1
|
Rudzka A, Reiter T, Kroutil W, Borowiecki P. Bienzymatic Dynamic Kinetic Resolution of Secondary Alcohols by Esterification/Racemization in Water. Angew Chem Int Ed Engl 2025; 64:e202420133. [PMID: 39576712 DOI: 10.1002/anie.202420133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Dynamic kinetic resolution (DKR) is a key method used to prepare optically pure compounds in 100 % theoretical yield starting from racemic substrates by combining the interconversion of substrate enantiomers with an enantioselective transformation. Various chemoenzymatic DKR approaches have been developed to deracemize secondary alcohols, typically requiring an organic solvent to facilitate enantioselective acylation, primarily catalyzed by lipases, alongside racemization mediated by an achiral, non-enzymatic catalyst. Achieving both steps in an aqueous solution remained elusive. Herein, we report a DKR of racemic sec-alcohols in an aqueous solution requiring only two biocatalysts. The first key to success was to achieve fast racemization in a buffer employing a non-stereoselective variant of an alcohol dehydrogenase (Lk-ADH-Prince) via a hydrogen-borrowing oxidation-reduction sequence. Engineered variants of the acyltransferase from Mycobacterium smegmatis (MsAcT) enabled enantioselective acyl transfer in water. Besides the appropriate choice of the enzymes, identifying a suitable acyl donor was a second key to the success. The DKR was successfully demonstrated using (R)-selective MsAcT variants for a broad range of racemic (hetero)benzylic alcohols with 2,2,2-trifluoroethyl acetate as the acyl donor, yielding (R)-acetates with up to >99 % conv. and high-to-excellent optical purity (83-99.9 % ee). The (S)-acetates were accessible using a stereocomplementary (S)-selective MsAcT variant. Notably, substrate concentrations of up to 400 mM were tolerated in selected cases.
Collapse
Affiliation(s)
- Aleksandra Rudzka
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Tamara Reiter
- Department of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Field of Excellence BioHealth-, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| |
Collapse
|
2
|
Wang A, Wang Y, You Y, Huang Z, Zhang X, Li S, Chen H. One-Pot Biocatalytic Conversion of Chemically Inert Hydrocarbons into Chiral Amino Acids through Internal Cofactor and H 2O 2 Recycling. Angew Chem Int Ed Engl 2024; 63:e202410260. [PMID: 39187620 DOI: 10.1002/anie.202410260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Chemically inert hydrocarbons are the primary feedstocks used in the petrochemical industry and can be converted into more intricate and valuable chemicals. However, two major challenges impede this conversion process: selective activation of C-H bonds in hydrocarbons and systematic functionalization required to synthesize complex structures. To address these issues, we developed a multi-enzyme cascade conversion system based on internal cofactor and H2O2 recycling to achieve the one-pot deep conversion from heptane to chiral (S)-2-aminoheptanoic acid under mild conditions. First, a hydrogen-borrowing-cycle-based NADH regeneration method and H2O2 in situ generation and consumption strategy were applied to realize selective C-H bond oxyfunctionalization, converting heptane into 2-hydroxyheptanoic acid. Integrating subsequent reductive amination driven by the second hydrogen-borrowing cycle, (S)-2-aminoheptanoic acid was finally accumulated at 4.57 mM with eep>99 %. Hexane, octane, 2-methylheptane, and butylbenzene were also successfully converted into the corresponding chiral amino acids with eep>99 %. Overall, the conversion system employed internal cofactor and H2O2 recycling, with O2 as the oxidant and ammonium as the amination reagent to fulfill the enzymatic conversion from chemically inert hydrocarbons into chiral amino acids under environmentally friendly conditions, which is a highly challenging transformation in traditional organic synthesis.
