1
|
Wärmländer SK, Lakela AL, Berntsson E, Jarvet J, Gräslund A. Secondary Structures of Human Calcitonin at Different Temperatures and in Different Membrane-Mimicking Environments, Characterized by Circular Dichroism (CD) Spectroscopy. ACS OMEGA 2025; 10:17133-17142. [PMID: 40352565 PMCID: PMC12060043 DOI: 10.1021/acsomega.4c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 05/14/2025]
Abstract
Human calcitonin is a 32-residue peptide hormone that binds to the calcitonin receptor (CTR) and is involved in calcium regulation. The amino acid sequence displays a hydrophilic central segment flanked by hydrophobic C- and N-terminal regions with a net charge of zero at neutral pH. This makes the molecule amphiphilic and conformationally flexible, and different CTR variants preferentially recognize different structural conformations of calcitonin. The peptide is secreted from the thyroid gland and is overproduced in some forms of thyroid cancer and can then form cell-toxic aggregates. Characterizing the structural properties of calcitonin under different conditions is, therefore, important for understanding its receptor-binding and self-aggregation properties. Here, we used circular dichroism (CD) spectroscopy to monitor the secondary structure of human calcitonin in different environments. Calcitonin monomers were found to display a random coil structure with a significant amount of PPII-helix components in phosphate buffer, pH 7.3, at physiological temperatures. When agitated, the peptide formed soluble aggregates over time with mainly an antiparallel β-sheet secondary structure. In the presence of micelles of differently charged surfactants, monomeric calcitonin formed a pure α-helix structure with cationic CTAB, a combination of α-helix and β-sheet with anionic SDS and with zwitterionic SB3-14, and remained mainly random coil with noncharged DDM. Thus, the charge of the surfactant headgroup was found to be an important parameter for calcitonin's interactions with membrane-mimicking micelles. Similar but not identical interactions with the surfactants were observed under the oxidizing and reducing conditions.
Collapse
Affiliation(s)
- Sebastian K.T.S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 114 19 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Amanda L. Lakela
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 114 19 Stockholm, Sweden
| | - Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 114 19 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 114 19 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
- The
National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 114 19 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
2
|
Mallick T, Mondal A, Das S, De P. Inhibition of Insulin Amyloid Fibrillogenesis Using Antioxidant Copolymers with Dopamine Pendants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501206. [PMID: 40109128 DOI: 10.1002/smll.202501206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Amyloid aggregation, intricately related to various neurodegenerative and metabolic diseases, presents a significant growing health challenge. Dopamine, a potent antioxidant, plays a pivotal role in modulating protein misfolding by leveraging its potent anti-amyloidogenic and neuroprotective properties. However, its biological applications are limited by poor aqueous solubility and suboptimal biocompatibility. To address these challenges, water-soluble copolymers (DP1-DP3) featuring dopamine and glucose side-chain pendants are fabricated and investigated for their efficacy in inhibiting amyloid fibril formation from insulin and amyloid beta (Aβ42) peptide. The effects of DP1-DP3 copolymers on amyloid fibrillation are assessed using several biophysical techniques, which demonstrate excellent radical scavenging properties and the remarkable efficacy of DP3 copolymer in suppressing insulin amyloid fibrillation, achieving ≈97% inhibition. Isothermal titration calorimetry (ITC) and fluorescence binding experiments are carried out to quantify the insulin-DP3 complex formation. Molecular dynamics simulations validate the ability of DP3 to prevent amyloid fibrillogenesis of both insulin and Aβ42. These studies demonstrate beneficial interactions between DP3 and amyloidogenic protein/peptide, facilitating the stability of the resulting complexes. Overall, the present findings suggest that dopamine-based antioxidant polymers hold significant potential as advanced therapeutic agents for preventing amyloidogenic disorders.
Collapse
Affiliation(s)
- Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Anushree Mondal
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
3
|
Lakela AL, Berntsson E, Vosough F, Jarvet J, Paul S, Barth A, Gräslund A, Roos PM, Wärmländer SKTS. Molecular interactions, structural effects, and binding affinities between silver ions (Ag +) and amyloid beta (Aβ) peptides. Sci Rep 2025; 15:5439. [PMID: 39948350 PMCID: PMC11825922 DOI: 10.1038/s41598-024-59826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 02/16/2025] Open
Abstract
Because silver is toxic to microbes, but not considered toxic to humans, the metal has been used as an antimicrobial agent since ancient times. Today, silver nanoparticles and colloidal silver are used for antibacterial purposes, and silver-peptide and similar complexes are being developed as therapeutic agents. Yet, the health effects of silver exposure are not fully understood, nor are the molecular details of silver-protein interactions. In Alzheimer's disease, the most common form of dementia worldwide, amyloid-β (Aβ) peptides aggregate to form soluble oligomers that are neurotoxic. Here, we report that monovalent silver ions (Ag+) bind wildtype Aβ40 peptides with a binding affinity of 25 ± 12 µM in MES buffer at 20 °C. Similar binding affinities are observed for wt Aβ40 peptides bound to SDS micelles, for an Aβ40(H6A) mutant, and for a truncated Aβ(4-40) variant containing an ATCUN (Amino Terminal Cu and Ni) motif. Weaker Ag+ binding is observed for the wt Aβ40 peptide at acidic pH, and for an Aβ40 mutant without histidines. These results are compatible with Ag+ ions binding to the N-terminal segment of Aβ peptides with linear bis-his coordination. Because the Ag+ ions do not induce any changes in the size or structure of Aβ42 oligomers, we suggest that Ag+ ions have a minor influence on Aβ toxicity.
Collapse
Affiliation(s)
- Amanda L Lakela
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden.
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden.
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
- University Healthcare Unit of Capio St. Göran Hospital, 11281, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden.
- Chemistry Section, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
4
|
Šneiderienė G, González Díaz A, Adhikari SD, Wei J, Michaels T, Šneideris T, Linse S, Vendruscolo M, Garai K, Knowles TPJ. Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation. Proc Natl Acad Sci U S A 2025; 122:e2401307122. [PMID: 39854227 PMCID: PMC11789053 DOI: 10.1073/pnas.2401307122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/01/2024] [Indexed: 01/26/2025] Open
Abstract
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells. Our results reveal that these Aβ condensates can significantly accelerate the primary nucleation step in the amyloid conversion cascade that leads to the formation of amyloid aggregates. We show that Aβ condensates contain phospholipids, are intrinsically heterogeneous, and are prone to undergo a liquid-to-solid transition leading to the formation of amyloid fibrils. These findings uncover the liquid-liquid phase separation behavior of the Aβ peptide and reveal a molecular step very early in the amyloid-β aggregation process.
Collapse
Affiliation(s)
- Greta Šneiderienė
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Alicia González Díaz
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Jiapeng Wei
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Thomas Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich8093, Switzerland
- Bringing Materials to Life Initiative, ETH Zurich, Zurich8093, Switzerland
| | - Tomas Šneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, LundSE221 00, Sweden
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Kanchan Garai
- Tata Institute of Fundamental Research, Hyderabad500046, India
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
5
|
Thai QM, Tung NT, Do Thi Mai D, Ngo ST. Dimerization of the Aβ 42 under the Influence of the Gold Nanoparticle: A REMD Study. J Phys Chem B 2024; 128:11705-11713. [PMID: 39508442 DOI: 10.1021/acs.jpcb.4c06224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Advances in Alzheimer's disease (AD) are related to the oligomerization of Amyloid β (Aβ) peptides. Therefore, alteration of the process can prevent AD. We investigated the Aβ42 dimerization under the effects of gold nanoparticles using temperature replica-exchange molecular dynamics (REMD) simulations. The structural change of dimers in the presence and absence of the gold nanoparticle, Au55, was monitored over stable intervals. Physical insights into the oligomerization of Aβ were thus clarified. The computed metrics indicate that Au55 affects the progress of oligomerization. Specifically, the presence of the gold nanoparticle significantly modifies the structure of dimeric Aβ42. The β-content experienced a substantial decrease with the induction of Au55. The turn and coil-contents are also decreased under the effects of the gold nanoparticle. However, the α-content of the dimer exhibited a rigid increase. The influence of gold nanoparticles on the dimeric Aβ42 differs significantly from that of silver nanoparticles, which reduce β-content but increase coil-, turn-, and α-contents. The nature of inhibition will be discussed, in which the vdW interaction plays a driving force for the interaction between the Aβ42 dimer and the gold nanoparticle.
