1
|
Liu YF, Gil-Ramírez G, Nakamura T. Synthesis of macrocyclic salen rare-earth complexes and their framework conversion regulated by coordination sphere engineering. Chem Commun (Camb) 2025; 61:921-924. [PMID: 39670571 DOI: 10.1039/d4cc03851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We now report a macrocyclic rare-earth complex whose frameworks have been regulated between a trimer and a tetramer by an external capping ligand. Coordination sphere engineering of the rare earth metals with flexible and variable coordination numbers (CN > 6) offers a unique way to control the self-assembled structures.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Guzmán Gil-Ramírez
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Lincoln LN6 7DL, UK.
| | - Takashi Nakamura
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
2
|
Shimoji H, Aoyama Y, Inage K, Nakamura M, Yanagihara T, Yuhara K, Kitagawa Y, Hasegawa Y, Ito S, Tanaka K, Imoto H, Naka K. Highly Efficient and Thermally Durable Luminescence of 1D Eu 3+ Coordination Polymers with Arsenic Bridging Ligands. Chemistry 2024; 30:e202400615. [PMID: 38591237 DOI: 10.1002/chem.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
In this work, bisarsine oxides were evaluated as novel bridging ligands, aiming to develop practical and efficient luminescent lanthanide coordination polymers. We have synthesized one-dimensional (1D) Eu3+ coordination polymers that incorporate bisarsine oxide bridging ligands and hexafluoroacetylacetonate anions. These polymers exhibited a denser packing of chains compared to analogous polymers bridged with bisphosphine oxides. The coordination polymers demonstrated exceptional thermal stability and substantial emission quantum yields. Additionally, the bisarsine oxides induced a pronounced polarization effect, facilitating a sensitive electric dipole transition that yields considerably narrow band red emission. Remarkably, the Eu3+ coordination polymers with bisarsine oxides maintained intense emission even at 550 K. A distinctive feature of these polymers is their heating-induced emission enhancement observed when the temperature was increased from 300 K to 400 K.
Collapse
Affiliation(s)
- Haruki Shimoji
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuto Aoyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kota Inage
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Masashi Nakamura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takumi Yanagihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuhiro Yuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
3
|
Nielsen LG, Andersen HOB, Kenwright AM, Platas-Iglesias C, So Rensen TJ. Using Chiral Auxiliaries to Mimic the Effect of Chiral Media on the Structure of Lanthanide(III) Complexes Common in Bioimaging and Diagnostic MRI. Inorg Chem 2024; 63:7560-7570. [PMID: 38610098 DOI: 10.1021/acs.inorgchem.3c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
[Ln·DOTA]- complexes and systems derived therefrom are commonly used in MRI and optical bioimaging. These lanthanide(III) complexes are chiral, and, in solution, they are present in four forms, with two sets of enantiomers, with the ligand donors arranged in either a square antiprismatic, SAP, or twisted square antiprismatic geometry, TSAP. This complicated speciation is found in laboratory samples. To investigate speciation in biological media, when Ln·DOTA-like complexes interact with chiral biomolecules, six Eu·DOTA-monoamide complexes were prepared and investigated by using 1D and 2D 1H NMR. To emulate the chirality of biological media, the amide pendant arm was modified with one or two chiral centers. It is known that a chiral center on the DOTA scaffold significantly influences the properties of the system. Here, it was found that chirality much further away from the metal center changes the available conformational space and that both chiral centers and amide cis/trans isomerism may need to be considered─a fact that, for the optically enriched materials, led to the conclusion that eight chemically different forms may need to be considered, instead of the four forms necessary for DOTA. The results reported here clearly demonstrate the diverse speciation that must be considered when correlating an observation to a structure of a lanthanide(III) complex.