Collapse
Affiliation(s)
- Aiwen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yongze Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yuanxiang You
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhiqing Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Hui Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
3
|
Liu ZX, Gao YD, Yang LC. Biocatalytic Hydrogen-Borrowing Cascade in Organic Synthesis. JACS AU 2024; 4:877-892. [PMID: 38559715 PMCID: PMC10976568 DOI: 10.1021/jacsau.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Biocatalytic hydrogen borrowing represents an environmentally friendly and highly efficient synthetic method. This innovative approach involves converting various substrates into high-value-added products, typically via a one-pot, two/three-step sequence encompassing dehydrogenation (intermediate transformation) and hydrogenation processes employing the hydride shuffling between NAD(P)+ and NAD(P)H. Represented key transformations in hydrogen borrowing include stereoisomer conversion within alcohols, conversion between alcohols and amines, conversion of allylic alcohols to saturated carbonyl counterparts, and α,β-unsaturated aldehydes to saturated carboxylic acids, etc. The direct transformation methodology and environmentally benign characteristics of hydrogen borrowing have contributed to its advancements in fine chemical synthesis or drug developments. Over the past decades, the hydrogen borrowing strategy in biocatalysis has led to the creation of diverse catalytic systems, demonstrating substantial potential for straightforward synthesis as well as asymmetric transformations. This perspective serves as a detailed exposition of the recent advancements in biocatalytic reactions employing the hydrogen borrowing strategy. It provides insights into the potential of this approach for future development, shedding light on its promising prospects in the field of biocatalysis.
Collapse
Affiliation(s)
- Zong-Xiao Liu
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| | - Ya-Dong Gao
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| | - Li-Cheng Yang
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| |
Collapse
|
4
|
Wang Y, Douglas T. Tuning Multistep Biocatalysis through Enzyme and Cofactor Colocalization in Charged Porous Protein Macromolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43621-43632. [PMID: 37695852 DOI: 10.1021/acsami.3c10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Spatial organization of biocatalytic activities is crucial to organisms to efficiently process complex metabolism. Inspired by this mechanism, artificial scaffold structures are designed to harbor functionally coupled biocatalysts, resulting in acellular materials that can complete multistep reactions at high efficiency and low cost. Substrate channeling is an approach for efficiency enhancement of multistep reactions, but fast diffusion of small molecule intermediates poses a major challenge to achieve channeling in vitro. Here, we explore how multistep biocatalysis is affected, and can be modulated, by cofactor-enzyme colocalization within a synthetic bioinspired material. In this material, a heterogeneous protein macromolecular framework (PMF) acts as a porous host matrix for colocalization of two coupled enzymes and their small molecule cofactor, nicotinamide adenine dinucleotide (NAD). After formation of the PMF from a higher order assembly of P22 virus-like particles (VLPs), the enzymes were partitioned into the PMF by covalent attachment and presentation on the VLP exterior. Using a collective property of the PMF (i.e., high density of negative charges in the PMF), NAD molecules were partitioned into the framework via electrostatic interactions after being conjugated to a polycationic species. This effectively controlled the localization and diffusion of NAD, resulting in substrate channeling between the enzymes. Changing ionic strength modulates the PMF-NAD interactions, tuning two properties that impact the multistep efficiency oppositely in response to ionic strength: cofactor partitioning (colocalization with the enzymes) and cofactor mobility (translocation between the enzymes). Within the range tested, we observed a maximum of 5-fold increase or 75% decrease in multistep efficiency as compared to free enzymes in solution, which suggest both the colocalization and the mobility are critical for the multistep efficiency. This work demonstrates utility of collective behaviors, exhibited by hierarchical bioassemblies, in the construction of functional materials for enzyme cascades, which possess properties such as tunable multistep biocatalysis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Partipilo M, Claassens NJ, Slotboom DJ. A Hitchhiker's Guide to Supplying Enzymatic Reducing Power into Synthetic Cells. ACS Synth Biol 2023; 12:947-962. [PMID: 37052416 PMCID: PMC10127272 DOI: 10.1021/acssynbio.3c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 04/14/2023]
Abstract
The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.