Collapse
Affiliation(s)
- Quynh Mai Thai
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 11307, Vietnam
| | - Dung Do Thi Mai
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 11021, Vietnam
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
| |
Collapse
|
6
|
Zhang L, Lin J, Xiang K, Shi T, Guo B. Omnidirectional improvement of mitochondrial health in Alzheimer's disease by multi-targeting engineered activated neutrophil exosomes. J Control Release 2024; 376:470-487. [PMID: 39433157 DOI: 10.1016/j.jconrel.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Alzheimer's disease (AD) is one kind of devasting neurodegenerative disorders affecting over 50 million people worldwide. Multi-targeted therapy has emerged as a new treatment for diagnosing and alleviating the pathogenesis process of AD; however, the current strategy is limited by its unsatisfactory efficiency. In our study, engineered activated neutrophil-derived exosomes (MP@Cur-MExo) were developed to improve the mitochondrial function in neurons by targeting and alleviating Aβ-induced neurotoxicity. MP@Cur-MExo are exosomes derived from IL-8-stimulated neutrophils decorated with mitochondria targeting ligand and Aβ targeted ligand modified SPION. Engineered exosomes can be cleaved by matrix metallopeptidase-2, which is overexpressed in the AD brain. Consequently, the released SPION and Curcumin-loaded engineered exosomes collaboratively protected neuron cells against Aβ-induced mitochondrial deficiency. In addition, MP@Cur-MExo effectively accumulated in the inflamed region of AD brain at an early stage, allowing early diagnosis of AD through bimodal (MRI/IVIS) imaging. Importantly, in a mouse model at an early stage of AD, intravenously injected MP@Cur-MExo restored mitochondrial function and reduced Aβ-induced mitochondrial damage, thereby attenuating AD progression. In conclusion, our designed engineered exosomes demonstrated that omnidirectional improvement of mitochondrial function can serve as a novel and practical approach for the diagnosis and treatment of neurodegenerative diseases. This study also reveals a promising therapeutic agent for impeding AD progression for future clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Jiaquan Lin
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Kai Xiang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianshu Shi
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Baosheng Guo
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
7
|
Patel SP, Nikam T, Sreepathi B, Karankar VS, Jaiswal A, Vardhan SV, Rana A, Toga V, Srivastava N, Saraf SA, Awasthi S. Unraveling the Molecular Jam: How Crowding Shapes Protein Aggregation in Neurodegenerative Disorders. ACS Chem Biol 2024; 19:2118-2130. [PMID: 39373539 DOI: 10.1021/acschembio.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Protein misfolding and aggregation are the hallmarks of neurodegenerative diseases including Huntington's disease, Parkinson's disease, Alzheimer's disease, and prion diseases. A crowded cellular environment plays a crucial role in modulating protein aggregation processes in vivo and the pathological aggregation of proteins linked to different neurodegenerative disorders. Here, we review recent studies examining the effects of various crowding agents, such as polysaccharides, polyethylene glycol, and proteins like BSA and lysozyme on the behaviors of aggregation of several amyloidogenic peptides and proteins, including amylin, huntingtin, tau, α-synuclein, prion, and amyloid-β. We also summarize how the aggregation kinetics, thermodynamic stability, and morphology of amyloid fibrils are altered significantly in the presence of crowding agents. In addition, we also discuss the molecular basis underlying the modulation of amyloidogenic aggregation, focusing on changes in the protein conformation, and the nucleation mechanism. The molecular understanding of the effects of macromolecular crowding on amyloid aggregation is essential for revealing disease pathologies and identifying possible therapeutic targets. Thus, this review offers a perspective on the complex interplay between protein aggregation and the crowded cellular environment in vivo and explains the relevance of crowding in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shashi Prakash Patel
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Tejas Nikam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Bhargavi Sreepathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Vijayshree S Karankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Ankita Jaiswal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Salumuri Vamsi Vardhan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Anika Rana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Vanshu Toga
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| | - Saurabh Awasthi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
8
|
Ziaunys M, Sulskis D, Veiveris D, Kopustas A, Snieckute R, Mikalauskaite K, Sakalauskas A, Tutkus M, Smirnovas V. Liquid-liquid phase separation of alpha-synuclein increases the structural variability of fibrils formed during amyloid aggregation. FEBS J 2024; 291:4522-4538. [PMID: 39116032 DOI: 10.1111/febs.17244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Protein liquid-liquid phase separation (LLPS) is a rapidly emerging field of study on biomolecular condensate formation. In recent years, this phenomenon has been implicated in the process of amyloid fibril formation, serving as an intermediate step between the native protein transition into their aggregated state. The formation of fibrils via LLPS has been demonstrated for a number of proteins related to neurodegenerative disorders, as well as other amyloidoses. Despite the surge in amyloid-related LLPS studies, the influence of protein condensate formation on the end-point fibril characteristics is still far from fully understood. In this work, we compare alpha-synuclein aggregation under different conditions, which promote or negate its LLPS and examine the differences between the formed aggregates. We show that alpha-synuclein phase separation generates a wide variety of assemblies with distinct secondary structures and morphologies. The LLPS-induced structures also possess higher levels of toxicity to cells, indicating that biomolecular condensate formation may be a critical step in the appearance of disease-related fibril variants.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Darius Sulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Dominykas Veiveris
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Aurimas Kopustas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | | | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| | - Marijonas Tutkus
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Lithuania
| |
Collapse
|
9
|
Fan X, Zhang X, Yan J, Xu H, Zhao W, Ding F, Huang F, Sun Y. Computational Investigation of Coaggregation and Cross-Seeding between Aβ and hIAPP Underpinning the Cross-Talk in Alzheimer's Disease and Type 2 Diabetes. J Chem Inf Model 2024; 64:5303-5316. [PMID: 38921060 PMCID: PMC11339732 DOI: 10.1021/acs.jcim.4c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The coexistence of amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) in the brain and pancreas is associated with an increased risk of Alzheimer's disease (AD) and type 2 diabetes (T2D) due to their coaggregation and cross-seeding. Despite this, the molecular mechanisms underlying their interaction remain elusive. Here, we systematically investigated the cross-talk between Aβ and hIAPP using atomistic discrete molecular dynamics (DMD) simulations. Our results revealed that the amyloidogenic core regions of both Aβ (Aβ10-21 and Aβ30-41) and hIAPP (hIAPP8-20 and hIAPP22-29), driving their self-aggregation, also exhibited a strong tendency for cross-interaction. This propensity led to the formation of β-sheet-rich heterocomplexes, including potentially toxic β-barrel oligomers. The formation of Aβ and hIAPP heteroaggregates did not impede the recruitment of additional peptides to grow into larger aggregates. Our cross-seeding simulations demonstrated that both Aβ and hIAPP fibrils could mutually act as seeds, assisting each other's monomers in converting into β-sheets at the exposed fibril elongation ends. The amyloidogenic core regions of Aβ and hIAPP, in both oligomeric and fibrillar states, exhibited the ability to recruit isolated peptides, thereby extending the β-sheet edges, with limited sensitivity to the amino acid sequence. These findings suggest that targeting these regions by capping them with amyloid-resistant peptide drugs may hold potential as a therapeutic approach for addressing AD, T2D, and their copathologies.
Collapse
Affiliation(s)
- Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhui Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
10
|
Bárcenas O, Kuriata A, Zalewski M, Iglesias V, Pintado-Grima C, Firlik G, Burdukiewicz M, Kmiecik S, Ventura S. Aggrescan4D: structure-informed analysis of pH-dependent protein aggregation. Nucleic Acids Res 2024; 52:W170-W175. [PMID: 38738618 PMCID: PMC11223845 DOI: 10.1093/nar/gkae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Protein aggregation is behind the genesis of incurable diseases and imposes constraints on drug discovery and the industrial production and formulation of proteins. Over the years, we have been advancing the Aggresscan3D (A3D) method, aiming to deepen our comprehension of protein aggregation and assist the engineering of protein solubility. Since its inception, A3D has become one of the most popular structure-based aggregation predictors because of its performance, modular functionalities, RESTful service for extensive screenings, and intuitive user interface. Building on this foundation, we introduce Aggrescan4D (A4D), significantly extending A3D's functionality. A4D is aimed at predicting the pH-dependent aggregation of protein structures, and features an evolutionary-informed automatic mutation protocol to engineer protein solubility without compromising structure and stability. It also integrates precalculated results for the nearly 500,000 jobs in the A3D Model Organisms Database and structure retrieval from the AlphaFold database. Globally, A4D constitutes a comprehensive tool for understanding, predicting, and designing solutions for specific protein aggregation challenges. The A4D web server and extensive documentation are available at https://biocomp.chem.uw.edu.pl/a4d/. This website is free and open to all users without a login requirement.