Collapse
Affiliation(s)
- Lea Gundorff Nielsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| | - Helene O B Andersen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| | - Alan M Kenwright
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | - Thomas Just So Rensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| |
Collapse
|
4
|
Kofod N, Henrichsen MJ, Sørensen TJ. Mapping the distribution of electronic states within the 5D 4 and 7F 6 levels of Tb 3+ complexes with optical spectroscopy. Dalton Trans 2024; 53:4461-4470. [PMID: 38372338 DOI: 10.1039/d3dt03657j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Tb(III) ion has the most intense luminescence of the trivalent lanthanide(III) ions. In contrast to Eu(III), where the two levels only include a single state, the high number of electronic states in the ground (7F6) and emitting (5D4) levels makes detailed interpretations of the electronic structure-the crystal field-difficult. Here, luminescence emission and excitation spectra of Tb(III) complexes with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA, [Tb(DOTA)(H2O)]-), ethylenediaminetetraacetic acid (EDTA, [Tb(EDTA)(H2O)3]-) and diethylenetriaminepentaacetic acid (DTPA, [Tb(DTPA)(H2O)]2-) as well as the Tb(III) aqua ion ([Tb(H2O)9]3+) were recorded at room temperature and in frozen solution. Using these data the electronic structure of the 5D4 multiplets of Tb(III) was mapped by considering the transitions to the singly degenerate 7F0 state. A detailed spectroscopic investigation was performed and it was found that the 5D4 multiplet could accurately be described as a single band for [Tb(H2O)9]3+, [Tb(DOTA)(H2O)]- and [Tb(EDTA)(H2O)3]-. In contrast, for [Tb(DTPA)(H2O)]2- two bands were needed. These results demonstrated the ability of describing the electronic structure of the emitting 5D4 multiplet using emission spectra. This offers an avenue for investigating the relationship between molecular structure and luminescent properties in detailed photophysical studies of Tb(III) ion complexes.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Margrete Juel Henrichsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
5
|
Dovrat G, Pevzner S, Maimon E, Bogoslavsky B, Ben-Eliyahu Y, Moisy P, Bettelheim A, Zilbermann I. Macrocyclic Ligand Coordinating Amide-Arm Hydrolysis Reaction Activation in Aqueous Solutions: Tetravalent Uranium Does It Better. Inorg Chem 2024; 63:400-415. [PMID: 38150742 DOI: 10.1021/acs.inorgchem.3c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Chelation of lanthanide and actinide cations within a suitable macrocyclic ligand often results in a rigid, kinetically inert, and thermodynamically stable complex. A benchmark for such cation-ligand suitability are cyclen-derived macrocyclic ligands, frequently used as large cation hosts for various applications. Herein, a comprehensive study of the 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane ligand (DOTAM) chelates of UIV and CeIII and their properties in aqueous solutions is presented. By employing multiple analysis techniques, including X-ray crystallography, UV-vis absorbance, 1H NMR, UPLC-MS, cyclic voltammetry, and differential pulse voltammetry, the study has revealed that the two aqueous complexes undergo a spontaneous, gradual, and stepwise hydrolysis of each of the coordinated amides toward carboxylates. The coordination of UIV in the studied reaction has been shown to significantly enhance the reaction rate, leading to an acceleration of up to 6 orders of magnitude compared to the natural process of simple aqueous amides at room temperature. An attempt to describe the unusual chelated metal cation amide-activation feature, based on the relatively lower rigidity of the complex structure, is presented. Additionally, the electrochemical properties of the complex series are discussed in detail, along with the limitations of the analytical methods employed.
Collapse
Affiliation(s)
- Gev Dovrat
- Energy Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Svetlana Pevzner
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ, Marcoule, Bagnols-sur-cèze 30200, France
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
Quezada-Novoa V, Titi HM, Villanueva FY, Wilson MWB, Howarth AJ. The Effect of Linker-to-Metal Energy Transfer on the Photooxidation Performance of an Isostructural Series of Pyrene-Based Rare-Earth Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302173. [PMID: 37116124 DOI: 10.1002/smll.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The tetratopic linker, 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) along with rare-earth (RE) ions is used for the synthesis of 9 isostructures of a metal-organic framework (MOF) with shp topology, named RE-CU-10 (RE = Y(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Tm(III), Yb(III), and Lu(III)). The synthesis of each RE-CU-10 analogue requires different reaction conditions to achieve phase pure products. Single crystal X-ray diffraction indicates the presence of a RE9 -cluster in Y- to Tm-CU-10, while a RE11 -cluster is observed for Yb- and Lu-CU-10. The photooxidation performance of RE-CU-10 analogues is evaluated, observing competition between linker-to-metal energy transfer versus the generation of singlet oxygen. The singlet oxygen produced is used to detoxify a mustard gas simulant 2-chloroethylethyl sulfide, with half-lives ranging from 4.0 to 5.8 min, some of the fastest reported to date using UV-irradiation and < 1 mol% catalyst, in methanol under O2 saturation.
