1
|
Yu W, Hu L, Wei Y, Xue C, Liu Y, Xie H. Advances of novel hydrogels in the healing process of alveolar sockets. BIOMATERIALS ADVANCES 2025; 173:214280. [PMID: 40086007 DOI: 10.1016/j.bioadv.2025.214280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Tooth extraction is a common oral surgical procedure that often leads to delayed alveolar socket healing due to the complexity of the oral microenvironment, which can hinder the patient's aesthetic and functional recovery. Effective alveolar socket healing requires a multidisciplinary approach. Recent advancements in materials science and bioengineering have facilitated the development of innovative strategies, with hydrogels emerging as ideal restorative materials for alveolar socket repair due to their superior properties. This review provides an overview of recent advances in hydrogels for alveolar socket healing, focusing on their classification, physical properties (e.g., mechanical strength, swelling behavior, degradation rate, and injectability), biological functions, and applications in relevant animal models. Specifically, the bone-regenerative and antimicrobial properties of hydrogels are highlighted. Furthermore, this review identifies future directions and addresses challenges associated with the clinical application of hydrogels in extraction socket healing.
Collapse
Affiliation(s)
- Wenqing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Liwei Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yige Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Chengyu Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yunfei Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, PR China.
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
2
|
Xu K, Tan L, Sun H, Chong C, Li L, Sun B, Yao Z, Zhuang Y, Wang L. Manipulating gelatinization, retrogradation, and hydrogel properties of potato starch through calcium chloride-controlled crosslinking and crystallization behavior. Carbohydr Polym 2025; 357:123371. [PMID: 40158958 DOI: 10.1016/j.carbpol.2025.123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 04/02/2025]
Abstract
Due to the inherent susceptibility of single-polymer starch molecules to retrogradation, the practical application of green starch hydrogels is remarkably limited. Here, we propose a simple strategy to achieve the multifunctionality of starch hydrogels by employing polymer amorphization. Calcium chloride was used to promote the gelatinization of starch granules, disrupting their crystalline structure without the need for heating. Additionally, during the initial stage of hydrogel formation, the effects induced by calcium chloride effectively suppressed starch retrogradation. This suppression induced the formation of uniform aggregates of polymer chains, enabling tunable polymer amorphization and the coexistence of free hydroxyl and hydrogen-bonding hydroxyl groups. The multiscale microstructure yielded starch-based hydrogels with favorable water-retention capabilities, high transparency (86.39 %), improved self-adhesive and self-healing properties, excellent stretchability (146 %), tissue-like ultra-softness (Young's modulus <10 kPa), and anti-freezing properties (<-50 °C). Overall, this study systematically elucidates the underlying mechanisms of CaCl2 impacts on starch gelatinization, retrogradation, and hydrogel properties, paving the way for the on-demand functionality of starch hydrogels through regulated crystallization.
Collapse
Affiliation(s)
- Ke Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lili Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haonan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Chuanyu Chong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Boyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Zhuojun Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuting Zhuang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, PR China.
| |
Collapse
|
3
|
Peng M, Peng Q, Li W, Chen X, Yan Q, Wu X, Wu M, Yuan D, Song H, Shi J. Atomic Insights Into Self-Assembly of Zingibroside R1 and its Therapeutic Action Against Fungal Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503283. [PMID: 40326238 DOI: 10.1002/adma.202503283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Indexed: 05/07/2025]
Abstract
Natural products are a crucial resource for drug discovery, but poor understanding of the molecular-scale mechanisms of their self-assembly into soluble, bioavailable hydrogels limits their applications and therapeutic potential. It is demonstrated that Zingibroside R1 (ZR1), derived from Panax notoginseng, undergoes spontaneous self-assemble into a hydrogel comprising helical nanofibrils with potent antifungal activity lacking in its monomeric state. Cryogenic electron microscopy (cryo-EM) revealed an intricate hydrogen-bonding network that facilitates ZR1 nanofibril formation, characterized by a hydrophobic core and hydrophilic exterior architecture, which underpin its binding activity with cell wall in the vulvovaginal candidiasis (VVC) pathogen, C. albicans. The hydrogen-bonding interface between ZR1 gel and glucan compromises membrane integrity, inhibiting C. albicans proliferation in vitro and in VVC model mice in vivo. ZR1 gel could also deliver probiotic Lactobacillus, synergistically inhibiting VVC and restoring the vaginal microenvironment. This study advances the mechanistic understanding of ZR1's structure-function relationships, offering valuable insights into the rational design and therapeutic optimization of natural product-based hydrogels.
Collapse
Affiliation(s)
- Mengyun Peng
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Qiwei Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, P. R. China
| | - Wei Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Xiaochun Chen
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Qipeng Yan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - Xia Wu
- Department of Cardiology, The Central Hospitalof Xiangtan, Affiliated Hospital of Hunan University, Xiangtan, Hunan, 411100, China
| | - Mingxing Wu
- Department of Cardiology, The Central Hospitalof Xiangtan, Affiliated Hospital of Hunan University, Xiangtan, Hunan, 411100, China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
| | - He Song
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, P. R. China
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong, 518000, P. R. China
| |
Collapse
|
4
|
Zhang B, Peng Z, He Q, Hao S, Lu Z, Fan W, Wang Y, Bai G. Two-step sequential energy transfer in sodium carboxymethyl cellulose-based gels for information encryption. Int J Biol Macromol 2025; 305:141157. [PMID: 39971045 DOI: 10.1016/j.ijbiomac.2025.141157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Sodium carboxymethyl cellulose (NaCMC)-based gels have been widely explored for various applications; however, innovative preparation methods are still required to further extend their potential. In this study, we introduced a low-molecular-weight gelator, 3,3',3″-[1,3,5-benzenetriyltris(carbonylimino)]trisbenzoic acid (H3L), to induce gelation in NaCMC. The resulting NaCMC/H3L gel was further developed into an information-encryption material with misleading functionality. This approach employs a two-step sequential energy transfer platform, with 4,7-di(2-thienyl)-2,1,3-benzothiadiazole and sulforhodamine101 serving as the first and second energy transfer acceptors, respectively, to construct gels that exhibit blue, yellow, and red fluorescence. Upon the addition of NaOH, these gels' fluorescence either is quenched, shifts red or remains unaffected, whereas the addition of HCl can restore their fluorescence. This acid-base responsiveness forms the basis for a unique information-encryption system in which the correct information can only be accessed through a specific processing method; otherwise, the incorrect result would be obtained. This study not only broadens the preparation methods for NaCMC-based gels but also establishes a new paradigm for their application in information encryption.
Collapse
Affiliation(s)
- Binbin Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China; Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Zhenhao Peng
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Qiuyu He
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Shanglong Hao
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Zhenyu Lu
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Wenxiu Fan
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Yujie Wang
- Postdoctoral Innovation Practice Base, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
5
|
Hou C, He W, Yao X. Mucus-Inspired Supramolecular Adhesives: Exploring the Synergy between Dynamic Networks and Functional Liquids. ACS NANO 2025; 19:14540-14556. [PMID: 40223742 PMCID: PMC12020425 DOI: 10.1021/acsnano.5c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
The exceptional physicochemical and mechanical properties of mucus have inspired the development of dynamic mucus-based materials for a wide range of applications. Mucus's combination of noncovalent interactions and rich liquid phases confer a range of properties. This perspective explores the synergy between dynamic networks and functional liquids in mucus-inspired supramolecular adhesives. It delves into the biological principles underlying mucus's dynamic regulation and adhesive properties, the fundamentals of supramolecular adhesive design, and the transformative potential of these materials in biomedical applications. Finally, this perspective proposes potential directions for the molecular engineering of mucus-inspired supramolecular materials, emphasizing the need for interdisciplinary approaches to harness their full potential for biomedical and sustainable applications.
Collapse
Affiliation(s)
- Changshun Hou
- Department
of Biomedical Sciences, City University
of Hong Kong, Hong Kong
SAR 999077, P. R. China
| | - Wenqing He
- Department
of Biomedical Sciences, City University
of Hong Kong, Hong Kong
SAR 999077, P. R. China
| | - Xi Yao
- Department
of Biomedical Sciences, City University
of Hong Kong, Hong Kong
SAR 999077, P. R. China
- Shenzhen
Research Institute, City University of Hong
Kong, Shenzhen 518000, P. R. China
| |
Collapse
|
6
|
Wang X, He L, He H, Cai Q, Su Z, Sun H, Zhu H. Non-Covalent Interaction Induced Supramolecular Precipitate with Hetero-Motif Polyionic Junction for Durable Antimicrobial Activity and Infected Wound Healing. Adv Healthc Mater 2025; 14:e2404791. [PMID: 40059588 DOI: 10.1002/adhm.202404791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Indexed: 04/26/2025]
Abstract
The advent of the COVID-19 pandemic has underscored the pressing demand for antimicrobial materials that offer both durability and efficacy. Herein, the successful design and fabrication of a "water-insoluble" supramolecular precipitate is reported through the "bottom-up" assembly of polyanion sodium alginate (SA) with the antimicrobial motifs A2G and Cu2+. This innovative hetero-motif polyionic junction leverages a network of hydrogen bonds aligning with electrostatic interactions, and hydrophobic effects to mitigate the rapid release of active components, providing exceptional long-term antimicrobial efficacy against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Candida albicans (C. albicans). Specifically, it retains an impressive 99.9% efficacy against S. aureus even after enduring 10 successive wash cycles. The hydroxyl groups in A2G-Cu-SA confer exceptional adhesion to a wide array of substrates. This robust adherence is complemented by its enduring antibacterial properties, with the material maintaining a 99.9% efficacy rate after being submerged in water for an extended period of 100 days. In vivo and in vitro studies substantiate the biocompatibility of A2G-Cu-SA, while its clinical potential is evidenced by the enhanced healing of S. aureus-infected wounds upon titanium sheet coating. This innovation meets the current need for effective antimicrobials and contributes to sustainable medical advancements.