Collapse
Affiliation(s)
- Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Aleksander Kuriata
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Mateusz Zalewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, 15-369 Białystok, Poland
| | - Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Grzegorz Firlik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, 15-369 Białystok, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Rejc L, Knez D, Molina-Aguirre G, Espargaró A, Kladnik J, Meden A, Blinc L, Lozinšek M, Jansen-van Vuuren RD, Rogan M, Martek BA, Mlakar J, Dremelj A, Petrič A, Gobec S, Sabaté R, Bresjanac M, Pinter B, Košmrlj J. Probing Alzheimer's pathology: Exploring the next generation of FDDNP analogues for amyloid β detection. Biomed Pharmacother 2024; 175:116616. [PMID: 38723516 DOI: 10.1016/j.biopha.2024.116616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Fluorescent probes are a powerful tool for imaging amyloid β (Aβ) plaques, the hallmark of Alzheimer's disease (AD). Herein, we report the synthesis and comprehensive characterization of 21 novel probes as well as their optical properties and binding affinities to Aβ fibrils. One of these dyes, 1Ae, exhibited several improvements over FDDNP, an established biomarker for Aβ- and Tau-aggregates. First, 1Ae had large Stokes shifts (138-213 nm) in various solvents, thereby reducing self-absorption. With a high quantum yield ratio (φ(dichloromethane/methanol) = 104), 1Ae also ensures minimal background emission in aqueous environments and high sensitivity. In addition, compound 1Ae exhibited low micromolar binding affinity to Aβ fibrils in vitro (Kd = 1.603 µM), while increasing fluorescence emission (106-fold) compared to emission in buffer alone. Importantly, the selective binding of 1Ae to Aβ1-42 fibrils was confirmed by an in cellulo assay, supported by ex vivo fluorescence microscopy of 1Ae on postmortem AD brain sections, allowing unequivocal identification of Aβ plaques. The intermolecular interactions of fluorophores with Aβ were elucidated by docking studies and molecular dynamics simulations. Density functional theory calculations revealed the unique photophysics of these rod-shaped fluorophores, with a twisted intramolecular charge transfer (TICT) excited state. These results provide valuable insights into the future application of such probes as potential diagnostic tools for AD in vitro and ex vivo such as determination of Aβ1-42 in cerebrospinal fluid or blood.
Collapse
Affiliation(s)
- Luka Rejc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | | | - Alba Espargaró
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Anže Meden
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Lana Blinc
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia
| | - Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matic Rogan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Bruno Aleksander Martek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jernej Mlakar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, Ljubljana SI-1000, Slovenia
| | - Ana Dremelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Andrej Petrič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia.
| | - Raimon Sabaté
- Faculty of Pharmacy, Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Section of Physical-Chemistry, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain.
| | - Mara Bresjanac
- Laboratory of Neural Plasticity and Regeneration (LNPR), Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Balazs Pinter
- The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
12
|
Thai QM, Tran PT, Phung HTT, Pham MQ, Ngo ST. Silver nanoparticles alter the dimerization of Aβ 42 studied by REMD simulations. RSC Adv 2024; 14:15112-15119. [PMID: 38720971 PMCID: PMC11078207 DOI: 10.1039/d4ra02197e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 01/06/2025] Open
Abstract
The aggregation of amyloid beta (Aβ) peptides is associated with the development of Alzheimer's disease (AD). However, there has been a growing belief that the oligomerization of Aβ species in different environments has a neurotoxic effect on the patient's brain, causing damage. It is necessary to comprehend the compositions of Aβ oligomers in order to develop medications that may effectively inhibit these neurotoxic forms that affect the nervous system of AD patients. Thus, dissociation or inhibition of Aβ aggregation may be able to prevent AD. To date, the search for traditional agents and biomolecules has largely been unsuccessful. In this context, nanoparticles have emerged as potential candidates to directly inhibit the formation of Aβ oligomers. The oligomerization of the dimeric Aβ peptides with or without the influence of a silver nanoparticle was thus investigated using temperature replica-exchange molecular dynamics (REMD) simulations. The physical insights into the dimeric Aβ oligomerization were clarified by analyzing intermolecular contact maps, the free energy landscape of the dimeric oligomer, secondary structure terms, etc. The difference in obtained metrics between Aβ with or without a silver nanoparticle provides a picture of the influence of silver nanoparticles on the oligomerization process. The underlying mechanisms that are involved in altering Aβ oligomerization will be discussed. The obtained results may play an important role in searching for Aβ inhibitor pathways.
Collapse
Affiliation(s)
- Quynh Mai Thai
- Laboratory of Biophysics, Institute of Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Huong T T Phung
- NTT Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Son Tung Ngo
- Laboratory of Biophysics, Institute of Advanced Study in Technology, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Pharmacy, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
13
|
Dec R, Dzwolak W, Winter R. From a Droplet to a Fibril and from a Fibril to a Droplet: Intertwined Transition Pathways in Highly Dynamic Enzyme-Modulated Peptide-Adenosine Triphosphate Systems. J Am Chem Soc 2024; 146:6045-6052. [PMID: 38394622 DOI: 10.1021/jacs.3c13152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Many cellular coassemblies of proteins and polynucleotides facilitate liquid-liquid phase separation (LLPS) and the subsequent self-assembly of disease-associated amyloid fibrils within the liquid droplets. Here, we explore the dynamics of coupled phase and conformational transitions of model adenosine triphosphate (ATP)-binding peptides, ACC1-13Kn, consisting of the potent amyloidogenic fragment of insulin's A-chain (ACC1-13) merged with oligolysine segments of various lengths (Kn, n = 16, 24, 40). The self-assembly of ATP-stabilized amyloid fibrils is preceded by LLPS for peptides with sufficiently long oligolysine segments. The two-component droplets and fibrils are in dynamic equilibria with free ATP and monomeric peptides, which makes them susceptible to ATP-hydrolyzing apyrase and ACC1-13Kn-digesting proteinase K. Both enzymes are capable of rapid disassembly of amyloid fibrils, producing either monomers of the peptide (apyrase) or free ATP released together with cleaved-off oligolysine segments (proteinase K). In the latter case, the enzyme-sequestered Kn segments form subsequent droplets with the co-released ATP, resulting in an unusual fibril-to-droplet transition. In support of the highly dynamic nature of the aggregate-monomer equilibria, addition of superstoichiometric amounts of free peptide to the ACC1-13Kn-ATP coaggregate causes its disassembly. Our results show that the droplet state is not merely an intermediate phase on the pathway to the amyloid aggregate but may also constitute the final phase of a complex amyloidogenic protein misfolding scenario rich in highly degraded protein fragments incompetent to transition again into fibrils.
Collapse
Affiliation(s)
- Robert Dec
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, Dortmund 44227, Germany
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, Warsaw 02-093, Poland
| | - Roland Winter
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, Dortmund 44227, Germany
| |
Collapse
|
14
|
Shi Y, Sun Y, Li C, Wang S, Wang J, Shi H. Edge Substitution Effects of Histidine Tautomerization Behaviors on the Structural Properties and Aggregation Properties of Aβ(1-42) Mature Fibril. ACS Chem Neurosci 2024; 15:1055-1062. [PMID: 38379141 DOI: 10.1021/acschemneuro.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Histidine behaviors play critical roles in folding and misfolding processes due to the changes in net charge and the various N/N-H orientations on imidazole rings. However, the effect of histidine tautomerization (HIE (Nε-H, ε) and HID (Nδ-H, δ) states) behaviors on the edge chain of Aβ mature fibrils remains inadequately understood, which is critical for finding a strategy to disturb fibril elongation and growth. In the current study, eight independent molecular dynamics simulations were conducted to investigate such impacts on the structural and aggregation properties. Our results from three different binding models revealed that the binding contributions of edge substitution effects are primarily located between chains 1 and 2. Histidine states significantly influence the secondary structure of each domain. Further analysis confirmed that the C1_H6//C1_E11 intrachain interaction is essential in maintaining the internal stability of chain 1, while the C1_H13//C2_H13 and C1_H14//C2_H13 interchain interactions are critical in maintaining the interchain stability of the fibril structure. Our subsequent analysis revealed that the current edge substitution leads to the loss of the C1_H13//C1_E11 intrachain and C1_H13//C2_H14 interchain interactions. The N-terminal regularity was significantly directly influenced by histidine states, particularly by the residue of C1_H13. Our study provides valuable insights into the effect of histidine behaviors on the edge chain of Aβ mature fibril, advancing our understanding of the histidine behavior hypothesis in misfolding diseases.
Collapse
Affiliation(s)
- Yaru Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Changgui Li
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| | - Jinping Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, Shandong, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030000, China
| |
Collapse
|
15
|
Sarkar D, Saha S, Krishnamoorthy J, Bhunia A. Application of singular value decomposition analysis: Insights into the complex mechanisms of amyloidogenesis. Biophys Chem 2024; 306:107157. [PMID: 38184980 DOI: 10.1016/j.bpc.2023.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Amyloidogenesis, with its multifaceted nature spanning from peptide self-assembly to membrane-mediated structural transitions, presents a significant challenge for the interdisciplinary scientific community. Here, we emphasize on how Singular Value Decomposition (SVD) can be employed to reveal hidden patterns and dominant modes of interaction that govern the complex process of amyloidogenesis. We first utilize SVD analysis on Circular Dichroism (CD) spectral datasets to identify the intermediate structural species emerging during peptide-membrane interactions and to determine binding constants more precisely than conventional methods. We investigate the monomer loss kinetics associated with peptide self-assembly using Nuclear Magnetic Resonance (NMR) dataset and determine the global kinetic parameters through SVD. Furthermore, we explore the seeded growth of amyloid fibrils by analyzing a time-dependent NMR dataset, shedding light on the kinetic intricacies of this process. Our analysis uncovers two distinct states in the aggregation of Aβ40 and pinpoints key residues responsible for this seeded growth. To strengthen our findings and enhance their robustness, we validate those using simulated data, thereby highlighting the physical interpretations derived from SVD. Overall, SVD analysis offers a model-free, global kinetic perspective, enabling the selection of optimal kinetic models. This study not only contributes valuable insights into the dynamics but also highlights the versatility of SVD in unravelling complex processes of amyloidogenesis.