Collapse
Affiliation(s)
- Victor Quezada-Novoa
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| | - Hatem M Titi
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | | | - Mark W B Wilson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Ashlee J Howarth
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
7
|
Heptacoordinated lanthanide(III) complexes based on 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine ligands (bbp, bmbp and bdmbp): Computational calculations, luminescent properties and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Nielsen LG, Sørensen TJ. Effect of buffers and pH in antenna sensitized Eu(III) luminescence. Methods Appl Fluoresc 2023; 11. [PMID: 36696692 DOI: 10.1088/2050-6120/acb63a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
The photophysics of a europium(III) complex of 1,4,7,10-tetraazacycododecane-1,4,7-triacetic acid-10-(2-methylene)-1-azathioxanthone was investigated in three buffer systems and at three pH values. The buffers-phosphate buffered saline (PBS), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and universal buffer (UB)-had no effect on the europium luminescence, but a lower overall emission intensity was determined in HEPES. It was found that this was due to quenching of the 1-azathioxanthone first excited singlet state by HEPES. The effect of pH on the photophysics of the complex was found to be minimal, and protonation of the pyridine nitrogen was found to be irrelevant. Even so, pH was shown to change the intensity ratio between 1-azathioxanthone fluorescence and europium luminescence. It was concluded that the full photophysics of a potential molecular probe should be investigated to achieve the best possible results in any application.
Collapse
Affiliation(s)
- Lea Gundorff Nielsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, Denmark
| |
Collapse
|
9
|
Mathieu E, Kiraev SR, Kovacs D, Wells JAL, Tomar M, Andres J, Borbas KE. Sensitization Pathways in NIR-Emitting Yb(III) Complexes Bearing 0, +1, +2, or +3 Charges. J Am Chem Soc 2022; 144:21056-21067. [DOI: 10.1021/jacs.2c05813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Salauat R. Kiraev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Daniel Kovacs
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Jordann A. L. Wells
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Monika Tomar
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Julien Andres
- Chemistry and Chemical Engineering Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH 3311, CH-1015 Lausanne, Switzerland
| | - K. Eszter Borbas
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
10
|
Barré R, Mouchel dit Leguerrier D, Ruet Q, Fedele L, Imbert D, Martel‐Frachet V, Fries PH, Molloy JK, Thomas F. Lanthanide Complexes (Gd III and Eu III ) Based on a DOTA-TEMPO Platform for Redox Monitoring via Relaxivity. Chem Asian J 2022; 17:e202200544. [PMID: 35796463 PMCID: PMC9544908 DOI: 10.1002/asia.202200544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Three lanthanide complexes (Ln=Gd, Eu) based on a DO3 A ([Ln(L1 )]) or DO2 A ([Ln(L2-3 )]+ ) platform appended by a redox active TEMPO-based arm were prepared. Complex [Ln(L2 )]+ shows an alkyne arm, offering the possibility of postfunctionalization by click reaction to yield [Ln(L3 )]+ . The complexes demonstrate a redox response whereby the hydroxylamine, nitroxide and oxoammonium forms of the arm can be obtained in turn. Luminescence measurements on the europium complexes support an octadentate (L1 , L3 ) or heptadentate (L2 ) chelation by the ligand, with one water molecule in the inner coordination sphere. The relaxivity was determined from 20 kHz to 30 MHz by fast-field cycling NMR. The three GdIII complexes under their hydroxylamine form [Gd(L1 )] and [Gd(L2-3 )]+ show r1 values of 7.0, 5.1 and 5.0 mM-1 s-1 (30 KHz), which increase to 8.8, 5.5 and 6.1 mM-1 s-1 in the nitroxide form. The radical complexes are not toxic against M21 cell lines, at least up to 40 μM. By using EPR spectroscopy we establish that they do not penetrate the cells with the exception of [Eu(L2 )]+ .
Collapse
Affiliation(s)
| | | | - Quentin Ruet
- Institute for Advanced BiosciencesINSERM U1209UMR CNRS 5309Grenoble Alpes University38700La TroncheFrance
- EPHEPSL Research University75014ParisFrance
| | - Lionel Fedele
- Univ. Grenoble AlpesCEACNRSIRIG-LCBM38000GrenobleFrance
| | - Daniel Imbert
- Univ. Grenoble AlpesCEACNRSIRIG-LCBM38000GrenobleFrance
| | - Véronique Martel‐Frachet
- Institute for Advanced BiosciencesINSERM U1209UMR CNRS 5309Grenoble Alpes University38700La TroncheFrance
- EPHEPSL Research University75014ParisFrance
| | | | | | | |
Collapse
|
11
|
Storm Thomsen M, Andersen HOB, Sørensen TJ. Long story short: donor set symmetry in [Eu(DOTA)(H 2O)] - crystals determines the electronic structure. Dalton Trans 2022; 51:14118-14124. [PMID: 36043508 DOI: 10.1039/d2dt02172b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid DOTA have been studied in great detail due to their use as MRI contrast agents. Since the first report from Desreux in 1980, the Ln[DOTA]- complexes of gadolinium(III) in particular have been thoroughly investigated. The forms of the nine-coordinated [Ln(DOTA)(H2O)]- complexes are well known, and the ligand backbone has been used extensively to create functional MRI contrast agents, luminescent probes, and as a model system for studying the properties of lanthanide(III) ions. In solution, the photophysical properties have been mapped, but as the structures are not known, direct structure-property relationships have not been created. Here, the electronic properties of two Eu[DOTA] compounds (1 and 2) and a Eu[DOTA]-like compound (3) were studied using single-crystal luminescence spectroscopy. The donor set in the three compounds is identical (4N 4O 1O), and using the symmetry deviation value σideal it was shown that the coordination geometry is close to identical. Nevertheless, the electronic properties evaluated using the luminescence spectrum were found to differ significantly between the three compounds. The magnitude of the crystal field splitting was found not to scale with the symmetry of the coordination geometry. It was concluded that the donor set dictates the splitting, yet the structure-property relationships governing the electronic properties of europium(III) ions still elude us.