Collapse
Affiliation(s)
- Xuejiao Wang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Lianbo He
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Huanling He
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qiyang Cai
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Zhi Su
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Hao Sun
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Hu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| |
Collapse
|
7
|
Xu F, Cudmore E, Walji S, Zhang L, Kostashuk M, Jun I, Randhawa G, Pan Z, Hoare T. In Situ-Gelling Antimicrobial Poly(oligoethylene glycol methacrylate)-Based Hydrogels Integrating Bound Quaternary Ammonia Compounds and Antibiotic Functionalities for Effective Infected Wound Healing. Adv Healthc Mater 2025; 14:e2403800. [PMID: 40051230 PMCID: PMC12004432 DOI: 10.1002/adhm.202403800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/19/2025] [Indexed: 04/18/2025]
Abstract
In situ-gelling antibacterial hydrogels are reported in which two antibacterial entities (quaternary ammonium (QA) groups and the antibiotic ciprofloxacin (CIP)) are tethered to a single precursor based on the anti-fouling polymer poly(oligoethylene glycol methacrylate) (POEGMA). Synergism between the QA and CIP tethers is demonstrated to enable broad-spectrum killing and/or disinfection of both gram-positive and gram-negative bacteria both in vitro and in vivo while also supporting improved functional recovery of uninjured skin morphology. Coupled with the suitable mechanics, swelling capacity, and stability of the gels, the multi-mechanism antibacterial properties of the hydrogels offer promise for treating or preventing infections of burn wounds.
Collapse
Affiliation(s)
- Fei Xu
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Evelyn Cudmore
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Sadru‐Dean Walji
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Lei Zhang
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Meghan Kostashuk
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Isabella Jun
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Gurpreet Randhawa
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Zhicheng Pan
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Todd Hoare
- Department of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| |
Collapse
|
8
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
9
|
Zou CY, Han C, Xing F, Jiang YL, Xiong M, Li-Ling J, Xie HQ. Smart design in biopolymer-based hemostatic sponges: From hemostasis to multiple functions. Bioact Mater 2025; 45:459-478. [PMID: 39697242 PMCID: PMC11653154 DOI: 10.1016/j.bioactmat.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Uncontrolled hemorrhage remains the leading cause of death in clinical and emergency care, posing a major threat to human life. To achieve effective bleeding control, many hemostatic materials have emerged. Among them, nature-derived biopolymers occupy an important position due to the excellent inherent biocompatibility, biodegradability and bioactivity. Additionally, sponges have been widely used in clinical and daily life because of their rapid blood absorption. Therefore, we provide the overview focusing on the latest advances and smart designs of biopolymer-based hemostatic sponge. Starting from the component, the applications of polysaccharide and polypeptide in hemostasis are systematically introduced, and the unique bioactivities such as antibacterial, antioxidant and immunomodulation are also concerned. From the perspective of sponge structure, different preparation processes can obtain unique physical properties and structures, which will affect the material properties such as hemostasis, antibacterial and tissue repair. Notably, as development frontier, the multi-functions of hemostatic materials is summarized, mainly including enhanced coagulation, antibacterial, avoiding tumor recurrence, promoting tissue repair, and hemorrhage monitoring. Finally, the challenges facing the development of biopolymer-based hemostatic sponges are emphasized, and future directions for in vivo biosafety, emerging materials, multiple application scenarios and translational research are proposed.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| | - Ming Xiong
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, Sichuan, PR China
| |
Collapse
|
10
|
Bonafé Allende JC, Ambrosioni F, Ruiz Moreno FN, Marin C, Romero VL, Virgolini MB, Maletto BA, Jimenez Kairuz AF, Alvarez Igarzabal CI, Picchio ML. Pyrogallol-rich supramolecular hydrogels with enzyme-sensitive microdomains for controlled topical delivery of hydrophobic drugs. BIOMATERIALS ADVANCES 2025; 166:214075. [PMID: 39476684 DOI: 10.1016/j.bioadv.2024.214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/13/2024]
Abstract
Skin wound treatments require efficient and targeted delivery of therapeutic agents to promote fast tissue regeneration and prevent infections. Hydrogels are one of the most popular products in the wound care market, although their use as medicated wound dressings remains a massive challenge when hydrophobic drugs are needed due to the hydrophilic nature of these soft materials. In this study, we developed innovative, dynamic hydrogels based on polyvinyl alcohol (PVA), pyrogallol as a hydrogen bond crosslinker, and casein micelles as hydrophobic reservoirs of silver sulfadiazine (SSD) for enzyme-activated smart delivery at wound sites. The hydrogel formulation was optimized for mechanical strength, viscoelastic behavior, water absorption capacity, and drug-loading efficiency. In vitro drug delivery studies revealed a sustainable release profile of SSD for over 24 h from the micelles within the hydrogel network. Furthermore, biocompatibility evaluation using mouse fibroblast L929 cells demonstrated that the hydrogel did not inhibit cell viability, while in vivo experiments on Caenorhabditis elegans (C. elegans) proved its safety in complex organisms. This versatile hydrogel also has anti-inflammatory and antibacterial effects stemming from the therapeutic polyphenol, which could benefit the healing process. The combination of PVA, pyrogallol, and casein-based nanocarriers could offer an approach to wound healing, providing a new platform for hosting hydrophobic therapeutic substances. Overall, this hydrogel system shows great promise in wound care and could broaden the applications of this family of soft materials for treating various skin injuries.
Collapse
Affiliation(s)
- Juan Cruz Bonafé Allende
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Instituto De Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina
| | - Franco Ambrosioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET). Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina
| | - Federico N Ruiz Moreno
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Constanza Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Verónica L Romero
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología Otto Orsingher, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina
| | - Miriam B Virgolini
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Farmacología Otto Orsingher, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Belkys A Maletto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Alvaro F Jimenez Kairuz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET). Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina
| | - Cecilia I Alvarez Igarzabal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina; Instituto De Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA-CONICET), Haya de la Torre y Av. Medina Allende, X5000HUA Córdoba, Argentina.
| | - Matías L Picchio
- POLYMAT, Applied Chemistry Department, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain; Facultad Regional Villa María (Universidad Tecnológica Nacional), Av. Universidad 450, Villa María, 5900, Córdoba, Argentina.
| |
Collapse
|
11
|
Das R, Suryawanshi N, Burnase N, Barapatre A, Dharshini RS, Kumar B, Saravana Kumar P. Classification and bibliometric analysis of hydrogels in periodontitis treatment: Trends, mechanisms, advantages, and future research directions. Dent Mater 2025; 41:81-99. [PMID: 39510856 DOI: 10.1016/j.dental.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVES The review assess the potential of hydrogel-based drug delivery systems in treating periodontitis. Hydrogels are classified based on source, composition, configuration, crosslinking methods, ionic charge, and response to stimuli. METHODS The methodology comprised of comprehensive data collection from WoS, Scopus and PubMed databases covering the period of 2004-2024 of 626 documents. A bibliometric analysis was conducted using VOS Viewer to identify research trends, key contributors, prominent topics, and leading journals. A comparative analysis was performed to examine the benefits of hydrogels over conventional periodontitis treatments. Current research and innovations in hydrogel formulations were reviewed, including ongoing clinical trials and commercial products. RESULTS China was found to be the leading contributor to hydrogel research in periodontitis, with key topics including "hydrogels," "nanoparticles," and "drug delivery." A detailed classification system for hydrogels was established, aiding in their application for targeted drug delivery and tissue regeneration. Hydrogels were found to offer controlled drug release, support for tissue regeneration, and improved clinical outcomes compared to traditional treatments. Innovations highlighted including the use of various polymers like nano-hydroxyapatite/collagen composites, PLGA-based materials, and chitosan gels in clinical trials, demonstrating enhanced cell proliferation and tissue regeneration. SIGNIFICANCE This review underscores the significant potential of hydrogel-based therapies in advancing the treatment of periodontitis. By providing a comprehensive bibliometric analysis and highlighting key research and innovations, it emphasizes the advantages of hydrogels in terms of targeted drug delivery, minimal invasiveness, and support for tissue regeneration. The findings suggest that with further clinical trials and regulatory approvals, hydrogels could become a mainstream, effective treatment option for periodontitis, offering improved patient outcomes and potentially transforming periodontal therapy.