Collapse
Affiliation(s)
- Dibakar Sarkar
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India
| | | | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, Sector V, Kolkata 700 091, India.
| |
Collapse
|
16
|
Gao H, Chen J, Huang Y, Zhao R. Advances in targeted tracking and detection of soluble amyloid-β aggregates as a biomarker of Alzheimer's disease. Talanta 2024; 268:125311. [PMID: 37857110 DOI: 10.1016/j.talanta.2023.125311] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Misfolding and aggregation of amyloid-β (Aβ) peptides are key hallmarks of Alzheimer's disease (AD). With accumulating evidence suggesting that different Aβ species have varied neurotoxicity and implications in AD development, the discovery of affinity ligands and analytical approaches to selective distinguish, detect, and monitor Aβ becomes an active research area. Remarkable advances have been achieved, which not only promote our understanding of the biophysical chemistry of the protein aggregation during neurodegeneration, but also provide promising tools for early detection of the disease. In view of this, we summarize the recent progress in selective and sensitive approaches for tracking and detection of Aβ species. Specific attentions are given to soluble Aβ oligomers, due to their crucial roles in AD development and occurrence at early stages. The design principle, performance of targeting units, and their cooperative effects with signal reporters for Aβ analysis are discussed. The applications of the novel targeting probes and sensing systems for dynamic monitoring oligomerization, measuring Aβ in biosamples and in vivo imaging in brain are summarized. Finally, the perspective and challenges are discussed regarding the future development of Aβ-targeting analytical tools to explore the unknown field to contribute to the early diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Zhang R, Jalali S, Dias CL, Haataja MP. Growth kinetics of amyloid-like fibrils: An integrated atomistic simulation and continuum theory approach. PNAS NEXUS 2024; 3:pgae045. [PMID: 38725528 PMCID: PMC11079572 DOI: 10.1093/pnasnexus/pgae045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/19/2024] [Indexed: 05/12/2024]
Abstract
Amyloid fibrils have long been associated with many neurodegenerative diseases. The conventional picture of the formation and proliferation of fibrils from unfolded proteins comprises primary and secondary nucleation of oligomers followed by elongation and fragmentation thereof. In this work, we first employ extensive all-atom molecular dynamics (MD) simulations of short peptides to investigate the governing processes of fibril growth at the molecular scale. We observe that the peptides in the bulk solution can bind onto and subsequently diffuse along the fibril surface, which leads to fibril elongation via either bulk- or surface-mediated docking mechanisms. Then, to guide the quantitative interpretation of these observations and to provide a more comprehensive picture of the growth kinetics of single fibrils, a continuum model which incorporates the key processes observed in the MD simulations is formulated. The model is employed to investigate how relevant physical parameters affect the kinetics of fibril growth and identify distinct growth regimes. In particular, it is shown that fibrils which strongly bind peptides may undergo a transient exponential growth phase in which the entire fibril surface effectively acts as a sink for peptides. We also demonstrate how the relevant model parameters can be estimated from the MD trajectories. Our results provide compelling evidence that the overall fibril growth rates are determined by both bulk and surface peptide fluxes, thereby contributing to a more fundamental understanding of the growth kinetics of amyloid-like fibrils.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Cristiano Luis Dias
- Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
18
|
Nandi S, Sarkar N. Interactions between Lipid Vesicle Membranes and Single Amino Acid Fibrils: Probable Origin of Specific Neurological Disorders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1971-1987. [PMID: 38240221 DOI: 10.1021/acs.langmuir.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Amyloid fibrils are known to be responsible for several neurological disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), etc. For decades, mostly proteins and peptide-based amyloid fibrils have been focused on, and the topic has acknowledged the rise, development, understanding of, and controversy, as well. However, the single amino acid based amyloid fibrils, responsible for several disorders, such as phenylketonuria, tyrosenimia type II, hypermethioninemia, etc., have gotten scientific attention lately. To understand the molecular level pathogenesis of such disorders originated due to the accumulation of single amino acid-based amyloid fibrils, interaction of these fibrils with phospholipid vesicle membranes is found to be an excellent cell-free in vitro setup. Based on such an in vitro setup, these fibrils show a generic mechanism of membrane insertion driven by electrostatic and hydrophobic effects inside the membrane that reduces the integral rigidity of the membrane. Alteration of such fundamental properties of the membrane, therefore, might be referred to as one of the prime pathological factors for the development of these neurological disorders. Hence, such interactions must be investigated in cellular and intracellular compartments to design suitable therapeutic modulators against fibrils.
Collapse
Affiliation(s)
- Sourav Nandi
- Yale School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
19
|
Nayak V, Patra S, Rout S, Jena AB, Sharma R, Pattanaik KP, Singh J, Pandey SS, Singh RP, Majhi S, Singh KR, Kerry RG. Regulation of neuroinflammation in Alzheimer's disease via nanoparticle-loaded phytocompounds with anti-inflammatory and autophagy-inducing properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155150. [PMID: 37944239 DOI: 10.1016/j.phymed.2023.155150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/23/2023] [Accepted: 10/14/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by neuroinflammation linked to amyloid β (Aβ) aggregation and phosphorylated tau (τ) protein in neurofibrillary tangles (NFTs). Key elements in Aβ production and NFT assembly, like γ-secretase and p38 mitogen-activated protein kinase (p38MAPK), contribute to neuroinflammation. In addition, impaired proteosomal and autophagic pathways increase Aβ and τ aggregation, leading to neuronal damage. Conventional neuroinflammation drugs have limitations due to unidirectional therapeutic approaches and challenges in crossing the Blood-Brain Barrier (BBB). Clinical trials for non-steroidal anti-inflammatory drugs (NSAIDs) and other therapeutics remain uncertain. Novel strategies addressing the complex pathogenesis and BBB translocation are needed to effectively tackle AD-related neuroinflammation. PURPOSE The current scenario demands for a much-sophisticated theranostic measures which could be achieved via customized engineering and designing of novel nanotherapeutics. As, these therapeutics functions as a double edge sword, having the efficiency of unambiguous targeting, multiple drug delivery and ability to cross BBB proficiently. METHODS Inclusion criteria involve selecting recent, English-language studies from the past decade (2013-2023) that explore the regulation of neuroinflammation in neuroinflammation, Alzheimer's disease, amyloid β, tau protein, nanoparticles, autophagy, and phytocompounds. Various study types, including clinical trials, experiments, and reviews, were considered. Exclusion criteria comprised non-relevant publication types, studies unrelated to Alzheimer's disease or phytocompounds, those with methodological flaws, duplicates, and studies with inaccessible data. RESULTS In this study, polymeric nanoparticles loaded with specific phytocompounds and coated with an antibody targeting the transferrin receptor (anti-TfR) present on BBB. Thereafter, the engineered nanoparticles with the ability to efficiently traverse the BBB and interact with target molecules within the brain, could induce autophagy, a cellular process crucial for neuronal health, and exhibit potent anti-inflammatory effects. Henceforth, the proposed combination of desired phytocompounds, polymeric nanoparticles, and anti-TfR coating presents a promising approach for targeted drug delivery to the brain, with potential implications in neuroinflammatory conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Vinayak Nayak
- ICAR- National Institute on Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha (752050), India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra (410210), India
| | - Shrushti Rout
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha (751004), India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (02115), United States of America
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Kali Prasad Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu (8080196), Japan
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sanatan Majhi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (02115), United States of America
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu (8080196), Japan.
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha (751004), India.
| |
Collapse
|
20
|
Sahoo RK, Tripathi SK, Biswal S, Panda M, Mathapati SS, Biswal BK. Transforming native exosomes to engineered drug vehicles: A smart solution to modern cancer theranostics. Biotechnol J 2024; 19:e2300370. [PMID: 38375578 DOI: 10.1002/biot.202300370] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024]
Abstract
Exosomes have been the hidden treasure of the cell in terms of cellular interactions, transportation and therapy. The native exosomes (NEx) secreted by the parent cells hold promising aspects in cancer diagnosis and therapy. NEx has low immunogenicity, high biocompatibility, low toxicity and high stability which enables them to be an ideal prognostic biomarker in cancer diagnosis. However, due to heterogeneity, NEx lacks specificity and accuracy to be used as therapeutic drug delivery vehicle in cancer therapy. Transforming these NEx with their innate structure and multiple receptors to engineered exosomes (EEx) can provide better opportunities in the field of cancer theranostics. The surface of the NEx exhibits numeric receptors which can be modified to pave the direction of its therapeutic drug delivery in cancer therapy. Through surface membrane, EEx can be modified with increased drug loading potentiality and higher target specificity to act as a therapeutic nanocarrier for drug delivery. This review provides insights into promising aspects of NEx as a prognostic biomarker and drug delivery tool along with its need for the transformation to EEx in cancer theranostics. We have also highlighted different methods associated with NEx transformations, their nano-bio interaction with recipient cells and major challenges of EEx for clinical application in cancer theranostics.