Collapse
Affiliation(s)
- Michele Partipilo
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nico J. Claassens
- Laboratory
of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Jan Slotboom
- Department
of Biochemistry, Groningen Institute of Biomolecular Sciences &
Biotechnology, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Yang T, Pan L, Wu W, Pan X, Xu M, Zhang X, Rao Z. N20D/N116E Combined Mutant Downward Shifted the pH Optimum of Bacillus subtilis NADH Oxidase. BIOLOGY 2023; 12:522. [PMID: 37106723 PMCID: PMC10135872 DOI: 10.3390/biology12040522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Cofactor regeneration is indispensable to avoid the addition of large quantities of cofactor NADH or NAD+ in oxidation-reduction reactions. Water-forming NADH oxidase (Nox) has attracted substantive attention as it can oxidize cytosolic NADH to NAD+ without concomitant accumulation of by-products. However, its applications have some limitations in some oxidation-reduction processes when its optimum pH is different from its coupled enzymes. In this study, to modify the optimum pH of BsNox, fifteen relevant candidates of site-directed mutations were selected based on surface charge rational design. As predicted, the substitution of this asparagine residue with an aspartic acid residue (N22D) or with a glutamic acid residue (N116E) shifts its pH optimum from 9.0 to 7.0. Subsequently, N20D/N116E combined mutant could not only downshift the pH optimum of BsNox but also significantly increase its specific activity, which was about 2.9-fold at pH 7.0, 2.2-fold at pH 8.0 and 1.2-fold at pH 9.0 that of the wild-type. The double mutant N20D/N116E displays a higher activity within a wide range of pH from 6 to 9, which is wider than the wide type. The usability of the BsNox and its variations for NAD+ regeneration in a neutral environment was demonstrated by coupling with a glutamate dehydrogenase for α-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) at pH 7.0. Employing the variation N20D/N116E as an NAD+ regeneration coenzyme could shorten the process duration; 90% of L-Glu were transformed into α-KG within 40 min vs. 70 min with the wild-type BsNox for NAD+ regeneration. The results obtained in this work suggest the promising properties of the BsNox variation N20D/N116E are competent in NAD+ regeneration applications under a neutral environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Gao Q, Jacob-Dolan JW, Scheck RA. Parkinsonism-Associated Protein DJ-1 Is an Antagonist, Not an Eraser, for Protein Glycation. Biochemistry 2023; 62:1181-1190. [PMID: 36820886 PMCID: PMC10035033 DOI: 10.1021/acs.biochem.3c00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Advanced glycation end-products (AGEs) are irreversible protein modifications that are strongly associated with aging and disease. Recently, the Parkinsonism-associated protein DJ-1 has been reported to exhibit deglycase activity that erases early glycation intermediates and stable AGEs from proteins. In this work, we use mass spectrometry and western blot to demonstrate that DJ-1 is not a deglycase and cannot remove AGEs from protein or peptide substrates. Instead, our studies revealed that DJ-1 antagonizes glycation through glyoxalase activity that detoxifies the potent glycating agent methylglyoxal (MGO) to lactate. We further show that attenuated glycation in the presence of DJ-1 can be attributed solely to its ability to decrease the available concentration of MGO. Our studies also provide evidence that DJ-1 is allosterically activated by glutathione. Together, this work reveals that although DJ-1 is not a genuine deglycase, it still harbors the ability to prevent AGE formation and can be used as a valuable tool to investigate metabolic stress.