Collapse
Affiliation(s)
- Reena Das
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamilnadu, India.
| | - Nisha Suryawanshi
- Department of Zoology, Government College, Rau, Indore 453331, Madhya Pradesh, India
| | - Nishant Burnase
- Molecular Virology Laboratory, Department of Microbiology, Chhattisgarh Institute of Medical Sciences, Bilaspur 495001, Chhattisgarh, India
| | - Anand Barapatre
- Central Instrumentation Facility, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484886, Madhya Pradesh, India
| | - Rajathirajan Siva Dharshini
- Microbiology Team, Cavinkare R& D Centre, 12, Poonamalle Road, Ekkattuthangal, Chennai 600032, Tamilnadu, India; Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Bikash Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore 453552, Madhya Pradesh, India.
| | - Pachaiyappan Saravana Kumar
- Department of Oral and Maxillofacial Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamilnadu, India; Department of Chemistry, School of Science and Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
12
|
Xu W, Sun K, Hou S, Chen A. Research progress of advanced polymer composite antibacterial materials based on electrospinning. Eur Polym J 2025; 222:113623. [DOI: 10.1016/j.eurpolymj.2024.113623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Zhang H, Ji M, Wang Y, Jiang M, Lv Z, Li G, Wang L, Zheng Z. Intrinsic PD-L1 Degradation Induced by a Novel Self-Assembling Hexapeptide for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410145. [PMID: 39530653 PMCID: PMC11727121 DOI: 10.1002/advs.202410145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Programmed death-ligand 1 (PD-L1) is a critical immune checkpoint protein that facilitates tumor immune evasion. While antibody-based PD-1/PD-L1 inhibitors have shown promise, their limitations necessitate the development of alternative therapeutic strategies. This work addresses these challenges by developing a hexapeptide, KFM (Lys-Phe-Met-Phe-Met-Lys), capable of both directly downregulating PD-L1 and self-assembling into a ROS-responsive supramolecular hydrogel. This dual functionality allows Gel KFM to function as a localized drug delivery system and a PD-L1 inhibitor. Loading the hydrogel with mitoxantrone (MTX) and metformin (MET) further enhances the therapeutic effect by combining chemotherapy with PD-L1 downregulation. In vitro and in vivo studies demonstrate significant tumor growth inhibition, increased CD8+ T cell infiltration, and reduced intratumoral PD-L1 expression following peritumoral administration. Mechanistically, KFM promotes PD-L1 degradation via a ubiquitin-dependent pathway. This "carrier-free" delivery system expands the role of supramolecular hydrogels beyond passive carriers to active immunotherapeutic agents, offering a promising new strategy for cancer therapy.
Collapse
Affiliation(s)
- Hongxia Zhang
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Ming Ji
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Yamei Wang
- Tianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical ScienceFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Mengmeng Jiang
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Zongyu Lv
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical ScienceFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Lulu Wang
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| | - Zhen Zheng
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| |
Collapse
|
14
|
Maity S, Deb VK, Mondal S, Chakraborty A, Pramanick K, Adhikari S. Leveraging supramolecular systems in biomedical breakthroughs. Biofactors 2025; 51:e70005. [PMID: 39902766 DOI: 10.1002/biof.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Supramolecular systems, intricate assemblies of molecular subunits organized through various intermolecular interactions, offer versatile platforms for diverse applications, including gene therapy, antimicrobial therapy, and cellular engineering. These systems are cost-effective and environmentally friendly, contributing to their attractiveness in biomaterial design. Furthermore, supramolecular biomaterials based on acyclic, macrocyclic compounds and lipid-based assembly offer potential applications in distinct types of biomedical approaches. In this context, they can transport several therapeutic agents very effectively to the target site. Supramolecular hydrogels exhibit potent antimicrobial activity by disrupting microbial membranes, offering promising solutions to combat drug-resistant pathogens. Additionally, supramolecular luminescent nanoparticles enable targeted cell imaging, facilitating disease diagnosis and treatment with high specificity and sensitivity. In cellular engineering, supramolecular assemblies of small molecules demonstrate biological activities, overcoming challenges in cancer treatment by inhibiting signaling pathways and inducing apoptosis in cancer cells. This review emphasizes the applications of supramolecular systems from gene therapy to cellular imaging, tissue engineering, and antimicrobial therapy, showcasing their potential to drive innovation and address pressing healthcare challenges.
Collapse
Affiliation(s)
- Shreya Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Sayani Mondal
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Akansha Chakraborty
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Suman Adhikari
- Department of Chemistry, Government Degree College, Dharmanagar, India
| |
Collapse
|
15
|
Zhang Y, Wang Z, Yao S, Lin X, Zhang X, Tan X, Zhang L, Xu R, Zhao Y, Zhao C, Chu F, Jing W, Huang X, Wang P. Natural polysaccharide hydrogel with bioadhesion characters to synergistically enhance berberine's antibacterial effect by regulating the PTS system of Staphylococcus aureus. Int J Biol Macromol 2024; 281:136605. [PMID: 39414196 DOI: 10.1016/j.ijbiomac.2024.136605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The global spread of Staphylococcus aureus (S. aureus) not only causes significant economic losses but also poses a serious threat to public health. Consequently, there is an urgent need for multidimensional strategies to develop antimicrobial dressings to combat bacterial infections. In response, we have developed a plant polysaccharide antibacterial hydrogel formed through the self-assembly of edible Kudzu powder (KP) and the natural star molecule berberine (BBR). Rheological tests show that natural polysaccharide KP-BBR hydrogel (BBR@KP) exhibits excellent injectability and adhesion. And the degradation of the hydrogel exceeded 90 % within 3 days. The synergistic effect of these two ingredients enhances the antibacterial activity of BBR and can increase the MIC of BBR to 0.05 mM. Specifically, KP promotes the affinity of the Phosphoenolpyruvate Phosphotransferase System (PTS) of S. aureus, enabling KP, with its bioadhesive properties, to adhere to the bacterial surface and continuously release BBR. Subsequently, BBR effectively exerts its antibacterial effect by inhibiting the synthesis of histidine and isoleucine. Furthermore, the BBR@KP hydrogel exhibits negligible cytotoxicity and hemolytic toxicity, underscoring its favorable biosafety profile. This synergistic natural antibacterial hydrogel, formulated through a green and straightforward methodology, not only holds promise for broad clinical applications but also provides novel perspectives for the utilization and development of plant polysaccharides in the biomedical field.
Collapse
Affiliation(s)
- Yaozhi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - ShuChang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyu Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinru Tan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liuyang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ran Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yihang Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chen Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fuhao Chu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenguang Jing
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
16
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
17
|
Xie C, Chen Y, Wang L, Liao K, Xue B, Han Y, Li L, Jiang Q. Recent research of peptide-based hydrogel in nervous regeneration. Bioact Mater 2024; 40:503-523. [PMID: 39040568 PMCID: PMC11261279 DOI: 10.1016/j.bioactmat.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Neurological disorders exert significantly affect the quality of life for patients, necessitating effective strategies for nerve regeneration. Both traditional autologous nerve transplantation and emerging therapeutic approaches encounter scientific challenges due to the complex nature of the nervous system and the unsuitability of the surrounding environment for cell transplantation. Tissue engineering techniques offer a promising path for neurotherapy. Successful neural tissue engineering relies on modulating cell differentiation behavior and tissue repair by developing biomaterials that mimic the natural extracellular matrix (ECM) and establish a three-dimensional microenvironment. Peptide-based hydrogels have emerged as a potent option among these biomaterials due to their ability to replicate the structure and complexity of the ECM. This review aims to explore the diverse range of peptide-based hydrogels used in nerve regeneration with a specific focus on dipeptide hydrogels, tripeptide hydrogels, oligopeptide hydrogels, multidomain peptides (MDPs), and amphiphilic peptide hydrogels (PAs). Peptide-based hydrogels offer numerous advantages, including biocompatibility, structural diversity, adjustable mechanical properties, and degradation without adverse effects. Notably, hydrogels formed from self-assembled polypeptide nanofibers, derived from amino acids, show promising potential in engineering neural tissues, outperforming conventional materials like alginate, poly(ε-caprolactone), and polyaniline. Additionally, the simple design and cost-effectiveness of dipeptide-based hydrogels have enabled the creation of various functional supramolecular structures, with significant implications for nervous system regeneration. These hydrogels are expected to play a crucial role in future neural tissue engineering research. This review aims to highlight the benefits and potential applications of peptide-based hydrogels, contributing to the advancement of neural tissue engineering.