Collapse
Affiliation(s)
- Rajeev Kumar Sahoo
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Surya Kant Tripathi
- Lineberger Comprehensive Cancer Centre, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Stuti Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Santosh S Mathapati
- Translational Health Science and Technology Institute Faridabad, Faridabad, Haryana, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
21
|
Alvarez AB, Rodríguez PEA, Fidelio GD, Caruso B. Aβ Amyloid Fibers Drastically Alter the Topography and Mechanical Properties of Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18923-18934. [PMID: 38079396 DOI: 10.1021/acs.langmuir.3c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Alzheimer's disease (AD) is related to the fibrillation of the Aβ peptides at neuronal membranes, a process that depends on the lipid composition and may impart different physical states to the membrane. In the present work, we study the properties of the Aβ peptide when mixed with a zwitterionic lipid (DMPC), using the Langmuir monolayer technique as an approach to control membrane physical conditions. First, we build on previous characterizations of pure Aβ monolayers and observe that, in addition to high shear, these films present a pronounced compressional hysteresis. When Aβ is assembled with DMPC in a binary film, the resulting membranes become heterogeneous, with a peptide-enriched phase distributed in a network-like pattern, and they exhibit a lateral transition that depends on the Aβ content. At lower peptide proportions, the films segregate into two well-defined phases: one consisting of lipids and another enriched with peptides. The reflectivity of these phases differs from that obtained for pure Aβ films. Thus, the formed fibers effectively cover most of the interface area and remain stable at higher pressures (from 20 to 30 mN m-1 depending on Aβ content) compared to pure peptide films (17 mN m-1). Furthermore, such structures induce a compressional hysteresis in the film, similar to that of pure peptide films (which is nonexistent in the pure lipid monolayer), even at low peptide proportions. We claim that the mechanical properties at the interface are governed by the size of the fibril-like structures. Based on the low molar fractions and surface packing at which these phenomena were observed, we postulate that as a consequence of peptide intermolecular interactions, Aβ may have drastic effects on the molecular arrangement and mechanical properties of a lipid membrane.
Collapse
Affiliation(s)
- Alain Bolaño Alvarez
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP5000, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET-Universidad Nacional de Córdoba, Córdoba CP5000, Argentina
- Department of Dermatology and Venerology, Aalborg University Hospital, Aalborg, DK-9000 Denmark
| | | | - Gerardo D Fidelio
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP5000, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET-Universidad Nacional de Córdoba, Córdoba CP5000, Argentina
| | - Benjamín Caruso
- Cátedra de Química Biológica, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP5000, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET, Universidad Nacional de Córdoba, Córdoba CP5000, Argentina
| |
Collapse
|
22
|
Le NTK, Kang EJ, Park JH, Kang K. Catechol-Amyloid Interactions. Chembiochem 2023; 24:e202300628. [PMID: 37850717 DOI: 10.1002/cbic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
This review introduces multifaceted mutual interactions between molecules containing a catechol moiety and aggregation-prone proteins. The complex relationships between these two molecular species have previously been elucidated primarily in a unidirectional manner, as demonstrated in cases involving the development of catechol-based inhibitors for amyloid aggregation and the elucidation of the role of functional amyloid fibers in melanin biosynthesis. This review aims to consolidate scattered clues pertaining to catechol-based amyloid inhibitors, functional amyloid scaffold of melanin biosynthesis, and chemically designed peptide fibers for providing chemical insights into the role of the local three-dimensional orientation of functional groups in manifesting such interactions. These orientations may play crucial, yet undiscovered, roles in various supramolecular structures.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul, 03760, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| |
Collapse
|
23
|
Abstract
The formation of amyloid fibrils is a complex phenomenon that remains poorly understood at the atomic scale. Herein, we perform extended unbiased all-atom simulations in explicit solvent of a short amphipathic peptide to shed light on the three mechanisms accounting for fibril formation, namely, nucleation via primary and secondary mechanisms, and fibril growth. We find that primary nucleation takes place via the formation of an intermediate state made of two laminated β-sheets oriented perpendicular to each other. The amyloid fibril spine subsequently emerges from the rotation of these β-sheets to account for peptides that are parallel to each other and perpendicular to the main axis of the fibril. Growth of this spine, in turn, takes place via a dock-and-lock mechanism. We find that peptides dock onto the fibril tip either from bulk solution or after diffusing on the fibril surface. The latter docking pathway contributes significantly to populate the fibril tip with peptides. We also find that side chain interactions drive the motion of peptides in the lock phase during growth, enabling them to adopt the structure imposed by the fibril tip with atomic fidelity. Conversely, the docked peptide becomes trapped in a local free energy minimum when docked-conformations are sampled randomly. Our simulations also highlight the role played by nonpolar fibril surface patches in catalyzing and orienting the formation of small cross-β structures. More broadly, our simulations provide important new insights into the pathways and interactions accounting for primary and secondary nucleation as well as the growth of amyloid fibrils.
Collapse
Affiliation(s)
- Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Ruoyao Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
24
|
Sharma T, Kundu N, Kaur S, Shankaraswamy J, Saxena S. Why to target G-quadruplexes using peptides: Next-generation G4-interacting ligands. J Pept Sci 2023; 29:e3491. [PMID: 37009771 DOI: 10.1002/psc.3491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Guanine-rich oligonucleotides existing in both DNA and RNA are able to fold into four-stranded DNA secondary structures via Hoogsteen type hydrogen-bonding, where four guanines self-assemble into a square planar arrangement, which, when stacked upon each other, results in the formation of higher-order structures called G-quadruplexes. Their distribution is not random; they are more frequently present at telomeres, proto-oncogenic promoters, introns, 5'- and 3'-untranslated regions, stem cell markers, ribosome binding sites and so forth and are associated with various biological functions, all of which play a pivotal role in various incurable diseases like cancer and cellular ageing. Several studies have suggested that G-quadruplexes could not regulate biological processes by themselves; instead, various proteins take part in this regulation and can be important therapeutic targets. There are certain limitations in using whole G4-protein for therapeutics purpose because of its high manufacturing cost, laborious structure prediction, dynamic nature, unavailability for oral administration due to its degradation in the gut and inefficient penetration to reach the target site because of the large size. Hence, biologically active peptides can be the potential candidates for therapeutic intervention instead of the whole G4-protein complex. In this review, we aimed to clarify the biological roles of G4s, how we can identify them throughout the genome via bioinformatics, the proteins interacting with G4s and how G4-interacting peptide molecules may be the potential next-generation ligands for targeting the G4 motifs located in biologically important regions.