Collapse
Affiliation(s)
- Maria Storm Thomsen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| | - Helene Obel Bøch Andersen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
12
|
Nawrocki PR, Nielsen VMR, Sørensen TJ. A high-sensitivity rapid acquisition spectrometer for lanthanide(III) luminescence. Methods Appl Fluoresc 2022; 10. [PMID: 36027890 DOI: 10.1088/2050-6120/ac8d4d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Abstract
Detecting luminescence beyond 750-800 nm becomes problematic as most conventional detectors are less sensitive in this range, and as simple corrections stops being accurate. Lanthanide luminescence occurs in narrow bands across the spectrum from 350-2000 nm. The most emissive lanthanide(III) ions have bands from 450 nm to 850 nm, some with additional bands in the NIR. Investigating the NIR bands are hard, but the difficulties start already at 700 nm. In general, the photon flux from lanthanide(III) emitters is not great, and the bands beyond 700 nm are very weak, we therefore decided to build a spectrometer based on cameras for microscopy with single-photon detection capabilities. This was found to allieviate all limitations and to allow for fast and efficient recording of luminescence spectra in the range from 450 to 950 nm. The spectrometer characteristics were investigated and the performance was benchmarked against two commercial spectrometers. We conclude that this spectrometer is ideal for investigating lanthanide luminescence, an all other emitters with emission in the target range.
Collapse
Affiliation(s)
- Patrick R Nawrocki
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, 2100, DENMARK
| | - Villads M R Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, 2100, DENMARK
| | - Thomas Just Sørensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, København Ø, 2100, DENMARK
| |
Collapse
|
13
|
Holzapfel M, Baldau T, Kerpa S, Guadalupi G, Qi B, Liu Y, Parak WJ, Maison W. Solution Structure and Relaxivity of Ln‐DOTXAZA Derivatives. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Center for Applied Nanoscience GERMANY
| | - Torben Baldau
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | - Svenja Kerpa
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | | | - Bing Qi
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Yang Liu
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang J. Parak
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang Maison
- University of Hamburg Chemistry Bundesstr. 45 20146 Hamburg GERMANY
| |
Collapse
|
14
|
Storm Thomsen M, Anker AS, Kacenauskaite L, Sørensen TJ. We are never ever getting (back to) ideal symmetry: structure and luminescence in a ten-coordinated europium(III) sulfate crystal. Dalton Trans 2022; 51:8960-8963. [PMID: 35660819 DOI: 10.1039/d2dt01522f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Our theoretical treatment of electronic structures in coordination complexes often rests on assumptions of symmetry. Experiments rarely provide fully symmetric systems to study. In solutions, fluctuations in solvation, variations in conformations, and even changes in constitution occur and complicate the picture. In crystals, lattice distortion, energy transfer, and phonon quenching play a role, but we are able to identify distinct symmetries. Yet the question remains: How is the real symmetry in a crystal compared to ideal symmetries?
Collapse
Affiliation(s)
- Maria Storm Thomsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Andy S Anker
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Laura Kacenauskaite
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.
| |
Collapse
|
15
|
Storm Thomsen M, Parsons S, Sørensen TJ. Invisible strings. The first single crystal of the cTSAP form of [Eu(DOTA)(H 2O)] − has an electronic structure similar to one of the reported cSAP forms. Dalton Trans 2022; 51:15725-15733. [DOI: 10.1039/d2dt02633c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counter ions can be used to tune the solid state structure of Eu·DOTA between the cSAP and cTSAP form, but the electronic properties does not match the observations seen in solution.