Collapse
Affiliation(s)
- Chunmei Xie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueyang Chen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lang Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kin Liao
- Advanced Digital and Additive Manufacturing Center, Khalifa University of Science and Technology, Po Box 127788, Abu Dhabi, United Arab Emirates
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing, China
| | - Yulong Han
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
- Jiangsu Engineering Research Center for 3D Bioprinting, Nanjing, China
- Institute of Medical 3D Printing, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Li M, Wang S, Li Y, Meng X, Wei Y, Wang Y, Chen Y, Xiao Y, Cheng Y. An Integrated All-Natural Conductive Supramolecular Hydrogel Wearable Biosensor with Enhanced Biocompatibility and Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51618-51629. [PMID: 39259880 DOI: 10.1021/acsami.4c08690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Conductive hydrogels exhibit tremendous potential for wearable bioelectronics, biosensing, and health monitoring applications, yet concurrently enhancing their biocompatibility and antimicrobial properties remains a long-standing challenge. Herein, we report an all-natural conductive supramolecular hydrogel (GT5-DACD2-B) prepared via the Schiff base reaction between the biofriendly dialdehyde cyclodextrin and gelatin. The potent antibacterial agent fusidic acid (FA) is incorporated through host-guest inclusion, enabling 100% inhibition of Staphylococcus aureus proliferation. The biocompatibility of our hydrogel is bolstered with tannic acid (TA) facilitating antibacterial effects through interactions with gelatin, while borax augments conductivity. This supramolecular hydrogel not only exhibits stable conductivity and rapid response characteristics but also functions as a flexible sensor for monitoring human movement, facial expressions, and speech recognition. Innovatively integrating biocompatibility, antimicrobial activity, and conductivity into a single system, our work pioneers a paradigm for developing multifunctional biosensors with integrated antibacterial functionalities, paving the way for advanced wearable bioelectronics with enhanced safety and multifunctionality.
Collapse
Affiliation(s)
- Mengqian Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Shuoxuan Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yuan Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Xiaoyi Meng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yu Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300354, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| |
Collapse
|
19
|
Saha E, Khan A, Mallick AI, Mitra J. Purpose-built multicomponent supramolecular silver(I)-hydrogels as membrane-targeting broad-spectrum antibacterial agents against multidrug-resistant pathogens. J Mater Chem B 2024; 12:8767-8777. [PMID: 39140272 DOI: 10.1039/d4tb01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Membrane-targeting compounds are of immense interest to counter complicated multi-drug resistant infections. However, the broad-spectrum effect of such compounds is often unmet due to the surges of antibiotic resistance among majority of Gram-negative bacteria compared to Gram-positive species. Though amphiphiles, synthetic mimics of antimicrobial peptides etc, have been extensively explored for their potential to perturb bacterial membranes, small molecule-based supramolecular hydrogels have remained unexplored. The design of supramolecular hydrogels can be tuned on-demand, catering to desired applications, including facile bacterial membrane perturbation. Considering the strong biocidal properties of Ag-based systems and the bacterial membrane-targeting potential of appended primary amine groups, we designed self-assembled multicomponent supramolecular Ag(I)-hydrogels with urea and DATr (3,5-diamino-1,2,4-triazole) as ligands, which are predisposed for hydrogen bonding and interacting with negatively charged bacterial membranes at physiological pH. The synthesized supramolecular Ag(I)-hydrogels exhibited almost similar antibacterial activity against both Gram-negative (Campylobacter jejuni; C. jejuni) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria, with minimal inhibitory concentration (MIC) of ∼60 μg mL-1. Ag(I)-hydrogels facilitated the disruption of the negatively charged bacterial membrane due to electrostatic interaction and complementary hydrogen bonding facilitated by DATr and urea. Sustained intracellular ROS generation in the presence of Ag(I)-hydrogel further expedited cell lysis. We envisage that the multicomponent supramolecular Ag(I)-hydrogels studied herein can be employed in designing effective antibacterial coatings on a range of medical devices, including surgical instruments. Moreover, the present form of the hydrogels has the potential to improve the antibacterial functionality of conventional antimicrobials, thus revitalizing the effective targeting of hard-to-treat multi-drug-resistant (MDR) bacterial infections in a clinical set up.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal-741246, India.
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Ghaziabad-201002, UP, India
| |
Collapse
|
20
|
Pan X, Pan J, Li X, Wang Z, Ni Y, Wang Q. Tough Supramolecular Hydrogels Crafted via Lignin-Induced Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406671. [PMID: 38988151 DOI: 10.1002/adma.202406671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.
Collapse
Affiliation(s)
- Xiaofeng Pan
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350108, P. R. China
| | - Jiawei Pan
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Xiang Li
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Qinhua Wang
- Anhui Provincial Engineering Center for High-Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| |
Collapse
|
21
|
Ahuja R, Shivhare V, Konar AD. Recent Advances in Smart Self-Assembled Bioinspired Hydrogels: A Bridging Weapon for Emerging Health Care Applications from Bench to Bedside. Macromol Rapid Commun 2024; 45:e2400255. [PMID: 38802265 DOI: 10.1002/marc.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Stimuli-responsive low molecular weight hydrogel interventions for Biomedical challenges are a rapidly evolving paradigm in the bottom-up approach recently. Peptide-based self-assembled nano biomaterials present safer alternatives to their non-degradable counterparts as demanded for today's most urged clinical needs.Although a plethora of work has already been accomplished, programming hydrogelators with appropriate functionalities requires a better understanding as the impact of the macromolecular structure of the peptides and subsequently, their self-assembled nanostructures remain unidentified. Henceforth this review focuses on two aspects: Firstly, the underlying guidelines for building biomimetic strategies to tailor scaffolds leading to hydrogelation along with the role of non-covalent interactions that are the key components of various self-assembly processes. In the second section, it is aimed to bring together the recent achievements with designer assembly concerning their self-aggregation behaviour and applications mainly in the biomedical arena like drug delivery carrier design, antimicrobial, anti-inflammatory as well as wound healing materials. Furthermore, it is anticipated that this article will provide a conceptual demonstration of the different approaches taken towards the construction of these task-specific designer hydrogels. Finally, a collective effort among the material scientists is required to pave the path for the entrance of these intelligent materials into medicine from bench to bedside.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh, 462033, India
- University Grants Commission, New Delhi, 110002, India
| |
Collapse
|
22
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
23
|
Fang Z, He Q, Hu Y, Chen X, Li F, Cai X. Polydopamine-assisted smart bacteria-responsive hydrogel: Switchable antimicrobial and antifouling capabilities for accelerated wound healing. J Adv Res 2024:S2090-1232(24)00368-0. [PMID: 39168246 DOI: 10.1016/j.jare.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Wound infections and formation of biofilms caused by multidrug-resistant bacteria have constituted a series of wound deteriorated and life-threatening problems. The in situ resisting bacterial adhesion, killing multidrug-resistance bacteria, and releasing dead bacteria is strongly required to supply a gap of existing sterilization strategies. OBJECTIVES This study aims to present a facile approach to construct a bacteria-responsive hydrogel with switchable antimicrobial-antifouling properties through a "resisting-killing-releasing" method. METHODS The smart bacteria-responsive hydrogel was constructed by two-step immersion strategy: a simple immersion-coating process to construct Polydopamine (pDA) coatings on the surface of a gelatin-chitosan composite hydrogel and followed by grafting of bactericidal quaternary ammonium chitosan (QCS) as well as pH-responsive PMAA to this pDA coating. The in vitro antimicrobial activity, biocompatibility and the in vivo wound healing effects in a mouse MRSA-infected full-thickness defect model of the hydrogel were further evaluated. RESULTS Assisted by polydopamine coating, the pH-responsive PMAA and bactericidal QCS are successfully grafted onto a gelatin-chitosan composite hydrogel surface and hydrogels maintain the adequate mechanical properties. At physiological conditions, the PMAA hydration layer endows the hydrogel with resistance to initial bacterial attachment. Once bacteria colonize and acidize local environment, the swelling PMAA chains tend to collapse then expose the bactericidal QCS, realizing the on-demand kill bacteria. Moreover, the dead bacteria can be released and the hydrogel will resume the resistance due to hydrophilicity of PMAA at increased pH, endowing the surface renewable ability. In vitro and in vivo studies demonstrate the favorable biocompatibility and wound healing capacity of hydrogels that can inhibit infection and further facilitate granulation tissue, angiogenesis, and collagen synthesis. CONCLUSION This strategy provides a novel methodology for the development and design of smart wound dressing to combat multidrug-resistant bacteria infections.