Collapse
Affiliation(s)
- Taniya Sharma
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Nikita Kundu
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Sarvpreet Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Jadala Shankaraswamy
- Department of Fruit Science, College of Horticulture, Mojerla, Sri Konda Laxman Telangana State Horticultural University, Budwel, Telangana, India
| | - Sarika Saxena
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
25
|
Oliveri V. Unveiling the Effects of Copper Ions in the Aggregation of Amyloidogenic Proteins. Molecules 2023; 28:6446. [PMID: 37764220 PMCID: PMC10537474 DOI: 10.3390/molecules28186446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
26
|
Basha S, Mukunda DC, Rodrigues J, Gail D'Souza M, Gangadharan G, Pai AR, Mahato KK. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res Rev 2023; 90:102017. [PMID: 37468112 DOI: 10.1016/j.arr.2023.102017] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Proteins are the most common biological macromolecules in living system and are building blocks of life. They are extremely dynamic in structure and functions. Due to several modifications, proteins undergo misfolding, leading to aggregation and thereby developing neurodegenerative and systemic diseases. Understanding the pathology of these diseases and the techniques used to diagnose them is therefore crucial for their effective management . There are several techniques, currently being in use to diagnose them and those will be discussed in this review. AIM/OBJECTIVES Current review aims to discuss an overview of protein aggregation and the underlying mechanisms linked to neurodegeneration and systemic diseases. Also, the review highlights protein misfolding disorders, their clinical diagnosis, and treatment strategies. METHODOLOGY Literature related to neurodegenerative and systemic diseases was explored through PubMed, Google Scholar, Scopus, and Medline databases. The keywords used for literature survey and analysis are protein aggregation, neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, systemic diseases, protein aggregation mechanisms, etc. DISCUSSION /CONCLUSION: This review summarises the pathogenesis of neurodegenerative and systemic disorders caused by protein misfolding and aggregation. The clinical diagnosis and therapeutic strategies adopted for the management of these diseases are also discussed to aid in a better understanding of protein misfolding disorders. Many significant concerns about the role, characteristics, and consequences of protein aggregates in neurodegenerative and systemic diseases are not clearly understood to date. Regardless of technological advancements, there are still great difficulties in the management and cure of these diseases. Therefore, for better understanding, diagnosis, and treatment of neurodegenerative and systemic diseases, more studies to identify novel drugs that may aid in their treatment and management are required.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
27
|
Rajput S, Pollak R, Huber K, Ebbinghaus S, Nayar D. Ethylene glycol energetically disfavours oligomerization of pseudoisocyanine dyestuffs at crowded concentrations. SOFT MATTER 2023; 19:6399-6413. [PMID: 37580997 DOI: 10.1039/d3sm00564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The intriguing role of the intracellular crowded environment in regulating protein aggregation remains elusive. The convolution of several factors such as the protein sequence-dependence, crowder's shape and size and diverse intermolecular interactions makes it complex to identify systematic trends. One of the ways to simplify the problem is to study a synthetic model for self-assembling proteins. In this study, we examine the aggregation behaviour of the cationic pseudoisocyanine chloride (PIC) dyestuff which is known to self-assemble and form fibril-like J-aggregates in aqueous solutions, similar to those formed by amyloid-forming proteins. Prior experimental studies have shown that polyethylene glycol impedes and Ficoll-400 promotes the self-assembly of PIC dyes. To achieve molecular insights, we examine the effect of crowding by ethylene glycol on the solvation thermodynamics of oligomerization of dyes into H-type and J-type oligomers using extensive molecular dynamics simulations. The binding free energy calculations show that the formation of J-oligomers is more favourable than that of H-oligomers in water. The stability of H- and J- tetramers and pentamers decreases in crowded solutions. The formation of oligomers is supported by the favourable change in dye-solvent interaction energy in both pure water and aqueous ethylene glycol solution although it is opposed by the reduced dye-solvent entropy. Ethylene glycol, as a molecular crowder, disfavours the H- as well as J-oligomerization via preferential binding to the dye oligomers. An unfavourable change in dye-crowder and dye-dye interaction energy on dye association makes the H-oligomer formation less favourable in crowded solution than in pure water solution. In the case of J-oligomers, however, the unfavourable change in dye-crowder interaction energy primarily contributes to making total dye-solvent energy unfavourable. The results are supported by isothermal titration calorimetry measurements where the binding of ethylene glycol to PIC molecules is found to be endothermic. The results provide an emerging view that a crowded environment can disfavour self-assembly of PIC dyes by interactions with the oligomeric states. The findings have implications in understanding the role of a crowded environment in shaping the free energy landscapes of proteins.
Collapse
Affiliation(s)
- Satyendra Rajput
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Roland Pollak
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38196 Braunschweig, Germany
| | - Klaus Huber
- Department of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38196 Braunschweig, Germany
| | - Divya Nayar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
28
|
Khaled M, Rönnbäck I, Ilag LL, Gräslund A, Strodel B, Österlund N. A Hairpin Motif in the Amyloid-β Peptide Is Important for Formation of Disease-Related Oligomers. J Am Chem Soc 2023; 145:18340-18354. [PMID: 37555670 PMCID: PMC10450692 DOI: 10.1021/jacs.3c03980] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 08/10/2023]
Abstract
The amyloid-β (Aβ) peptide is associated with the development of Alzheimer's disease and is known to form highly neurotoxic prefibrillar oligomeric aggregates, which are difficult to study due to their transient, low-abundance, and heterogeneous nature. To obtain high-resolution information about oligomer structure and dynamics as well as relative populations of assembly states, we here employ a combination of native ion mobility mass spectrometry and molecular dynamics simulations. We find that the formation of Aβ oligomers is dependent on the presence of a specific β-hairpin motif in the peptide sequence. Oligomers initially grow spherically but start to form extended linear aggregates at oligomeric states larger than those of the tetramer. The population of the extended oligomers could be notably increased by introducing an intramolecular disulfide bond, which prearranges the peptide in the hairpin conformation, thereby promoting oligomeric structures but preventing conversion into mature fibrils. Conversely, truncating one of the β-strand-forming segments of Aβ decreased the hairpin propensity of the peptide and thus decreased the oligomer population, removed the formation of extended oligomers entirely, and decreased the aggregation propensity of the peptide. We thus propose that the observed extended oligomer state is related to the formation of an antiparallel sheet state, which then nucleates into the amyloid state. These studies provide increased mechanistic understanding of the earliest steps in Aβ aggregation and suggest that inhibition of Aβ folding into the hairpin conformation could be a viable strategy for reducing the amount of toxic oligomers.
Collapse
Affiliation(s)
- Mohammed Khaled
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Isabel Rönnbäck
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Birgit Strodel
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet − Biomedicum, 171 65 Solna, Sweden
| |
Collapse
|
29
|
Liu L, Li X, Chen N, Chen X, Xing L, Zhou X, Liu S. Influence of cadmium ion on denaturation kinetics of hen egg white-lysozyme under thermal and acidic conditions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122650. [PMID: 36989696 DOI: 10.1016/j.saa.2023.122650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
To study the influence of Cd(II) ions on denaturation kinetics of hen egg white lysozyme (HEWL) under thermal and acidic conditions, spontaneous Raman spectroscopy in conjunction with Thioflavin-T fluorescence, AFM imaging, far-UV circular dichroism spectroscopy, and transmittance assays was conducted. Four distinctive Raman spectral markers for protein tertiary and secondary structures were recorded to follow the kinetics of conformational transformation. Through comparing variations of these markers in the presence or absence of Cd(II) ions, Cd(II) ions show an ability to efficiently accelerate the disruption of tertiary structure, and meanwhile, to promote the direct formation of organized β-sheets from the uncoiling of α-helices by skipping intermediate random coils. More significantly, with the action of Cd(II) ions, the initially resulting oligomers with disordered structures tend to assemble into aggregates with random structures like gels more than amyloid fibrils, along with a so-called "off-pathway" denaturation pathway. Our results advance the in-depth understanding of corresponding ion-specific effects.
Collapse
Affiliation(s)
- Liming Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xinfei Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
30
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
31
|
Chesney AD, Maiti B, Hansmann UHE. SARS-COV-2 spike protein fragment eases amyloidogenesis of α-synuclein. J Chem Phys 2023; 159:015103. [PMID: 37409768 PMCID: PMC10328560 DOI: 10.1063/5.0157331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Parkinson's disease is accompanied by the presence of amyloids in the brain that are formed of α-synuclein chains. The correlation between COVID-19 and the onset of Parkinson's disease led to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, preferentially shifts the ensemble of α-synuclein monomer toward rod-like fibril seeding conformations and, at the same time, differentially stabilizes this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2.
Collapse
Affiliation(s)
- Andrew D. Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Buddhadev Maiti
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Ulrich H. E. Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
32
|
Chesney AD, Maiti B, Hansmann UHE. SARS-COV-2 Spike Protein Fragment eases Amyloidogenesis of α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539715. [PMID: 37214999 PMCID: PMC10197603 DOI: 10.1101/2023.05.06.539715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Parkinson's Disease is accompanied by presence of amyloids in the brain formed of α-synuclein chains. Correlation between COVID-19 and the onset of Parkinson's disease let to the idea that amyloidogenic segments in SARS-COV-2 proteins can induce aggregation of α-synuclein. Using molecular dynamic simulations, we show that the fragment FKNIDGYFKI of the spike protein, which is unique for SARS-COV-2, shifts preferentially the ensemble of α-synuclein monomer towards rod-like fibril seeding conformations, and at the same time stabilizes differentially this polymorph over the competing twister-like structure. Our results are compared with earlier work relying on a different protein fragment that is not specific for SARS-COV-2.
Collapse
|
33
|
Firouzi R, Sowlati-Hashjin S, Chávez-García C, Ashouri M, Karimi-Jafari MH, Karttunen M. Identification of Catechins' Binding Sites in Monomeric A β42 through Ensemble Docking and MD Simulations. Int J Mol Sci 2023; 24:ijms24098161. [PMID: 37175868 PMCID: PMC10179585 DOI: 10.3390/ijms24098161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
The assembly of the amyloid-β peptide (Aβ) into toxic oligomers and fibrils is associated with Alzheimer's disease and dementia. Therefore, disrupting amyloid assembly by direct targeting of the Aβ monomeric form with small molecules or antibodies is a promising therapeutic strategy. However, given the dynamic nature of Aβ, standard computational tools cannot be easily applied for high-throughput structure-based virtual screening in drug discovery projects. In the current study, we propose a computational pipeline-in the framework of the ensemble docking strategy-to identify catechins' binding sites in monomeric Aβ42. It is shown that both hydrophobic aromatic interactions and hydrogen bonding are crucial for the binding of catechins to Aβ42. Additionally, it has been found that all the studied ligands, especially EGCG, can act as potent inhibitors against amyloid aggregation by blocking the central hydrophobic region of Aβ. Our findings are evaluated and confirmed with multi-microsecond MD simulations. Finally, it is suggested that our proposed pipeline, with low computational cost in comparison with MD simulations, is a suitable approach for the virtual screening of ligand libraries against Aβ.