Collapse
Affiliation(s)
- Qingzeng Gao
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Jeremiah W Jacob-Dolan
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Rebecca A Scheck
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
8
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
9
|
Zhang Y, Wei B, Liang H. Rhodium-Based MOF-on-MOF Difunctional Core-Shell Nanoreactor for NAD(P)H Regeneration and Enzyme Directed Immobilization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3442-3454. [PMID: 36609187 DOI: 10.1021/acsami.2c18440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An organometallic complex-catalyzed artificial coenzyme regeneration system has attracted widespread attention. However, the combined use of organometallic complex catalysts and natural enzymes easily results in mutual inactivation. Herein, we establish a rhodium-based metal-organic framework (MOF)-on-MOF difunctional core-shell nanoreactor as an artificial enzymatic NAD(P)H regeneration system. UiO67 as the core is used to capture rhodium molecules for catalyzing NAD(P)H regeneration. UiO66 as the shell is used to specifically immobilize His-tagged lactate dehydrogenase (LDH) and serve as a protection shield for LDH and [Cp*Rh(bpy)Cl]+ to prevent mutual inactivation. A variety of results indicate that UiO67@Rh@UiO66 has good activity in realizing NAD(P)H regeneration. Noteworthily, UiO67@Rh@UiO66@LDH maintains a high activity level even after 10 cycles. This work reports a novel NAD(P)H regeneration platform to open up a new avenue for constructing chemoenzyme coupling systems.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, PR China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, PR China
| |
Collapse
|
10
|
Sharma VK, Hutchison JM, Allgeier AM. Redox Biocatalysis: Quantitative Comparisons of Nicotinamide Cofactor Regeneration Methods. CHEMSUSCHEM 2022; 15:e202200888. [PMID: 36129761 PMCID: PMC10029092 DOI: 10.1002/cssc.202200888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Enzymatic processes, particularly those capable of performing redox reactions, have recently been of growing research interest. Substrate specificity, optimal activity at mild temperatures, high selectivity, and yield are among the desirable characteristics of these oxidoreductase catalyzed reactions. Nicotinamide adenine dinucleotide (phosphate) or NAD(P)H-dependent oxidoreductases have been extensively studied for their potential applications like biosynthesis of chiral organic compounds, construction of biosensors, and pollutant degradation. One of the main challenges associated with making these processes commercially viable is the regeneration of the expensive cofactors required by the enzymes. Numerous efforts have pursued enzymatic regeneration of NAD(P)H by coupling a substrate reduction with a complementary enzyme catalyzed oxidation of a co-substrate. While offering excellent selectivity and high total turnover numbers, such processes involve complicated downstream product separation of a primary product from the coproducts and impurities. Alternative methods comprising chemical, electrochemical, and photochemical regeneration have been developed with the goal of enhanced efficiency and operational simplicity compared to enzymatic regeneration. Despite the goal, however, the literature rarely offers a meaningful comparison of the total turnover numbers for various regeneration methodologies. This comprehensive Review systematically discusses various methods of NAD(P)H cofactor regeneration and quantitatively compares performance across the numerous methods. Further, fundamental barriers to enhanced cofactor regeneration in the various methods are identified, and future opportunities are highlighted for improving the efficiency and sustainability of commercially viable oxidoreductase processes for practical implementation.
Collapse
Affiliation(s)
- Victor K Sharma
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Justin M Hutchison
- Civil, Environmental and Architectural Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| | - Alan M Allgeier
- Chemical and Petroleum Engineering, The University of Kansas, 1530 W 15th St, 66045, Lawrence, Kansas, United States
| |
Collapse
|
11
|
Fu Y, Yang L, Zhou Z, Jia T, Shen G, Zhu X. Comparison of Thermodynamic Energies for Elementary Steps of Anionic Hydrides to Release Hydride Ions in Acetonitrile. ChemistrySelect 2022. [DOI: 10.1002/slct.202203626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Li‐Guo Yang
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Zhong‐Yuan Zhou
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Taixuan Jia
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao‐Qing Zhu
- Department of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
12
|
Cofactor and Process Engineering for Nicotinamide Recycling and Retention in Intensified Biocatalysis. Catalysts 2022. [DOI: 10.3390/catal12111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is currently considerable interest in the intensification of biocatalytic processes to reduce the cost of goods for biocatalytically produced chemicals, including pharmaceuticals and advanced pharmaceutical intermediates. Continuous-flow biocatalysis shows considerable promise as a method for process intensification; however, the reliance of some reactions on the use of diffusible cofactors (such as the nicotinamide cofactors) has proven to be a technical barrier for key enzyme classes. This minireview covers attempts to overcome this limitation, including the cofactor recapture and recycling retention of chemically modified cofactors. For the latter, we also consider the state of science for cofactor modification, a field reinvigorated by the current interest in continuous-flow biocatalysis.