Collapse
Affiliation(s)
- Zheng Fang
- Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingyan He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanyu Hu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fan Li
- Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
24
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Li C, Wang JT, Liu K, Ding H, Li QF, Liang G, Jin L, He D. Antibacterial and anti-inflammatory synergistic effects of double-layer hydrogel promoting bacterial wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 493:152513. [DOI: 10.1016/j.cej.2024.152513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Zhang Y, Luo M, Shi X, Li A, Zhou W, Yin Y, Wang H, Wong WL, Feng X, He Q. Pyrgos[ n]cages: Redefining antibacterial strategy against drug resistance. SCIENCE ADVANCES 2024; 10:eadp4872. [PMID: 39058779 PMCID: PMC11277403 DOI: 10.1126/sciadv.adp4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Amid rising antibiotic resistance, the quest for advanced antibacterial agents to surpass microbial adaptation is paramount. This study introduces Pyrgos[n]cages (n = 1 to 4), pioneering multidecker cationic covalent organic cages engineered to combat drug-resistant bacteria via a dual-targeting approach. Synthesized through successive photocatalytic bromination and cage-forming reactions, these architectures stand out for their dense positive charge distribution, exceptional stability, and substantial rigidity. Pyrgos[n]cages exhibit potent bactericidal activity by disrupting bacterial membrane potential and binding to DNA. Notably, these structures show unparalleled success in eradicating both extracellular and intracellular drug-resistant pathogens in diverse infection scenarios, with antibacterial efficiency markedly increasing over 100-fold as the decker number rises from 1 to 3. This study provides an advance in antibacterial tactics and underscores the transformative potential of covalent organic cages in devising enduring countermeasures against antibiotic-resistant microbial threats.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
27
|
Zheng Y, Cai X, Chen G, Xiang D, Shi W, Shen J, Xiang B. Single Atom-Dispersed Silver Incorporated in ZIF-8-Derived Porous Carbon for Enhanced Photothermal Activity and Antibacterial Activities. Int J Nanomedicine 2024; 19:4253-4261. [PMID: 38766662 PMCID: PMC11102103 DOI: 10.2147/ijn.s459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Recently, Single-atom-loaded carbon-based material is a new environmentally friendly and stable photothermal antibacterial nanomaterial. It is still a great challenge to achieve single-atom loading on carbon materials. Materials and Methods Herein, We doped single-atom Ag into ZIF-8-derived porous carbon to obtain Ag-doped ZIF-8-derived porous carbon(AgSA-ZDPC). The as-prepared samples were characterized by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM which confirmed that the single-atom Ag successfully doped into the porous carbon. Further, the photothermal properties and antimicrobial activity of AgSA-ZDPC have been tested. Results The results showed that the temperature increased by 30 °C after near-infrared light irradiation(1 W/cm2) for 5 min which was better than ZIF-8-derived porous carbon(ZDPC). It also exhibits excellent photothermal stability after the laser was switched on and off 5 times. When the AgSA-ZDPC concentration was greater than 50 µg/mL and the near-infrared irradiation was performed for 5 min, the growth inhibition of S. aureus and E. coli was almost 100%. Conclusion This work provides a simple method for the preparation of single-atom Ag-doped microporous carbon which has potential antibacterial application.
Collapse
Affiliation(s)
- Yutong Zheng
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Xiaoyi Cai
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Gui Chen
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Dexuan Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Wei Shi
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Wenzhou Medical University, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Bailin Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| |
Collapse
|
28
|
Li T, Zhao J, Yue Y, Han B, Wang W, Zhang H, Liu Z, Chen Z, Tian X. Preparation of nano-silver containing black phosphorus based on quaternized chitosan hydrogel and evaluating its effect on skin wound healing. Int J Biol Macromol 2024; 268:131950. [PMID: 38685547 DOI: 10.1016/j.ijbiomac.2024.131950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Hydrogels with favorable biocompatibility and antibacterial properties are essential in postoperative wound hemorrhage care, facilitating rapid wound healing. The present investigation employed electrostatic adsorption of black phosphorus nanosheets (BPNPs) and nano‑silver (AgNPs) to cross-link the protonated amino group NH3+ of quaternized chitosan (QCS) with the hydroxyl group of hyaluronic acid (HA). The electrostatic interaction between the two groups resulted in the formation of a three-dimensional gel network structure. Additionally, the hydrogel containing AgNPs deposited onto BPNPs was assessed for its antibacterial properties and effects on wound healing. Hydrogel demonstrated an outstanding drug-loading capacity and could be employed for wound closure. AgNPs loaded on the BPNPs released silver ions and exhibited potent antibacterial properties when exposed to 808 nm near-infrared (NIR) radiation. The ability of the hydrogel to promote wound healing in an acute wound model was further evaluated. The BPNPs were combined with HA and QCS in the aforementioned hydrogel system to improve adhesion, combine the photothermal and antibacterial properties of the BPNPs, and promote wound healing. Therefore, the reported hydrogels displayed excellent biocompatibility and hold significant potential for application in the field of tissue engineering for skin wound treatment.
Collapse
Affiliation(s)
- Tianjiao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Jiaqi Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yajuan Yue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Wenjuan Wang
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi 830032, China
| | - Han Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiyong Liu
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Zhenyang Chen
- Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi 830032, China.
| | - Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China; Sinopharm Xinjiang Pharmaceutical Co. LTD, Urumqi 830032, China.
| |
Collapse
|
29
|
Yan M, Wu S, Wang Y, Liang M, Wang M, Hu W, Yu G, Mao Z, Huang F, Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304249. [PMID: 37478832 DOI: 10.1002/adma.202304249] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Chemotherapy is widely recognized as an effective approach for treating cancer due to its ability to eliminate cancer cells using chemotherapeutic drugs. However, traditional chemotherapy suffers from various drawbacks, including limited solubility and stability of drugs, severe side effects, low bioavailability, drug resistance, and challenges in tracking treatment efficacy. These limitations greatly hinder its widespread clinical application. In contrast, supramolecular chemotherapy, which relies on host-guest interactions, presents a promising alternative by offering highly efficient and minimally toxic anticancer drug delivery. In this review, an overview of recent advancements in supramolecular chemotherapy based on host-guest interactions is provided. The significant role it plays in guiding cancer therapy is emphasized. Drawing on a wealth of cutting-edge research, herein, a timely and valuable resource for individuals interested in the field of supramolecular chemotherapy or cancer therapy, is presented. Furthermore, this review contributes to the progression of the field of supramolecular chemotherapy toward clinical application.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Sha Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Wenting Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
30
|
Zhang L, Tang YJ, Zhang WQ, Wang J, Cai YJ, Qin TY, Zhang D, Wang ZH, Wang YL. Polyhydroxy structure orchestrates the intrinsic antibacterial property of acrylamide hydrogel as a versatile wound-healing dressing. Front Bioeng Biotechnol 2024; 12:1396892. [PMID: 38720877 PMCID: PMC11076666 DOI: 10.3389/fbioe.2024.1396892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Hydrogel is considered as a promising candidate for wound dressing due to its tissue-like flexibility, good mechanical properties and biocompatibility. However, traditional hydrogel dressings often fail to fulfill satisfied mechanical, antibacterial, and biocompatibility properties simultaneously, due to the insufficient intrinsic bactericidal efficacy and the addition of external antimicrobial agents. In this paper, hydroxyl-contained acrylamide monomers, N-Methylolacrylamide (NMA) and N-[Tris (hydroxymethyl)methyl] acrylamide (THMA), are employed to prepare a series of polyacrylamide hydrogel dressings xNMA-yTHMA, where x and y represent the mass fractions of NMA and THMA in the hydrogels. We have elucidated that the abundance of hydroxyl groups determines the antibacterial effect of the hydrogels. Particularly, hydrogel 35NMA-5THMA exhibits excellent mechanical properties, with high tensile strength of 259 kPa and large tensile strain of 1737%. Furthermore, the hydrogel dressing 35NMA-5THMA demonstrates remarkable inherent antibacterial without exogenous antimicrobial agents owing to the existence of abundant hydroxyl groups. Besides, hydrogel dressing 35NMA-5THMA possesses excellent biocompatibility, in view of marginal cytotoxicity, low hemolysis ratio, and negligible inflammatory response and organ toxicity to mice during treatment. Encouragingly, hydrogel 35NMA-5THMA drastically promote the healing of bacteria-infected wound in mice. This study has revealed the importance of polyhydroxyl in the antibacterial efficiency of hydrogels and provided a simplified strategy to design wound healing dressings with translational potential.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Yu-Jiao Tang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Wen-Qing Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Jian Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Yu-Jian Cai
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Tian-Yi Qin
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Deteng Zhang
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Zhao-Hui Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| | - Ya-Long Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
| |
Collapse
|
31
|
Cui J, Liu L, Chen B, Hu J, Song M, Dai H, Wang X, Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications. Int J Biol Macromol 2024; 265:130994. [PMID: 38518950 DOI: 10.1016/j.ijbiomac.2024.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.
Collapse
Affiliation(s)
- Junting Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Beiyue Chen
- Nanjing Xiaozhuang University, College of Electronics Engineering, Nanjing 211171, China
| | - Jiayi Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Mengyao Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
32
|
Singh A, Sharma JJ, Mohanta B, Sood A, Han SS, Sharma A. Synthetic and biopolymers-based antimicrobial hybrid hydrogels: a focused review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:675-716. [PMID: 37943320 DOI: 10.1080/09205063.2023.2278814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
The constantly accelerating occurrence of microbial infections and their antibiotic resistance has spurred advancement in the field of material sciences and has guided the development of novel materials with anti-bacterial properties. To address the clinical exigencies, the material of choice should be biodegradable, biocompatible, and able to offer prolonged antibacterial effects. As an attractive option, hydrogels have been explored globally as a potent biomaterial platform that can furnish essential antibacterial attributes owing to its three-dimensional (3D) hydrophilic polymeric network, adequate biocompatibility, and cellular adhesion. The current review focuses on the utilization of different antimicrobial hydrogels based on their sources (natural and synthetic). Further, the review also highlights the strategies for the generation of hydrogels with their advantages and disadvantages and their applications in different biomedical fields. Finally, the prospects in the development of hydrogels-based antimicrobial biomaterials are discussed along with some key challenges encountered during their development and clinical translation.