Collapse
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran 1496813151, Iran
| | | | - Cecilia Chávez-García
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mohammad Hossein Karimi-Jafari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran P.O. Box 14155-6619, Iran
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
34
|
Penke B, Szűcs M, Bogár F. New Pathways Identify Novel Drug Targets for the Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:5383. [PMID: 36982456 PMCID: PMC10049476 DOI: 10.3390/ijms24065383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disorder. AD is a complex and multifactorial disease that is responsible for 60-80% of dementia cases. Aging, genetic factors, and epigenetic changes are the main risk factors for AD. Two aggregation-prone proteins play a decisive role in AD pathogenesis: β-amyloid (Aβ) and hyperphosphorylated tau (pTau). Both of them form deposits and diffusible toxic aggregates in the brain. These proteins are the biomarkers of AD. Different hypotheses have tried to explain AD pathogenesis and served as platforms for AD drug research. Experiments demonstrated that both Aβ and pTau might start neurodegenerative processes and are necessary for cognitive decline. The two pathologies act in synergy. Inhibition of the formation of toxic Aβ and pTau aggregates has been an old drug target. Recently, successful Aβ clearance by monoclonal antibodies has raised new hopes for AD treatments if the disease is detected at early stages. More recently, novel targets, e.g., improvements in amyloid clearance from the brain, application of small heat shock proteins (Hsps), modulation of chronic neuroinflammation by different receptor ligands, modulation of microglial phagocytosis, and increase in myelination have been revealed in AD research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary
| |
Collapse
|
35
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
36
|
Bäumer N, Castellanos E, Soberats B, Fernández G. Bioinspired crowding directs supramolecular polymerisation. Nat Commun 2023; 14:1084. [PMID: 36841784 PMCID: PMC9968348 DOI: 10.1038/s41467-023-36540-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/06/2023] [Indexed: 02/27/2023] Open
Abstract
Crowding effects are crucial to maintaining functionality in biological systems, but little is known about their role in analogous artificial counterparts. Within the growing field of supramolecular polymer science, crowding effects have hitherto remained underappreciated. Herein, we show that crowding effects exhibit strong and distinct control over the kinetics, accessible pathways and final outcomes of supramolecular polymerisation processes. In the presence of a pre-formed supramolecular polymer as crowding agent, a model supramolecular polymer dramatically changes its self-assembly behaviour and undergoes a morphological transformation from bundled fibres into flower-like hierarchical assemblies, despite no co-assembly taking place. Notably, this new pathway can only be accessed in crowded environments and when the crowding agent exhibits a one-dimensional morphology. These results allow accessing diverse morphologies and properties in supramolecular polymers and pave the way towards a better understanding of high-precision self-assembly in nature.
Collapse
Affiliation(s)
- Nils Bäumer
- grid.5949.10000 0001 2172 9288Westfälische-Wilhelms Universität Münster, Organisch Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Eduardo Castellanos
- grid.9563.90000 0001 1940 4767Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122 Spain
| | - Bartolome Soberats
- grid.9563.90000 0001 1940 4767Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122 Spain
| | - Gustavo Fernández
- Westfälische-Wilhelms Universität Münster, Organisch Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
37
|
Dec R, Jaworek MW, Dzwolak W, Winter R. Liquid-Droplet-Mediated ATP-Triggered Amyloidogenic Pathway of Insulin-Derived Chimeric Peptides: Unraveling the Microscopic and Molecular Processes. J Am Chem Soc 2023; 145:4177-4186. [PMID: 36762833 DOI: 10.1021/jacs.2c12611] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Disease-associated progression of protein dysfunction is typically determined by an interplay of transition pathways leading to liquid-liquid phase separation (LLPS) and amyloid fibrils. As LLPS introduces another layer of complexity into fibrillization of metastable proteins, a need for tunable model systems to study these intertwined processes has emerged. Here, we demonstrate the LLPS/fibrillization properties of a family of chimeric peptides, ACC1-13Kn, in which the highly amyloidogenic fragment of insulin (ACC1-13) is merged with oligolysine segments of various lengths (Kn, n = 8, 16, 24, 32, 40). LLPS and fibrillization of ACC1-13Kn are triggered by ATP through Coulombic interactions with Kn fragments. ACC1-13K8 and ACC1-13K16 form fibrils after a short lag phase without any evidence of LLPS. However, in the case of the three longest peptides, ATP triggers instantaneous LLPS followed by the disappearance of droplets occurring in-phase with the formation of amyloid fibrils. The kinetics of the phase transition and the stability of mature co-aggregates are highly sensitive to ionic strength, indicating that electrostatic interactions play a pivotal role in selecting the LLPS-fibrillization transition pathway. Densely packed ionic interactions that characterize ACC1-13Kn-ATP fibrils render them highly sensitive to hydrostatic pressure due to solvent electrostriction, as demonstrated by infrared spectroscopy. Using atomic force microscopy imaging of rapidly frozen samples, we demonstrate that early fibrils form within single liquid droplets, starting at the droplet/bulk interface through the formation of single bent fibers. A hypothetical molecular scenario underlying the emergence of the LLPS-to-fibrils pathway in the ACC1-13Kn-ATP system has been put forward.
Collapse
Affiliation(s)
- Robert Dec
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Michel W Jaworek
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Pasteur Street 1, 02-093 Warsaw, Poland
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227 Dortmund, Germany
| |
Collapse
|
38
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
39
|
Abstract
An understanding of how the amino acid sequence affects the interaction of peptides with lipid membranes remains mostly unknown. This type of knowledge is required to rationalize membrane-induced toxicity of amyloid peptides and to design peptides that can interact with lipid bilayers. Here, we perform a systematic study of how variations in the sequence of the amphipathic Ac-(FKFE)2-NH2 peptide affect its interaction with zwitterionic lipid bilayers using extensive all-atom molecular dynamics simulations in explicit solvent. Our results show that peptides with a net positive charge bind more frequently to the lipid bilayer than neutral or negatively charged sequences. Moreover, neutral amphipathic peptides made with the same numbers of phenylalanine (F), lysine (K), and glutamic (E) amino acids at different positions in the sequence differ significantly in their frequency of binding to the membrane. We find that peptides bind with a higher frequency to the membrane if their positive lysine side chains are more exposed to the solvent, which occurs if they are located at the extremity (as opposed to the middle) of the sequence. Non-polar residues play an important role in accounting for the adsorption of peptides onto the membrane. In particular, peptides made with less hydrophobic non-polar residues (e.g., valine and alanine) are significantly less adsorbed to the membrane compared to peptides made with phenylalanine. We also find that sequences where phenylalanine residues are located at the extremities of the peptide have a higher tendency to be adsorbed.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
40
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Song N, Song Y, Hu B, Liu X, Yu X, Zhou H, Long J, Yu Z. Persistent Endoplasmic Reticulum Stress Stimulated by Peptide Assemblies for Sensitizing Cancer Chemotherapy. Adv Healthc Mater 2023; 12:e2202039. [PMID: 36353887 DOI: 10.1002/adhm.202202039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Pharmacological targeting of endoplasmic reticulum (ER) stress represents one of important methods for disease therapy, which, however, is significantly suppressed by the ER homeostatic processe. Herein, a proof-of-concept strategy is reported for persistent stimulation of ER stress via preventing ER stress adaptation by utilizing multifunctional peptide assemblies. The strategy is established via creation of peptide assemblies with ER-targeting and chaperone glucose-regulated protein 78 (GRP78)-inhibiting functions. The peptides assemblies form well-defined nanofibers that are retrieved by ER organelles in human cervical cancer cell. The underlying mechanism studies unravel that the ER-accumulated peptide assemblies simultaneously stimulate ER stress and inhibit GRP78 refolding activity and thereby promoting endogenous protein aggregation. Combining the internalized peptide assemblies with the induced protein aggregates leads to the persistent stimulation of ER stress. The persistent ER stress induced by the peptide assemblies bestows their application in sensitizing cancer chemotherapy. Both in vitro and in vivo results confirm the enhanced cytotoxicity of drug toyocamycin against HeLa cells by peptide assemblies, thus efficiently inhibiting in vivo tumor growth. The strategy reported here discloses the fundamental keys for efficient promotion of ER stress, thus providing the guidance for development of ER-targeting-assisted cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Na Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yanqiu Song
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiunan Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Ministry of Education Key Laboratory of Functional Polymer Materials, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
42
|
Zhou L, Gao G, Ma Z, Zhang Z, Gu Z, Yu L, Li X, Zhang N, Qian L, Tao Z, Sun T. Gold Nanoclusters Enhance the Efficacy of the Polymer-Based Chaperone in Restoring and Maintaining the Native Conformation of Human Islet Amyloid Polypeptide. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3409-3419. [PMID: 36598876 DOI: 10.1021/acsami.2c17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The misfolding and un-natural fibrillation of proteins/peptides are associated with many conformation diseases, such as human islet amyloid polypeptide (hIAPP) in type 2 diabetes (T2D). Inspired by molecular chaperones maintaining protein homeostasis in vivo, many polymer-based artificial chaperones were introduced to regulate protein/peptide folding and fibrillation. However, the pure polymer chaperones prefer to agglomerate into large-size micelles in the physiological environment and thus lose their chaperone functions, which greatly restricts the application of polymer-based chaperones. Here, we designed and prepared a core-shell artificial chaperone based on a dozen poly-(N-isopropylacrylamide-co-N-acryloyl-O-methylated-l-arginine) (PNAMR) anchored on a gold-nanocluster (AuNC) core. The introduction of the AuNC core significantly reduced the size and enhanced the efficacy and stability of polymer-based artificial chaperones. The PNAMR@AuNCs, with a diameter of 2.5 ± 0.5 nm, demonstrated exceptional ability in maintaining the natively unfolded conformation of protein away from the misfolding and the following fibrillation by directly binding to the natively unfolded monomolecular hIAPP and hence in preventing their conversion into toxic oligomers. More excitingly, the PNAMR@AuNCs were able to restore the natural unfolded conformation of hIAPP via dissolving the β-sheet-rich hIAPP fibrils. Considering the uniform molecular mechanism of protein misfolding and fibrillation in conformation disorders, this finding provides a generic therapeutic strategy for neurodegenerative diseases and other conformation diseases by using PNAMR@AuNC artificial chaperones to restore and maintain the native conformation of amyloid proteins.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhongjie Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zijun Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhenhua Gu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Liangchong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xiaohan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Nan Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Limei Qian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zelin Tao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
43
|
Kim JR. Oligomerization by co-assembly of β-amyloid and α-synuclein. Front Mol Biosci 2023; 10:1153839. [PMID: 37021111 PMCID: PMC10067735 DOI: 10.3389/fmolb.2023.1153839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Aberrant self-assembly of an intrinsically disordered protein is a pathological hallmark of protein misfolding diseases, such as Alzheimer's and Parkinson's diseases (AD and PD, respectively). In AD, the 40-42 amino acid-long extracellular peptide, β-amyloid (Aβ), self-assembles into oligomers, which eventually aggregate into fibrils. A similar self-association of the 140 amino acid-long intracellular protein, α-synuclein (αS), is responsible for the onset of PD pathology. While Aβ and αS are primarily extracellular and intracellular polypeptides, respectively, there is evidence of their colocalization and pathological overlaps of AD and PD. This evidence has raised the likelihood of synergistic, toxic protein-protein interactions between Aβ and αS. This mini review summarizes the findings of studies on Aβ-αS interactions related to enhanced oligomerization via co-assembly, aiming to provide a better understanding of the complex biology behind AD and PD and common pathological mechanisms among the major neurodegenerative diseases.