Collapse
Affiliation(s)
- Maria Storm Thomsen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Simon Parsons
- School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3FJ, Scotland, UK
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
16
|
Storm Thomsen M, Sørensen TJ. Delicate, a study of the structural changes in ten-coordinated La( iii), Ce( iii), Pr( iii), Nd( iii), Sm( iii) and Eu( iii) sulfates. Dalton Trans 2022; 51:8964-8974. [DOI: 10.1039/d2dt00832g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A study of doped ten-coordinated structures of the lanthanide(iii) crystals series, K6[Ln2(SO4)6] (Ln(iii) = La, Ce, Pr) and K5Na[Ln2(SO4)6] (Ln(iii) = Nd, Sm, Eu) to determine luminescence from Eu(iii) in distorted host lattices.
Collapse
Affiliation(s)
- Maria Storm Thomsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
17
|
Ma B, Chen JL, Cui CY, Yang F, Gong YJ, Su XC. Rigid, Highly Reactive and Stable DOTA-like Tags Containing a Thiol-Specific Phenylsulfonyl Pyridine Moiety for Protein Modification and NMR Analysis*. Chemistry 2021; 27:16145-16152. [PMID: 34595784 DOI: 10.1002/chem.202102495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Site specific installation of a paramagnetic ion with magnetic anisotropy in a biomolecule generates valuable structural restraints, such as pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs). These paramagnetic effects can be used to characterize the structures, interactions and dynamics of biological macromolecules and their complexes. Two single-armed DOTA-like tags, BrPSPy-DO3M(S)A-Ln and BrPSPy-6M-DO3M(S)A-Ln, each containing a thiol-specific reacting group, that is, a phenylsulfonyl pyridine moiety, are demonstrated as rigid, reactive and stable paramagnetic tags for protein modification by formation of a reducing resistant thioether bond between the protein and the tag. The two tags present high reactivity with the solvent exposed thiol group in aqueous solution at room temperature. The introduction of Br at the meta-position in pyridine enhances the reactivity of 4-phenylsulfonyl pyridine towards the solvent exposed thiol group in a protein, whereas the ortho-methyl group in pyridine increases the rigidity of the tag in the protein conjugates. The high performance of these two tags has been demonstrated in different cysteine mutants of ubiquitin and GB1. The high reactivity and rigidity of these two tags can be added in the toolbox of paramagnetic tags suitable for the high-resolution NMR measurements of biological macromolecules and their complexes.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Chao-Yu Cui
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P.R. China
| |
Collapse
|
18
|
Ren J, Niu Z, Ye Y, Tsai C, Liu S, Liu Q, Huang X, Nafady A, Ma S. Second‐Sphere Interaction Promoted Turn‐On Fluorescence for Selective Sensing of Organic Amines in a Tb
III
‐based Macrocyclic Framework. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Junyu Ren
- Department of Chemistry University of North Texas Denton TX 76203-5070 USA
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yingxiang Ye
- Department of Chemistry University of North Texas Denton TX 76203-5070 USA
| | - Chen‐Yen Tsai
- Department of Chemistry Chinese Culture University Taipei Taiwan
| | - Shixi Liu
- School of Chemical Science and Technology Yunnan University 2 North Road of Green Lake Kunming 650091 Yunnan China
| | - Qingzhi Liu
- College of Chemistry and Pharmaceutical Science Qingdao Agriculture University No. 700 Changcheng Road Qingdao City 266109 China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology School of Chemistry & Chemical Engineering Liaocheng University Liaocheng 252059 China
| | - Ayman Nafady
- Department of Chemistry College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry University of North Texas Denton TX 76203-5070 USA
| |
Collapse
|
19
|
Ren J, Niu Z, Ye Y, Tsai CY, Liu S, Liu Q, Huang X, Nafady A, Ma S. Second-Sphere Interaction Promoted Turn-On Fluorescence for Selective Sensing of Organic Amines in a Tb III -based Macrocyclic Framework. Angew Chem Int Ed Engl 2021; 60:23705-23712. [PMID: 34428857 DOI: 10.1002/anie.202107436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Indexed: 12/21/2022]
Abstract
Guided by a second-sphere interaction strategy, we fabricated a Tb(III)-based metal-organic framework (MMCF-4) for turn-on sensing of methyl amine with ultra-low detection limit and high turn-on efficiency. MMCF-4 features lanthanide nodes shielded in a nonacoordinate geometry along with secondary coordination spheres that are densely populated with H-bond interacting sites. Nonradiative routes were inhibited by binding-induced rigidification of the ligand on the second coordination sphere, resulting in luminescence amplification. Such remote interacting mechanism involved in the turn-on sensing event was confirmed by single-crystal X-ray diffraction and molecular dynamic simulation studies. The design of both primary and secondary coordination spheres of Tb(III) enabled the first turn-on sensing of organic amines in aqueous conditions. Our work suggests a promising strategy for high-performance turn-on sensing for Ln-MOFs and luminous materials driven by other metal chromophores.