Collapse
|
13
|
Křen V, Kroutil W, Hall M. A Career in Biocatalysis: Kurt Faber. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir Křen
- Institute of Microbiology, Czech Academy of Sciences, Laboratory of Biotransformation, 14220 Prague, Czech Republic
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed, University of Graz, 8010 Graz, Austria
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
14
|
Qi S, Tan Z, Na Q, Zhang X, Xu M, Zhuang W, Li M, Ying H, Ouyang P, Zhu C. Constructing a multienzyme cascade redox-neutral system for the synthesis of halogenated indoles. Chem Commun (Camb) 2022; 58:6016-6019. [DOI: 10.1039/d2cc00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by biocatalytic retrosynthesis, a multienzyme cascade system containing alcohol dehydrogenase, flavin-dependent halogenase and flavin reductase was developed for the synthesis of several halogenated indoles starting from aminoalcohol. This redox-neutral...
Collapse
|
15
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
16
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
17
|
Altering the Stereoselectivity of Whole-Cell Biotransformations via the Physicochemical Parameters Impacting the Processes. Catalysts 2021. [DOI: 10.3390/catal11070781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The enantioselective synthesis of organic compounds is one of the great challenges in organic synthetic chemistry due to its importance for the acquisition of biologically active derivatives, e.g., pharmaceuticals, agrochemicals, and others. This is why biological systems are increasingly applied as tools for chiral compounds synthesis or modification. The use of whole cells of “wild-type” microorganisms is one possible approach, especially as some methods allow improving the conversion degrees and controlling the stereoselectivity of the reaction without the need to introduce changes at the genetic level. Simple manipulation of the culture conditions, the form of a biocatalyst, or the appropriate composition of the biotransformation medium makes it possible to obtain optically pure products in a cheap, safe, and environmentally friendly manner. This review contains selected examples of the influence of physicochemical factors on the stereochemistry of the biocatalytic preparation of enantiomerically pure compounds, which is undertaken through kinetically controlled separation of their racemic mixtures or reduction of prochiral ketones and has an effect on the final enantiomeric purity and enantioselectivity of the reaction.
Collapse
|
18
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
19
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
20
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
21
|
Martin C, Tjallinks G, Trajkovic M, Fraaije MW. Facile Stereoselective Reduction of Prochiral Ketones by using an F 420 -dependent Alcohol Dehydrogenase. Chembiochem 2021; 22:156-159. [PMID: 32935896 PMCID: PMC7820951 DOI: 10.1002/cbic.202000651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022]
Abstract
Effective procedures for the synthesis of optically pure alcohols are highly valuable. A commonly employed method involves the biocatalytic reduction of prochiral ketones. This is typically achieved by using nicotinamide cofactor-dependent reductases. In this work, we demonstrate that a rather unexplored class of enzymes can also be used for this. We used an F420 -dependent alcohol dehydrogenase (ADF) from Methanoculleus thermophilicus that was found to reduce various ketones to enantiopure alcohols. The respective (S) alcohols were obtained in excellent enantiopurity (>99 % ee). Furthermore, we discovered that the deazaflavoenzyme can be used as a self-sufficient system by merely using a sacrificial cosubstrate (isopropanol) and a catalytic amount of cofactor F420 or the unnatural cofactor FOP to achieve full conversion. This study reveals that deazaflavoenzymes complement the biocatalytic toolbox for enantioselective ketone reductions.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Gwen Tjallinks
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Milos Trajkovic
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 4GroningenThe Netherlands
| |
Collapse
|
22
|
Cheng B, Wan L, Armstrong FA. Progress in Scaling up and Streamlining a Nanoconfined, Enzyme-Catalyzed Electrochemical Nicotinamide Recycling System for Biocatalytic Synthesis. ChemElectroChem 2020; 7:4672-4678. [PMID: 33381377 PMCID: PMC7756331 DOI: 10.1002/celc.202001166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/13/2020] [Indexed: 11/05/2022]
Abstract
An electrochemically driven nicotinamide recycling system, referred to as the 'electrochemical leaf' has unique attributes that may suit it to the small-scale industrial synthesis of high-value chemicals. A complete enzyme cascade can be immobilized within the channels of a nanoporous electrode, allowing complex reactions to be energized, controlled and monitored continuously in real time. The electrode is easily prepared by depositing commercially available indium tin oxide (ITO) nanoparticles on a Ti support, resulting in a network of nanopores into which enzymes enter and bind. One of the enzymes is the photosynthetic flavoenzyme, ferredoxin NADP+ reductase (FNR), which catalyzes the quasi-reversible electrochemical recycling of NADP(H) and serves as the transducer. The second enzyme is any NADP(H)-dependent dehydrogenase of choice, and further enzymes can be added to build elaborate cascades that are driven in either oxidation or reduction directions through the rapid recycling of NADP(H) within the pores. In this Article, we describe the measurement of key enzyme/cofactor parameters and an essentially linear scale-up from an analytical scale 4 mL reactor with a 14 cm2 electrode to a 500 mL reactor with a 500 cm2 electrode. We discuss the advantages (energization, continuous monitoring that can be linked to a computer, natural enzyme immobilization, low costs of electrodes and low cofactor requirements) and challenges to be addressed (optimizing minimal use of enzyme applied to the electrode).