Collapse
|
44
|
Oliva R, Winter R. Harnessing Pressure-Axis Experiments to Explore Volume Fluctuations, Conformational Substates, and Solvation of Biomolecular Systems. J Phys Chem Lett 2022; 13:12099-12115. [PMID: 36546666 DOI: 10.1021/acs.jpclett.2c03186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Intrinsic thermodynamic fluctuations within biomolecules are crucial for their function, and flexibility is one of the strategies that evolution has developed to adapt to extreme environments. In this regard, pressure perturbation is an important tool for mechanistically exploring the causes and effects of volume fluctuations in biomolecules and biomolecular assemblies, their role in biomolecular interactions and reactions, and how they are affected by the solvent properties. High hydrostatic pressure is also a key parameter in the context of deep-sea and subsurface biology and the study of the origin and physical limits of life. We discuss the role of pressure-axis experiments in revealing intrinsic structural fluctuations as well as high-energy conformational substates of proteins and other biomolecular systems that are important for their function and provide some illustrative examples. We show that the structural and dynamic information obtained from such pressure-axis studies improves our understanding of biomolecular function, disease, biological evolution, and adaptation.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 6, Dortmund44227, Germany
| |
Collapse
|
45
|
Multivariate effects of pH, salt, and Zn 2+ ions on Aβ 40 fibrillation. Commun Chem 2022; 5:171. [PMID: 36697708 PMCID: PMC9814776 DOI: 10.1038/s42004-022-00786-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Amyloid-β (Aβ) peptide aggregation plays a central role in the progress of Alzheimer's disease (AD), of which Aβ-deposited extracellular amyloid plaques are a major hallmark. The brain micro-environmental variation in AD patients, like local acidification, increased ionic strength, or changed metal ion levels, cooperatively modulates the aggregation of the Aβ peptides. Here, we investigate the multivariate effects of varied pH, ionic strength and Zn2+ on Aβ40 fibrillation kinetics. Our results reveal that Aβ fibrillation kinetics are strongly affected by pH and ionic strength suggesting the importance of electrostatic interactions in regulating Aβ40 fibrillation. More interestingly, the presence of Zn2+ ions can further alter or even reserve the role of pH and ionic strength on the amyloid fibril kinetics, suggesting the importance of amino acids like Histidine that can interact with Zn2+ ions. Both pH and ionic strength regulate the secondary nucleation processes, however regardless of pH and Zn2+ ions, ionic strength can also modulate the morphology of Aβ40 aggregates. These multivariate effects in bulk solution provide insights into the correlation of pH-, ionic strength- or Zn2+ ions changes with amyloid deposits in AD brain and will deepen our understanding of the molecular pathology in the local brain microenvironment.
Collapse
|
46
|
Mijin N, Milošević J, Stevanović S, Petrović P, Lolić A, Urbic T, Polović N. Amyloid-like aggregation influenced by lead(II) and cadmium(II) ions in hen egg white ovalbumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Takekiyo T, Yamada N, Amo T, Nakazawa CT, Asano A, Ichimura T, Kato M, Yoshimura Y. Dissolution of Amyloid Aggregates by Direct Addition of Alkali Halides. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Yang Y, Distaffen H, Jalali S, Nieuwkoop AJ, Nilsson BL, Dias CL. Atomic Insights into Amyloid-Induced Membrane Damage. ACS Chem Neurosci 2022; 13:2766-2777. [PMID: 36095304 DOI: 10.1021/acschemneuro.2c00446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amphipathic peptides can cause biological membranes to leak either by dissolving their lipid content via a detergent-like mechanism or by forming pores on the membrane surface. These modes of membrane damage have been related to the toxicity of amyloid peptides and to the activity of antimicrobial peptides. Here, we perform the first all-atom simulations in which membrane-bound amphipathic peptides self-assemble into β-sheets that subsequently either form stable pores inside the bilayer or drag lipids out of the membrane surface. An analysis of these simulations shows that the acyl tail of lipids interact strongly with non-polar side chains of peptides deposited on the membrane. These strong interactions enable lipids to be dragged out of the bilayer by oligomeric structures accounting for detergent-like damage. They also disturb the orientation of lipid tails in the vicinity of peptides. These distortions are minimized around pore structures. We also show that membrane-bound β-sheets become twisted with one of their extremities partially penetrating the lipid bilayer. This allows peptides on opposite leaflets to interact and form a long transmembrane β-sheet, which initiates poration. In simulations, where peptides are deposited on a single leaflet, the twist in β-sheets allows them to penetrate the membrane and form pores. In addition, our simulations show that fibril-like structures produce little damage to lipid membranes, as non-polar side chains in these structures are unavailable to interact with the acyl tail of lipids.
Collapse
Affiliation(s)
- Yanxing Yang
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Hannah Distaffen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sharareh Jalali
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| | - Andrew J Nieuwkoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Cristiano L Dias
- Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, United States
| |
Collapse
|
49
|
Zhang W, Gong P, Shan Y, Zhao L, Hu H, Wei Q, Liang Z, Liu C, Zhang L, Zhang Y. SpotLink enables sensitive and precise identification of site nonspecific cross-links at the proteome scale. Brief Bioinform 2022; 23:6652569. [PMID: 36093786 DOI: 10.1093/bib/bbac316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
Nonspecific cross-linker can provide distance restraints between surface residues of any type, which could be used to investigate protein structure construction and protein-protein interaction (PPI). However, the vast number of potential combinations of cross-linked residues or sites obtained with such a cross-linker makes the data challenging to analyze, especially for the proteome-wide applications. Here, we developed SpotLink software for identifying site nonspecific cross-links at the proteome scale. Contributed by the dual pointer dynamic pruning algorithm and the quality control of cross-linking sites, SpotLink identified > 3000 cross-links from human cell samples within a short period of days. We demonstrated that SpotLink outperformed other approaches in terms of sensitivity and precision on the datasets of the simulated succinimidyl 4,4'-azipentanoate dataset and the condensin complexes with known structures. In addition, some valuable PPI were discovered in the datasets of the condensin complexes and the HeLa dataset, indicating the unique identification advantages of site nonspecific cross-linking. These findings reinforce the importance of SpotLink as a fundamental characteristic of site nonspecific cross-linking technologies.
Collapse
Affiliation(s)
- Weijie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Pengyun Gong
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lili Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongke Hu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qiushi Wei
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Chao Liu
- School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
50
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|