Collapse
Affiliation(s)
- Anand Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Janmay Jai Sharma
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Billeswar Mohanta
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Anirudh Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
33
|
Safarpour-Dehkordi M, Chabok O, Asgari M, Khademi R, Doosti A. A comprehensive investigation of the medicinal efficacy of antimicrobial fusion peptides expressed in probiotic bacteria for the treatment of pan drug-resistant (PDR) infections. Arch Microbiol 2024; 206:93. [PMID: 38329629 DOI: 10.1007/s00203-023-03823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
The present work aimed to examine the intracellular antibacterial efficacy of Recombinant Lactobacillus acidophilus/antimicrobial peptides (AMPs) Melittin and Alyteserin-1a, specifically targeting Gram-negative bacteria. The first assessment was to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Recombinant L. acidophilus/AMPs versus Gram-negative and Gram-positive bacteria. In addition, the researchers examined the in vitro viability and safety of AMPs generated by L. acidophilus. The experiments included exposing the AMPs to elevated temperatures, proteases, cationic salts at physiological levels, and specific pH settings. The safety aspect was evaluated using hemolytic analysis utilizing sheep erythrocytes; cytotoxicity assays employing cell lines, and experiments on beneficial gut lactobacilli. An experiment was done using a time-kill method to assess the intracellular antibacterial efficacy of Recombinant L. acidophilus/AMPs compared to pathogenic varieties in HEp-2 cells. Previous investigations have shown that the MBC levels of recombinant L. acidophilus/AMPs were consistently two to four times higher than the equivalent MIC values when evaluated versus Gram-negative bacteria. Furthermore, the stability of the Recombinant L. acidophilus/AMPs showed variability when exposed to elevated temperatures (70 and 90 ℃), treated with protease enzymes (proteinase K, lysozyme), exposed to higher concentrations of physiological salts (150 mM NaCl and 2 mM MgCl2), and varying pH levels (ranging from 4.0 to 9.0). The recombinant L. acidophilus/AMPs are non-hemolytic towards sheep erythrocytes, exhibit little cytotoxicity in RAW 264.7 and HEp-2 cells, and are considered safe when compared to beneficial gut lactobacilli. The research examined the intracellular bacteriostatic effects of recombinant L. acidophilus/AMPs on Gram-negative bacteria inside HEp-2 cells. Nevertheless, no notable bactericidal impact was seen on Gram-positive bacteria (P > 0.05). The research shows that recombinant L. acidophilus/AMPs, namely (L. acidophilus/melittin/Alyteserin-1a) as the focus of the investigation, effectively eliminate Gram-negative bacteria. Therefore, more investigation is necessary to elaborate on these discoveries.
Collapse
Affiliation(s)
- Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohsen Asgari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Reyhaneh Khademi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
34
|
Chen Q, Yang ZR, Du S, Chen S, Zhang L, Zhu J. Polyphenol-sodium alginate supramolecular injectable hydrogel with antibacterial and anti-inflammatory capabilities for infected wound healing. Int J Biol Macromol 2024; 257:128636. [PMID: 38065459 DOI: 10.1016/j.ijbiomac.2023.128636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Injectable hydrogel has attracted appealing attention for skin wound treatment. Although multifunctional injectable hydrogels can be prepared by introducing bioactive ingredients with antibacterial and anti-inflammatory capabilities, their preparation remains complicated. Herein, a polyphenol-based supramolecular injectable hydrogel (PBSIH) based on polyphenol gallic acid and biological macromolecule sodium alginate is developed as a wound dressing to accelerate wound healing. We show that such PBSIH can be rapidly formed within 15 s by mixing the sodium alginate and gallic acid solutions based on the hydrogen bonding and hydrophobic interactions. The PBSIH shows excellent cytocompatibility, antibacterial, and antioxidant properties, which enhance infected wound healing by inhibiting bacterial infection and alleviating inflammation after treatment of 11 days. Moreover, we show that the preparative strategies of injectable supramolecular hydrogels can be extended to other polyphenols, including protocatechuic and tannic acids. This study provides a facile yet highly effective method to design injectable polyphenol- sodium alginate hydrogel for wound dressing based on naturally bioactive ingredients.
Collapse
Affiliation(s)
- Qiang Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
35
|
Tiwari P, Gupta A, Shivhare V, Ahuja R, Mandloi AS, Mishra A, Basu A, Konar AD. Stereogenic Harmony Fabricated Mechanoresponsive Homochiral Triphenylalanine Analogues with Synergistic Antibacterial Performances: A Potential Weapon for Dermal Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:332-343. [PMID: 38116621 DOI: 10.1021/acsabm.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The wound recovery phenomenon remains as one of the long challenging concerns worldwide. In search of user-friendly dressing materials, in this report, we fabricated a rational combinatorial strategy utilizing stereogenic harmony in a triphenylalanine fragment and appending it to δ-amino valeric acid at the N-terminus (hydrogelators I-VII) such that a potential scaffold could be fished out from the design. Our investigations revealed that all the hydrogelators displayed not only excellent self-healing performance as well as high mechanical strength at physiological pH but also mechanical stress-triggered gel-sol-gel transition properties. The structural and morphological investigation confirmed the presence of β-sheet-like assemblies stabilized by intermolecular H-bonding and π-π interactions. Moreover, these scaffolds showed substantial antibacterial as well as antifungal efficacy against common wound pathogens, i.e, four Gram-positive bacteria (Staphylococcus aureus, Streptococcus mutans, B. subtilis, E. fecalis), four Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, P. aerugonosa, Proteus spp.), and two fungal strains (C. albicans and A. niger). The manifestation of consistent antioxidant properties might be due to the enhancement of amphiphilicity in hydrogelators, which has led to the generation of reactive oxygen species (ROS) in a facile manner, a probable mechanism to damage the microbial membrane, the driving force behind the antimicrobial efficacy. Also, the constructs exhibited proteolytic resistance and remarkable biocompatibility toward mammalian cells. Thus, based on the above benchmarks, the homochiral hydrogelator IV was seived out from a pool of seven, and we proceeded toward its in vivo evaluation using full-thickness excisional wounds in Wister rats. The scaffolds also accentuated the re-epithelialization as well in comparison to the negative control, thereby facilitating the wound closure process in a very short span of time (10 days). Overall, our in vitro and in vivo analysis certifies hydrogelator IV as an ideal dressing material that might hold immense promise for future wound care management.
Collapse
Affiliation(s)
- Priyanka Tiwari
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
| | - Arindam Gupta
- Department of Chemistry, IISER, Bhopal 462066, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
| | - Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
| | - Avinash Singh Mandloi
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh 462044, India
| | - Ankit Mishra
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh 462044, India
| | - Anindya Basu
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal 462036, India
- University Grants Commission, New Delhi, New Delhi 110002, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal 462036, India
- University Grants Commission, New Delhi, New Delhi 110002, India
| |
Collapse
|
36
|
Dong Z, Ma F, Wei X, Zhang L, Ding Y, Shi L, Chen C, Ma Y, Ma Y. Injectable, thermo-sensitive and self-adhesive supramolecular hydrogels built from binary herbal small molecules towards reusable antibacterial coatings. RSC Adv 2024; 14:2027-2035. [PMID: 38196913 PMCID: PMC10774861 DOI: 10.1039/d3ra07882e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Herbal hydrogels as a new class of sustainable functional materials have attracted extensive attention. However, the development of herbal hydrogels is significantly hindered due to their poor hydrogel performances and the lack of universal preparation methods. In this study, four herbal hydrogels composed of phytochemical polyphenols and stevioside compounds are prepared through a facile heating-cooling process, where multiple hydrogen bonding interactions between two monomers provide the main driving force for gelation. These herbal hydrogels exhibit thermo-sensitivity and good reversibility (25-90 °C), robust adhesion behaviours on hydrophilic and hydrophobic surfaces (maximum adhesion strength of 591.7 kPa), and outstanding antibacterial properties (100% bacteriostatic ratio). Profiting from these intriguing characteristics, they are demonstrated to show great potential as natural antibacterial coatings by depositing thin hydrogel layers onto diverse substrates. More importantly, the hydrogel coatings could be easily recycled by thermal regelation and reused at least 5 times. This work proposes a simple and universal strategy for preparing functional hydrogels based on binary herbal small molecules, which also sheds light on the development of reusable hydrogel coatings.
Collapse
Affiliation(s)
- Zhibin Dong
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Fengjun Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Xiaocen Wei
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Linlin Zhang
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yongling Ding
- School of Transportation Civil Engineering, Shandong Jiaotong University Jinan 250357 P.R. China
| | - Lei Shi
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Chen Chen
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| | - Yuning Ma
- Department of Acupuncture-Moxibustion and Tuina, Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 P.R. China
| |
Collapse
|
37
|
Hu F, Dong B, Zhao R, Li Z, Zhang Y, Zhang F, Liu W, Yu D. Lignosulfonate sodium and ionic liquid synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Int J Biol Macromol 2024; 254:127958. [PMID: 37951428 DOI: 10.1016/j.ijbiomac.2023.127958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Flexible wearable devices are garnering significant interest, with conductive hydrogels emerging as a particularly notable category. While many of these hydrogels offer impressive conductivity, they often lack the innate ability to adhere autonomously to human skin. The ideal hydrogel should possess both superior adhesion properties and a wide responsive range. This study introduces a novel double-network conductive hydrogel, synthesized from lignosulfonate sodium and ionic liquid using a one-pot method. The gel's mechanical robustness (fracture elongation of ∼3500 % and tensile strength of ∼130 kPa) and exceptional conductivity sensing performance arise from the synergistic effects of electrostatic interactions, dynamic hydrogen bonding, and a three-dimensional network structure. Additionally, the phenolic hydroxyl and sulfonic groups from lignosulfonate sodium imbue the hydrogel with adhesive qualities, allowing it to easily bond with varied material surfaces. This hydrogel excels in human physiological signal detection and wireless monitoring, demonstrating a rapid response time (149 ms) and high sensitivity (a maximum gauge factor of 10.9 for strains between 400 and 600 %). Given these properties, the flexible, self-adhesive, and conductive hydrogel showcases immense promise for future applications in wearable devices and wireless transmission sensing.