Collapse
Affiliation(s)
- Beichen Cheng
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QR
| | - Lei Wan
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QR
| | - Fraser A. Armstrong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QR
| |
Collapse
|
23
|
Wang F, Zhao J, Li Q, Yang J, Li R, Min J, Yu X, Zheng GW, Yu HL, Zhai C, Acevedo-Rocha CG, Ma L, Li A. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia. Nat Commun 2020; 11:5035. [PMID: 33028823 PMCID: PMC7542165 DOI: 10.1038/s41467-020-18833-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Aliphatic α,ω‐dicarboxylic acids (DCAs) are a class of useful chemicals that are currently produced by energy-intensive, multistage chemical oxidations that are hazardous to the environment. Therefore, the development of environmentally friendly, safe, neutral routes to DCAs is important. We report an in vivo artificially designed biocatalytic cascade process for biotransformation of cycloalkanes to DCAs. To reduce protein expression burden and redox constraints caused by multi-enzyme expression in a single microbe, the biocatalytic pathway is divided into three basic Escherichia coli cell modules. The modules possess either redox-neutral or redox-regeneration systems and are combined to form E. coli consortia for use in biotransformations. The designed consortia of E. coli containing the modules efficiently convert cycloalkanes or cycloalkanols to DCAs without addition of exogenous coenzymes. Thus, this developed biocatalytic process provides a promising alternative to the current industrial process for manufacturing DCAs. Aliphatic α,ω-dicarboxylic acids (DCAs) are widely used chemicals that are synthesised by multistage chemical oxidations. Here, the authors report an artificially designed biocatalytic cascade for the oxidation of cycloalkanes or cycloalkanols to DCAs in the form of microbial consortia, composed of three Escherichia coli cell modules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Qian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Renjie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Xiaojuan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | | | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China.
| |
Collapse
|
24
|
Ducrot L, Bennett M, Grogan G, Vergne‐Vaxelaire C. NAD(P)H‐Dependent Enzymes for Reductive Amination: Active Site Description and Carbonyl‐Containing Compound Spectrum. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Laurine Ducrot
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry Université Paris-Saclay 91057 Evry France
| | - Megan Bennett
- York Structural Biology Laboratory Department of Chemistry University of York, Heslington York YO10 5DD UK
| | - Gideon Grogan
- York Structural Biology Laboratory Department of Chemistry University of York, Heslington York YO10 5DD UK
| | - Carine Vergne‐Vaxelaire
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry Université Paris-Saclay 91057 Evry France
| |
Collapse
|
25
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
26
|
Abstract
Flavoenzymes are broadly employed as biocatalysts for a large variety of reactions, owing to the chemical versatility of the flavin cofactor. Oxidases set aside, many flavoenzymes require a source of electrons in form of the biological reductant nicotinamide NAD(P)H in order to initiate catalysis via the reduced flavin. Chemists can take advantage of the reactivity of reduced flavins with oxygen to carry out monooxygenation reactions, while the reduced flavin can also be used for formal hydrogenation reactions. The main advantage of these reactions compared to chemical approaches is the frequent regio-, chemo- and stereo-selectivity of the biocatalysts, which allows the synthesis of chiral molecules in optically active form. This chapter provides an overview of the variety of biocatalytic processes that have been developed with flavoenzymes, with a particular focus on nicotinamide-dependent enzymes. The diversity of molecules obtained is highlighted and in several cases, strategies that allow control of the stereochemical outcome of the reactions are reviewed.