Collapse
Affiliation(s)
- Junyu Ren
- Department of Chemistry, University of North Texas, Denton, TX, 76203-5070, USA
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yingxiang Ye
- Department of Chemistry, University of North Texas, Denton, TX, 76203-5070, USA
| | - Chen-Yen Tsai
- Department of Chemistry, Chinese Culture University, Taipei, Taiwan
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, 2 North Road of Green Lake, Kunming, 650091, Yunnan, China
| | - Qingzhi Liu
- College of Chemistry and Pharmaceutical Science, Qingdao Agriculture University, No. 700 Changcheng Road, Qingdao City, 266109, China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX, 76203-5070, USA
| |
Collapse
|
20
|
Wilharm RK, Huang SY, Gugger IJ, Pierre VC. A Walk Across the Lanthanide Series: Trend in Affinity for Phosphate and Stability of Lanthanide Receptors from La(III) to Lu(III). Inorg Chem 2021; 60:15808-15817. [PMID: 34618431 DOI: 10.1021/acs.inorgchem.1c02462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trend in affinity of two 1,2-hydroxypyridinonate lanthanide(III) receptors-LnIII-2,2-Li-HOPO and LnIII-3,3-Gly-HOPO (LnIII = LaIII, PrIII, NdIII, SmIII, EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, YbIII, and LuIII)-for phosphate across the series was investigated by luminescence spectroscopy via competition against the central europium(III) analog. Regardless of the ligand, the rare earth receptors display a steep and continuous increase in affinity for their phosphate guest across the series, with the later lanthanides displaying the highest affinity for the oxyanion. This trend mirrors that of the stability of the lanthanide receptors, which also increases significantly and continuously from LaIII to LuIII. For these two ligands, the ionic radius of a rare earth, a parameter directly linked to its Lewis acidity, correlates strongly with its affinity for anions, regardless of whether that anion is the one coordinating it (in this case the 1,2-hydroxypyridinonate ligand) or the guest targeted by the lanthanide receptor (in this case phosphate). These observations are indicative of a lack of steric hindrance for coordination of phosphate. Advantageously, increased efficacy of the lanthanide receptor comes with increased stability. The remarkably high stability of LuIII-2,2-Li-HOPO, combined with its high affinity for phosphate, makes it a particularly promising candidate for translational application to medical or environmental sequestration of phosphate since the higher stability will further reduce the risk of the rare earth leaching during anion separation. The unusually large difference in stability between lanthanide complexes (the LuIII complex of 2,2-Li-HOPO is at least 7 orders of magnitude more stable than the LaIII one) bodes well for potential applications in rare earth separation.
Collapse
Affiliation(s)
- Randall K Wilharm
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sheng-Yin Huang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Isabel J Gugger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Valérie C Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Kofod N, Nielsen LG, Sørensen TJ. Temperature Dependence of Fundamental Photophysical Properties of [Eu(MeOH- d4) 9] 3+ Solvates and [Eu·DOTA(MeOH- d4)] - Complexes. J Phys Chem A 2021; 125:8347-8357. [PMID: 34546039 DOI: 10.1021/acs.jpca.1c04994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trivalent lanthanide ions show optical transitions between energy levels within the 4f shell. All these transitions are formally forbidden according to the quantum mechanical selection rules used in molecular photophysics. Nevertheless, highly luminescent complexes can be achieved, and terbium(III) and europium(III) ions are particularly efficient emitters. This report started when an apparent lack of data in the literature led us to revisit the fundamental photophysics of europium(III). The photophysical properties of two complexes-[Eu·DOTA(MeOH-d4)]- and [Eu(MeOH-d4)9]3+-were investigated in deuterated methanol at five different temperatures. Absorption spectra showed decreased absorbance as the temperature was increased. Luminescence spectra and time-resolved emission decay profiles showed a decrease in intensity and lifetime as the temperature was increased. Having corrected the emission spectra for the actual number of absorbed photons and differences in the non-radiative pathways, the relative emission probability was revealed. These were found to increase with increasing temperature. The transition probability for luminescence was shown to increase with temperature, while the transition probability for light absorption decreased. The changes in transition probabilities were correlated with a change in the symmetry of the absorber or emitter, with an average increase in symmetry lowering absorbance and access to more asymmetric structures increasing the emission rate constant. Determining luminescence quantum yields and the Einstein coefficient for spontaneous emission allowed us to conclude that lowering symmetry increases both. Furthermore, it was found that collisional self-quenching is an issue for lanthanide luminescence, when high concentrations are used. Finally, detailed analysis revealed results that show the so-called "Werts' method" for calculating radiative lifetimes and intrinsic quantum yields is based on assumptions that do not hold for the two systems investigated here. We conclude that we are lacking a good theoretical description of the intraconfigurational f-f transitions, and that there are still aspects of fundamental lanthanide photophysics to be explored.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Lea Gundorff Nielsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