Collapse
Affiliation(s)
- Feihong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Rui Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Zhuo Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Yannan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
38
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
39
|
Tang J, Cheng Y, Ding M, Wang C. Bio-Inspired Far-From-Equilibrium Hydrogels: Design Principles and Applications. Chempluschem 2023; 88:e202300449. [PMID: 37787015 DOI: 10.1002/cplu.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Inspired from dynamic living systems that operate under out-of-equilibrium conditions in biology, developing supramolecular hydrogels with self-regulating and autonomously dynamic properties to further advance adaptive hydrogels with life-like behavior is important. This review presents recent progress of bio-inspired supramolecular hydrogels out-of-equilibrium. The principle of out-of-equilibrium self-assembly for creating bio-inspired hydrogels is discussed. Various design strategies have been identified, such as chemical-driven reaction cycles with feedback control and physically oscillatory systems. These strategies can be coupled with hydrogels to achieve temporal and spatial control over structural and mechanical properties as well as programmable lifetime. These studies open up huge opportunities for potential applications, such as fluidic guidance, information storage, drug delivery, actuators and more. Finally, we address the challenges ahead of us in the coming years, and future possibilities and prospects are identified.
Collapse
Affiliation(s)
- Jiadong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Yibo Cheng
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Muhua Ding
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| |
Collapse
|
40
|
Xu J, Zhu X, Zhao J, Ling G, Zhang P. Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Adv Colloid Interface Sci 2023; 321:103000. [PMID: 37839280 DOI: 10.1016/j.cis.2023.103000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Supramolecular hydrogels bound by hydrogen bonding, host-guest, hydrophobic, and other non-covalent interactions are among the most attractive biomaterials available. Supramolecular hydrogels have attracted extensive attention due to their inherent dynamic reversibility, self-healing, stimuli-response, excellent biocompatibility, and near-physiological environment. However, the inherent contradiction between non-covalent interactions and mechanical strength makes the practical application of supramolecular hydrogels a great challenge. This review describes the mechanical strength of hydrogels mediated by supramolecular interactions, and focuses on the potential strategies for enhancing the mechanical strength of supramolecular hydrogels and illustrates their applications in related fields, such as flexible electronic sensors, wound dressings, and three-dimensional (3D) scaffolds. Finally, the current problems and future research prospects of supramolecular hydrogels are discussed. This review is expected to provide insights that will motivate more advanced research on supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| |
Collapse
|
41
|
Liu W, Zu L, Wang S, Li J, Fei X, Geng M, Zhu C, Shi H. Tailored biomedical materials for wound healing. BURNS & TRAUMA 2023; 11:tkad040. [PMID: 37899884 PMCID: PMC10605015 DOI: 10.1093/burnst/tkad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 10/31/2023]
Abstract
Wound healing is a long-term, multi-stage biological process that mainly includes haemostatic, inflammatory, proliferative and tissue remodelling phases. Controlling infection and inflammation and promoting tissue regeneration can contribute well to wound healing. Smart biomaterials offer significant advantages in wound healing because of their ability to control wound healing in time and space. Understanding how biomaterials are designed for different stages of wound healing will facilitate future personalized material tailoring for different wounds, making them beneficial for wound therapy. This review summarizes the design approaches of biomaterials in the field of anti-inflammatory, antimicrobial and tissue regeneration, highlights the advanced precise control achieved by biomaterials in different stages of wound healing and outlines the clinical and practical applications of biomaterials in wound healing.
Collapse
Affiliation(s)
- Wenhui Liu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lihua Zu
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Shanzheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, 87 Ding Jia Qiao Road, Nanjing, Jiangsu 210009, P.R. China
| | - Jingyao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoyuan Fei
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Meng Geng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunlei Zhu
- Department of Orthopaedics, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
| | - Hui Shi
- Clinical laboratory, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
43
|
Tiwari P, Shivhare V, Ahuja R, Khan N, Shukla DN, Mishra AK, Basu A, Dutt Konar A. A Homochiral Diphenylalanine Analog Based Mechanoresponsive Hydrogel: An Insight Towards Its Wound Healing Efficacy. Chem Biodivers 2023; 20:e202300622. [PMID: 37615615 DOI: 10.1002/cbdv.202300622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Deciphering the most promising strategy for the evolution of potential wound-healing therapeutics is one of the greatest challenging affairs to date. The development of peptide-based smart scaffolds with innate antimicrobial, anti-inflammatory, and antioxidant properties is an appealing way out. Aligned to the goal a set of Hydrogelators I-IV were developed utilizing the concept of chiral orchestration in diphenylalanine fragment, such that the most potent construct with all the bench marks namely mechanoresponsiveness, biocompatibility, consistent antimicrobial and antioxidant properties, could be fished out from the design. Interestingly, our in vitro Antifungal and Lipid peroxidation analysis identified the homochiral isomer Boc-δ-Ava-L-Phe-L-Phe-OH (Hydrogelator I), as an ideal candidate for the wound healing experiment, so we proceeded for the in vivo histopathological and antioxidant measurements in Wister rats. Indeed the wound images obtained from the different sets of animals on the 14th day of treatment demonstrated that with increased recovery time, hydrogelator I displayed a significant reduction in the lesion diameter compared to the marketed drug, and negative control. Even the histopathological measurements using H & E staining demonstrated diminished tissue destruction, neutrophil infiltration necrosis, and lymphatic proliferation in the hydrogelators, in comparison to others, backed by in vivo lipid peroxidation data. Overall our investigation certifies hydrogelator I as an effective therapeutic for managing the wound healing complication.
Collapse
Affiliation(s)
- Priyanka Tiwari
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
| | - Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
| | - Naureen Khan
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
| | - Durgesh Nandan Shukla
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, 462044, Madhya Pradesh, India
| | - Ankit K Mishra
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, 462044, Madhya Pradesh, India
| | - Anindya Basu
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, India
- University Grants Commission, New Delhi -, 110002, New Delhi, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, 462033, Madhya Pradesh, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal, India
- University Grants Commission, New Delhi -, 110002, New Delhi, India
| |
Collapse
|
44
|
Cheng J, Wang H, Gao J, Liu X, Li M, Wu D, Liu J, Wang X, Wang Z, Tang P. First-Aid Hydrogel Wound Dressing with Reliable Hemostatic and Antibacterial Capability for Traumatic Injuries. Adv Healthc Mater 2023; 12:e2300312. [PMID: 37335228 DOI: 10.1002/adhm.202300312] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Indexed: 06/21/2023]
Abstract
First-aid for severe traumatic injuries in the battlefield or pre-hospital environment, especially for skin defects or visceral rupture, remains a substantial medical challenge even in the context of the rapidly evolving modern medical technology. Hydrogel-based biomaterials are highly anticipated for excellent biocompatibility and bio-functional designability. Yet, inadequate mechanical and bio-adhesion properties limit their clinical application. To address these challenges, a kind of multifunctional hydrogel wound dressing is developed with the collective multi-crosslinking advantages of dynamic covalent bonds, metal-catechol chelation, and hydrogen bonds. The mussel-inspired design and zinc oxide-enhanced cohesion strategy collaboratively reinforce the hydrogel's bio-adhesion in bloody or humoral environments. The pH-sensitive coordinate Zn2+ -catechol bond and dynamic Schiff base with reversible breakage and reformation equip the hydrogel dressing with excellent self-healing and on-demand removal properties. In vivo evaluation in a rat ventricular perforation model and Methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin defect model reveal excellent hemostatic, antibacterial and pro-healing effectiveness of the hydrogel dressing, demonstrating its great potential in dealing with severe bleeding and infected full-thickness skin wounds.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianpeng Gao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Xiao Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
- Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Ming Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| |
Collapse
|
45
|
Chen L, Cheng J, Wang L, Fan W, Lu Z, Zheng L. A silver metal-organic cage with antibacterial activity for wound healing. RSC Adv 2023; 13:29043-29050. [PMID: 37799305 PMCID: PMC10548531 DOI: 10.1039/d3ra04013e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
Bacterial infection is one of the most threatening diseases in humans and can result in tissue necrosis, inflammation, and so on. Although a large number of antibacterial materials have been developed, there are still some disadvantages in this field, including decreasing antibacterial activity in the aqueous solution or a short duration of time. Herein, a metal-organic cage named Ag-TBI-TPE with excellent antibacterial activity was prepared and applied in wound healing. Owing to the photosensitive production of the toxic ROS species and the positive charge of the surface, the Ag-TBI-TPE cage exhibits high antibacterial activity, especially under UV irradiation. It could accelerate the healing process of the infected wounds in vivo with satisfactory biocompatibility and bio-safety. The results indicated that after treatment with the Ag-TBI-TPE cage, with and without UV irradiation, the healing rates of wounds infected by E. coli and S. aureus were 89.59% and 93.05%, and 83.48% and 90.84%, respectively, which were much higher than those shown by the positive control group at 51.38% and 67.74%, respectively. This study not only sheds light on a design idea for a new antibacterial material but also further expands the potential application field of metal-organic cages.