Collapse
Affiliation(s)
- Mélanie Hall
- Department of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
27
|
Tassano E, Merusic K, Buljubasic I, Laggner O, Reiter T, Vogel A, Hall M. Regioselective biocatalytic self-sufficient Tishchenko-type reaction via formal intramolecular hydride transfer. Chem Commun (Camb) 2020; 56:6340-6343. [PMID: 32391538 DOI: 10.1039/d0cc02509g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-sufficient nicotinamide-dependent intramolecular bio-Tishchenko-type reaction was developed. The reaction is catalyzed by alcohol dehydrogenases and proceeds through formal intramolecular hydride transfer on dialdehydes to deliver lactones. Regioselectivity on [1,1'-biphenyl]-2,2'-dicarbaldehyde substrates could be controlled via the electronic properties of the substituents. Preparative scale synthesis provided access to substituted dibenzo[c,e]oxepin-5(7H)-ones.
Collapse
Affiliation(s)
- Erika Tassano
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| | - Kemal Merusic
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| | - Isa Buljubasic
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| | - Olivia Laggner
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| | - Tamara Reiter
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| | - Andreas Vogel
- c-LEcta GmbH, Perlickstrasse 5, 04103 Leipzig, Germany
| | - Mélanie Hall
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria.
| |
Collapse
|
28
|
Böhmer W, Koenekoop L, Simon T, Mutti FG. Parallel Interconnected Kinetic Asymmetric Transformation (PIKAT) with an Immobilized ω-Transaminase in Neat Organic Solvent. Molecules 2020; 25:E2140. [PMID: 32375267 PMCID: PMC7248775 DOI: 10.3390/molecules25092140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023] Open
Abstract
Comprising approximately 40% of the commercially available optically active drugs, α-chiral amines are pivotal for pharmaceutical manufacture. In this context, the enzymatic asymmetric amination of ketones represents a more sustainable alternative than traditional chemical procedures for chiral amine synthesis. Notable advantages are higher atom-economy and selectivity, shorter synthesis routes, milder reaction conditions and the elimination of toxic catalysts. A parallel interconnected kinetic asymmetric transformation (PIKAT) is a cascade in which one or two enzymes use the same cofactor to convert two reagents into more useful products. Herein, we describe a PIKAT catalyzed by an immobilized ω-transaminase (ωTA) in neat toluene, which concurrently combines an asymmetric transamination of a ketone with an anti-parallel kinetic resolution of an amine racemate. The applicability of the PIKAT was tested on a set of prochiral ketones and racemic α-chiral amines in a 1:2 molar ratio, which yielded elevated conversions (up to >99%) and enantiomeric excess (ee, up to >99%) for the desired products. The progress of the conversion and ee was also monitored in a selected case. This is the first report of a PIKAT using an immobilized ωTA in a non-aqueous environment.
Collapse
Affiliation(s)
| | | | | | - Francesco G. Mutti
- Van ‘t Hoff Institute for Molecular Sciences, HIMS Biocat, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (W.B.); (L.K.); (T.S.)
| |
Collapse
|
29
|
Azofra LM, Tran MA, Zubar V, Cavallo L, Rueping M, El-Sepelgy O. Conversion of racemic alcohols to optically pure amine precursors enabled by catalyst dynamic kinetic resolution: experiment and computation. Chem Commun (Camb) 2020; 56:9094-9097. [DOI: 10.1039/d0cc02881a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented base metal catalysed asymmetric synthesis of α-chiral amine precursors from racemic alcohols is reported.
Collapse
Affiliation(s)
- Luis Miguel Azofra
- Instituto de Estudios Ambientales y Recursos Naturales (i-UNAT)
- Universidad de Las Palmas de Gran Canaria (ULPGC)
- Campus de Tafira
- Las Palmas de Gran Canaria
- Spain
| | - Mai Anh Tran
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Viktoriia Zubar
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955-6900
- Saudi Arabia
| | - Magnus Rueping
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
- KAUST Catalysis Center (KCC)
| | - Osama El-Sepelgy
- Institute of Organic Chemistry
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|