22
|
Schettini R, D'Amato A, Araszczuk AM, Della Sala G, Costabile C, D'Ursi AM, Grimaldi M, Izzo I, De Riccardis F. Structural dynamism of chiral sodium peraza-macrocycle complexes derived from cyclic peptoids. Org Biomol Chem 2021; 19:7420-7431. [PMID: 34397051 DOI: 10.1039/d1ob00733e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of cyclen and hexacyclen derivatives decorated with (S)-1-phenylethyl side chains or (S)-pyrrolidine units have been prepared via a reductive approach from the corresponding cyclic peptoids containing N-(S)-(1-phenylethyl)glycine and l-proline residues. Spectroscopic and DFT studies on their Na+ complexes show that point chirality and ring size play a crucial role in controlling the structural dynamism of 1,2-diaminoethylene units and pendant arms. The detection of highly symmetric C4- and C3-symmetric metalated species demonstrates that a full understanding of the relationship between the structure and conformational properties of peraza-macrocyclic metal complexes is possible.
Collapse
Affiliation(s)
- Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy. iizzo@unisa
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mahmudov KT, Huseynov FE, Aliyeva VA, Guedes da Silva MFC, Pombeiro AJL. Noncovalent Interactions at Lanthanide Complexes. Chemistry 2021; 27:14370-14389. [PMID: 34363268 DOI: 10.1002/chem.202102245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π-π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.
Collapse
Affiliation(s)
- Kamran T Mahmudov
- University of Lisbon Higher Technical Institute: Universidade de Lisboa Instituto Superior Tecnico, CQE, R., 1009 - 001, Lisbon, PORTUGAL
| | - Fatali E Huseynov
- Baku State University, Department of Ecology and Soil Sciences, AZERBAIJAN
| | | | | | | |
Collapse
|
24
|
Helicate-to-tetrahedron transformation of chiral lanthanide supramolecular complexes induced by ionic radii effect and linker length. Commun Chem 2021; 4:116. [PMID: 36697590 PMCID: PMC9814731 DOI: 10.1038/s42004-021-00553-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Controlled formation of desired lanthanide supramolecular complexes is challenging because of the difficulties in predicting coordination geometry, as well as a labile coordination number. Herein, we explore the effect of ionic radii and linker length on supramolecular species formation. A helicate-to-tetrahedron transformation occurred between [Ln2L13] and [Ln4L16] (Ln = La, Sm, Eu, Gd, Tb and Lu). For six lanthanide ions, the unfavored tetrahedron [La4L16] can only be observed in a concentrated mixture with the helicate [La2L13] where no pure [La4L16] species was isolated via crystallization. For Sm, Eu, Gd, Tb, the [Ln4L16] supramolecular tetrahedron can be isolated via crystallization from diisopropyl ether. A similar result was also observed for Lu, but the tetrahedral structure was found to be relatively stable and transformed back to [Lu2L13] much slower upon dissolution. No tetrahedron formation was observed with L3 giving rise to only [Ln2L33] species, in which L3 contains a longer and more flexible linker compared with that of L1. Results show that the supramolecular transformation in these systems is governed by both the ionic radii as well as the ligand design. Special focus is on both [Eu2L13] and [Eu4L16] which form chiral entities and exhibit interesting circular polarized luminescence.
Collapse
|
25
|
Abad‐Galán L, Cieslik P, Comba P, Gast M, Maury O, Neupert L, Roux A, Wadepohl H. Excited State Properties of Lanthanide(III) Complexes with a Nonadentate Bispidine Ligand. Chemistry 2021; 27:10303-10312. [PMID: 33780569 PMCID: PMC8360039 DOI: 10.1002/chem.202005459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/03/2022]
Abstract
EuIII , TbIII , GdIII and YbIII complexes of the nonadentate bispidine derivative L2 (bispidine=3,7-diazabicyclo[3.3.1]nonane) were successfully synthesized and their emission properties studied. The X-ray crystallography reveals full encapsulation by the nonadentate ligand L2 that enforces to all LnIII cations a common highly symmetrical capped square antiprismatic (CSAPR) coordination geometry (pseudo C4v symmetry). The well-resolved identical emission spectra in solid state and in solution confirm equal structures in both media. As therefore expected, this results in long-lived excited states and high emission quantum yields ([EuIII L2 ]+ , H2 O, 298 K, τ=1.51 ms, ϕ=0.35; [TbIII L2 ]+ , H2 O, 298 K, τ=1.95 ms, ϕ=0.68). Together with the very high kinetic and thermodynamic stabilities, these complexes are a possible basis for interesting biological probes.
