cis photoisomerization process of cinnamate derivatives were determined, and the activation energies were estimated using the resulting intrinsic reaction coordinate (IRC) paths. Natural orbital analysis revealed that the transition state's (TS) electronic structure is zwitterionic-like, elucidating the solvent and substituent effect on the energy barrier of photoisomerization paths. Furthermore, it was found that the charge on the pyramidalized carbon atom at the TS structure was strongly correlated with the activation energy barrier for the cinnamate derivatives. Thus, it seemingly provided a physical picture of the photoisomerization of cinnamates and was a good descriptor potentially applicable to molecular design for controlling the rate constant of the photoisomerization reaction.
Collapse
Affiliation(s)
- Atsuro Nomoto
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 250-0193, Japan
| | - Naoto Inai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yukihiro Okuno
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 250-0193, Japan
| |
Collapse
|
7
|
Kinoshita SN, Harabuchi Y, Inokuchi Y, Maeda S, Ehara M, Yamazaki K, Ebata T. Substitution effect on the nonradiative decay and trans → cis photoisomerization route: a guideline to develop efficient cinnamate-based sunscreens. Phys Chem Chem Phys 2021; 23:834-845. [PMID: 33284297 DOI: 10.1039/d0cp04402d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cinnamate derivatives are very useful as UV protectors in nature and as sunscreen reagents in daily life. They convert harmful UV energy to thermal energy through effective nonradiative decay (NRD) including trans → cis photoisomerization. However, the mechanism is not simple because different photoisomeirzation routes have been observed for different substituted cinnamates. Here, we theoretically examined the substitution effects at the phenyl ring of methylcinnamate (MC), a non-substituted cinnamate, on the electronic structure and the NRD route involving trans → cis isomerization based on time-dependent density functional theory. A systematic reaction pathway search using the single-component artificial force-induced reaction method shows that the very efficient photoisomerization route of MC can be essentially described as "1ππ* (trans) → 1nπ* → T1 (3ππ*) → S0 (trans or cis)". We found that for efficient 1ππ* (trans) → 1nπ* internal conversion (IC), MC should have the substituent at the appropriate position of the phenyl ring to stabilize the highest occupied π orbital. Substitution at the para position of MC slightly lowers the 1ππ* state energy and photoisomerization occurs via a slightly less efficient "1ππ* (trans) → 3nπ* → T1 (3ππ*) → S0 (trans or cis)" pathway. Substitution at the meta or ortho positions of MC significantly lowers the 1ππ* state energy so that the energy barrier of IC (1ππ* → 1nπ*) becomes very high. This substitution leads to a much longer 1ππ* state lifetime than that of MC and para-substituted MC, and a change in the dominant photoisomerization route to "1ππ* (trans) → C[double bond, length as m-dash]C bond twisting on 1ππ* → S0 (trans or cis)". As a whole, the "1ππ* → 1nπ*" IC observed in MC is the most important initial step for the rapid change of UV energy to thermal energy. We also found that the stabilization of the π orbital (i) minimizes the energy gap between 1ππ* and 1nπ* at the 1ππ* minimum and (ii) makes the 0-0 level of 1ππ* higher than 1nπ* as observed in MC. These MC-like relationships between the 1ππ* and 1nπ* energies should be ideal to maximize the "1ππ* → 1nπ*" IC rate constant according to Marcus theory.
Collapse
Affiliation(s)
- Shin-Nosuke Kinoshita
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Yu Harabuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| | - Satoshi Maeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Masahiro Ehara
- SOKENDAI, the Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585, Japan and Institute for Molecular Science and Research Center for Computational Science, 38, Myodaiji, Okazaki 444-8585, Japan
| | - Kaoru Yamazaki
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan.