Collapse
Affiliation(s)
- Linlin Chen
- QuanZhou Medical College Quanzhou Fujian 362000 China
| | - Jing Cheng
- QuanZhou Medical College Quanzhou Fujian 362000 China
| | - Longjie Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University Kunming 650091 China
| | - Wenwen Fan
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University Kunming 650091 China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Liyan Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Yunnan University Kunming 650091 China
| |
Collapse
|
46
|
Lee H, Jang J, Lee J, Shin M, Lee JS, Son D. Stretchable Gold Nanomembrane Electrode with Ionic Hydrogel Skin-Adhesive Properties. Polymers (Basel) 2023; 15:3852. [PMID: 37765706 PMCID: PMC10537659 DOI: 10.3390/polym15183852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Skin has a dynamic surface and offers essential information through biological signals originating from internal organs, blood vessels, and muscles. Soft and stretchable bioelectronics can be used in wearable machines for long-term stability and to continuously obtain distinct bio-signals in conjunction with repeated expansion and contraction with physical activities. While monitoring bio-signals, the electrode and skin must be firmly attached for high signal quality. Furthermore, the signal-to-noise ratio (SNR) should be high enough, and accordingly, the ionic conductivity of an adhesive hydrogel needs to be improved. Here, we used a chitosan-alginate-chitosan (CAC) triple hydrogel layer as an interface between the electrodes and the skin to enhance ionic conductivity and skin adhesiveness and to minimize the mechanical mismatch. For development, thermoplastic elastomer Styrene-Ethylene-Butylene-Styrene (SEBS) dissolved in toluene was used as a substrate, and gold nanomembranes were thermally evaporated on SEBS. Subsequently, CAC triple layers were drop-casted onto the gold surface one by one and dried successively. Lastly, to demonstrate the performance of our electrodes, a human electrocardiogram signal was monitored. The electrodes coupled with our CAC triple hydrogel layer showed high SNR with clear PQRST peaks.
Collapse
Affiliation(s)
- Hyelim Lee
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaepyo Jang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
| | - Jaebeom Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
47
|
Li Q, Yu X, Zhang S, Xu M, Yang Y, Wan Z, Yang X. All-Natural, Robust, and pH-Responsive Glycyrrhizic Acid-Based Double Network Hydrogels for Controlled Nutrient Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43633-43647. [PMID: 37695942 DOI: 10.1021/acsami.3c10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Supramolecular hydrogels self-assembled from naturally occurring small molecules (e.g., glycyrrhizic acid, GA) are promising materials for controlled bioactive delivery due to their facile fabrication processes, excellent biocompatibility, and versatile stimuli-responsive behaviors. However, most of these natural hydrogels suffer from poor mechanical strength and processability for practical applications. In this work, through adopting a multicomponent gel approach, we developed a novel mechanically robust GA-based hydrogel with an interpenetrating double network (DN) that is composed of a Ca2+-enhanced hydrogen-bond supramolecular GA nanofibril (GN) network and a Ca2+cross-linked natural polysaccharide sodium alginate (ALG) network. Compared to the single GN network (SN) hydrogel, the GN-ALG hybrid hydrogels (GN-ALG-DN) with the hierarchical double-network structure possess excellent mechanical properties and shaping adaptation, encouraging small and large amplitude oscillatory shear (SAOS and LAOS) rheological performances, better thermal stability, higher resistance to large compression deformations, and lower swelling behaviors. Furthermore, the GN-ALG-DN hydrogels exhibit a pH-responsive and sustained release behavior of nutrients (i.e., vitamin B12, VB12), showing a faster VB12 release rate with a higher swelling ratio in an alkaline condition (pH 7.5) than in an acidic condition (pH 2.5). This is ascribed to the fact that the higher dissociation degree of carboxylic groups in GA and ALG molecules in an alkaline environment induces the erosion and looseness of the self-assembled GN network and the ionic-cross-linked ALG network, which can lead to the decomposition of the hybrid hydrogels and thereby increases the release of nutrients. Cytotoxicity tests further demonstrate the excellent biocompatibility of the GN-ALG-DN hydrogels. This study highlights the design of robust shaped and structured supramolecular hydrogels from natural herb small molecules, which can serve as solid, edible, and stimuli-responsive active cargo delivery platforms for food, biomedical, and sustainable applications.
Collapse
Affiliation(s)
- Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shiqi Zhang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Mengyue Xu
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, Wageningen 6708WG, The Netherlands
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
48
|
Bhattacharya S, Bhattacharyya T, Khanra S, Banerjee R, Dash J. Nucleoside-Derived Metallohydrogel Induces Cell Death in Leishmania Parasites. ACS Infect Dis 2023; 9:1676-1684. [PMID: 37606735 DOI: 10.1021/acsinfecdis.2c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Self-assembled hydrogels by virtue of their unique 3D network and tunability have extensively been explored for bio-medical applications like tissue engineering, delivery and release of therapeutic agents, etc. Herein, we demonstrate for the first-time nucleoside-based biocompatible hydrogels with a remarkable leishmanicidal effect against both Leishmania major promastigotes and amastigotes and no cytotoxic effect on the macrophage cell line. In this work, a series of biocompatible hydrogels have been synthesized by silver ion-driven self-assembly of natural nucleoside and nucleotide-like cytidine and 5'-GMP. The supramolecular metallogel obtained from the assembly of cytidine and boronic acid is capable of inducing apoptotic-like cell death of protozoan parasite by causing damage to the membrane as well as DNA. These hydrogels could find promising applications in combating cutaneous leishmaniasis by topical treatment.
Collapse
Affiliation(s)
- Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tanima Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Supriya Khanra
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Rahul Banerjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
49
|
Shen Z, Zhu W, Huang Y, Zhang J, Wu Y, Pan Y, Yang G, Wang D, Li Y, Tang BZ. Visual Multifunctional Aggregation-Induced Emission-Based Bacterial Cellulose for Killing of Multidrug-Resistant Bacteria. Adv Healthc Mater 2023; 12:e2300045. [PMID: 37042250 DOI: 10.1002/adhm.202300045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/18/2023] [Indexed: 04/13/2023]
Abstract
Multidrug-resistant (MDR) bacteria-related wound infections are a thorny issue. It is urgent to develop new antibacterial wound dressings that can not only prevent wounds from MDR bacteria infection but also promote wound healing. Herein, an aggregation-induced emission (AIE) molecule BITT-composited bacterial cellulose (BC) is presented as wound dressings. BC-BITT composites have good transparency, making it easy to monitor the wound healing process through the composite membrane. The BC-BITT composites retain the advantages of biocompatible BC, and display photodynamic and photothermal synergistic antibacterial effects under irradiation of a 660 nm laser. Furthermore, the BC-BITT composites show excellent wound healing performance in a mouse full-thickness skin wound model infected by MDR bacteria, simultaneously with negligible toxicity. This work paves a way for treating clinically troublesome wound infections.
Collapse
Affiliation(s)
- Zipeng Shen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wei Zhu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing and Finishing, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yajia Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen, Guangdong, 518055, China
| | - Yifan Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yinzhen Pan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
50
|
Shang M, Jiang H, Li J, Ji N, Li M, Dai L, He J, Qin Y. A dual physical crosslinking starch-based hydrogel exhibiting high strength, fatigue resistance, excellent biocompatibility, and biodegradability. Food Chem X 2023; 18:100728. [PMID: 37397217 PMCID: PMC10314210 DOI: 10.1016/j.fochx.2023.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Simultaneous realization of high strength, toughness, and fatigue resistance in natural starch-based hydrogel materials is challenging. A facile method of in situ self-assembly and a freeze-thaw cycle was proposed to construct double-network nanocomposite hydrogels of debranched corn starch/polyvinyl alcohol (Gels). Rheology, chemical structure, microstructure, and mechanical property of Gels were investigated. Notably, short linear starch chains were self-assembled into nanoparticles and subsequently into 3D microaggregates, which were tightly wrapped by starch and PVA network. Compared with corn starch single-network and starch/PVA double-network hydrogels, the Gels reached up to a higher compressive strength (ca. 1095.7 kPa), and then achieved to ∼20-30-fold improvement in compressive strength. Recovery efficiency exceeded 85% after 20 successive compression loading-unloading cycle tests. Furthermore, the Gels had good biocompatibility to L929 cells. Hence, the high-performance starch hydrogels are thought to serve as a biodegradable and biocompatible material to replace synthetic hydrogels, which can broaden their application fields.
Collapse
Affiliation(s)
- Mengshan Shang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Han Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jiaqi Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Jian He
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|