| |
Collapse
|
8
|
Krokidi KM, Turner MAP, Pearcy PAJ, Stavros VG. A systematic approach to methyl cinnamate photodynamics. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1811910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Matthew A. P. Turner
- Department of Chemistry, University of Warwick, Coventry, UK
- Department of Physics, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
9
|
Iida Y, Kinoshita SN, Kenjo S, Muramatsu S, Inokuchi Y, Zhu C, Ebata T. Electronic States and Nonradiative Decay of Cold Gas-Phase Cinnamic Acid Derivatives Studied by Laser Spectroscopy with a Laser-Ablation Technique. J Phys Chem A 2020; 124:5580-5589. [PMID: 32551660 DOI: 10.1021/acs.jpca.0c03646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We performed UV spectroscopy for p-coumaric acid (pCA), ferulic acid (FA), and caffeic acid (CafA) under jet-cooled gas-phase conditions by using a laser-ablation source. These molecules showed the S1(1ππ*)-S0 absorption in the 31 500-33 500 cm-1 region. Both pCA and FA exhibited sharp vibronic bands, while CafA showed only a broad feature. The decay time profile of the 1ππ* state was measured by picosecond pump-probe spectroscopy, and the transient state produced through the nonradiative decay (NRD) from 1ππ* and its time profile were measured by nanosecond UV-deep UV pump-probe spectroscopy. The transient state was observed for pCA and FA and assigned to the T1 state, and we concluded that the NRD process of 1ππ* is S1(1ππ*) → 1nπ* → T1(3ππ*), similar to those of methyl cinnamate and para-substituted cinnamates such as p-hydroxy and p-methoxy methyl cinnamate. On the other hand, the transient T1 state was not detected in CafA, and its NRD route is suggested to be S1(1ππ*) → 1πσ* → H atom elimination, similar to those of phenol and catechol. The effect of a hydrogen bond on the electronic state and NRD process was investigated, and it was found that the H-bonding lowers the 1ππ* energy and suppresses the NRD process for all the species.
Collapse
Affiliation(s)
- Yuji Iida
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shin-Nosuke Kinoshita
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Seiya Kenjo
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoru Muramatsu
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute for Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Applied Chemistry and Institute for Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
10
|
Muramatsu S, Nakayama S, Kinoshita SN, Onitsuka Y, Kohguchi H, Inokuchi Y, Zhu C, Ebata T. Electronic State and Photophysics of 2-Ethylhexyl-4-methoxycinnamate as UV-B Sunscreen under Jet-Cooled Condition. J Phys Chem A 2020; 124:1272-1278. [PMID: 31992045 DOI: 10.1021/acs.jpca.9b11893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The title compound, 2-ethylhexyl-4-methoxycinnamate (2EH4MC), is known as a typical ingredient of sunscreen cosmetics that effectively converts the absorbed UV-B light to thermal energy. This energy conversion process includes the nonradiative decay (NRD): trans-cis isomerization and finally going back to the original structure with a release of thermal energy. In this study, we performed UV spectroscopy for jet-cooled 2EH4MC to investigate the electronic/geometrical structures as well as the NRD mechanism. Laser-induced-fluorescence (LIF) spectroscopy gave the well-resolved vibronic structure of the S1-S0 transition; UV-UV hole-burning (HB) spectroscopy and density functional theory (DFT) calculations revealed the presence of syn and anti isomers, where the methoxy (-OCH3) groups orient in opposite directions to each other. Picosecond UV-UV pump-probe spectroscopy revealed the NRD process from the excited singlet (S1 (1ππ*)) state occurs at a rate constant of ∼1010-1011 s-1, attributed to internal conversion (IC) to the 1nπ* state. Nanosecond UV-deep UV (DUV) pump-probe spectroscopy identified a transient triplet (T1 (3ππ*)) state, whose energy (from S0) and lifetime are 18 400 cm-1 and 20 ns, respectively. These results demonstrate that the photoisomerization of 2EH4MC includes multistep internal conversions and intersystem crossings, described as "S1 (trans, 1ππ*) → 1nπ* → T1 (3ππ*) → S0 (cis)".
Collapse
Affiliation(s)
- Satoru Muramatsu
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan
| | - Shingo Nakayama
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan
| | - Shin-Nosuke Kinoshita
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan
| | - Yuuki Onitsuka
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan
| | - Hiroshi Kohguchi
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan
| | - Chaoyuan Zhu
- Department of Applied Chemistry and Institute for Molecular Science , National Chiao Tung University , Hsinchu 30010 , Taiwan.,Center for Emergent Functional Matter Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
| | - Takayuki Ebata
- Department of Chemistry, Graduate School of Science , Hiroshima University , 1-3-1 Kagamiyama , Higashi-Hiroshima-shi , Hiroshima 739-8526 , Japan.,Department of Applied Chemistry and Institute for Molecular Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
| |
Collapse
|
11
|
Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1663062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily L. Holt
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|