Collapse
Affiliation(s)
- Laura Abad‐Galán
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Patrick Cieslik
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Peter Comba
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
- Universität HeidelbergInterdisciplinary Center for Scientific Computing69120HeidelbergGermany
| | - Michael Gast
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Olivier Maury
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Lucca Neupert
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| | - Amandine Roux
- Université de LyonENS de LyonLaboratoire de ChimieCNRS UMR 5182Université Claude Bernard Lyon 169342LyonFrance
| | - Hubert Wadepohl
- Universität HeidelbergAnorganisch-Chemisches InstitutINF 27069120HeidelbergGermany
| |
Collapse
|
26
|
Cosby AG, Woods JJ, Nawrocki P, Sørensen TJ, Wilson JJ, Boros E. Accessing lanthanide-based, in situ illuminated optical turn-on probes by modulation of the antenna triplet state energy. Chem Sci 2021; 12:9442-9451. [PMID: 34349918 PMCID: PMC8278976 DOI: 10.1039/d1sc02148f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/13/2021] [Indexed: 12/16/2022] Open
Abstract
Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb(iii) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5D4 Tb(iii) excited state (20 500 cm-1), energy transfer to 5D4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd(iii) complexes revealed antenna triplet energies between 25 800 and 30 400 cm-1 and a 500-fold increase in quantum yield upon conversion of Tb(L3) to Tb(L4) using the biologically relevant analyte H2S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.
Collapse
Affiliation(s)
- Alexia G Cosby
- Department of Chemistry, Stony Brook University Stony Brook New York 11794 USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Patrick Nawrocki
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 København Ø Denmark
| | - Thomas J Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 København Ø Denmark
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University Stony Brook New York 11794 USA
| |
Collapse
|
27
|
Gao Y, Varathan E, Grover P, Schreckenbach G. Computational Characterization of Ac III-DOTA Complexes in Aqueous Solution. Inorg Chem 2021; 60:6971-6975. [PMID: 33909433 DOI: 10.1021/acs.inorgchem.1c00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complexes of AcIII with H2O, dimethyl sulfoxide (DMSO), OH-, and F- as axial ligands were studied using density functional theory. Formation of the [AcIII(DOTA)(OH)]2- and [AcIII(DOTA)(F)]2- complexes is predicted to be significantly more favorable than that of [AcIII(DOTA)(H2O)]- and [AcIII(DOTA)(DMSO)]- because of the enhanced relative Gibbs free energies. Further electronic structure analyses demonstrate that the type and nature of the bond between Ac and the ligand donor atom is the main driving force that determines the thermodynamic stability of the complexes. Specifically, the [AcIII(DOTA)]- complex strongly binds to OH- and F- via covalent bonds, while the bonding to H2O and DMSO is ionic and relatively weaker.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Elumalai Varathan
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Payal Grover
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
28
|
Dovrat G, Pevzner S, Berthon C, Lerner A, Maimon E, Vainer R, Karpasas M, Ben-Elyiahu Y, Moisy P, Bettelheim A, Zilbermann I. Oligomers Intermediates in Between Two New Distinct Homonuclear Uranium(IV) DOTP Complexes*. Chemistry 2021; 27:8264-8267. [PMID: 33822408 DOI: 10.1002/chem.202005350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Two new aqueous UIV complexes were synthesized by the interaction between the tetravalent uranium cation and the (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid) (DOTP) macrocyclic ligand. Two distinct homonuclear complexes were identified; the first was characterized by X-ray crystallography as a unique "out-of-cage", [U(DOTPH6 )2 ] complex, in which the UIV cation is octa-coordinated to 4 phosphonic arms from each ligand in a square anti-prism geometry, with a C4 symmetry. The second is the "in-cage" [U(DOTPH4 )] complex, in which the tetravalent cation is located between the macrocycle O4 and N4 planes. With the help of UV-Vis absorption, 1 H/31 P NMR, ATR-IR, and MALDI-TOFMS analytical techniques, the chemical interchange between both species is presented. It is shown that the one-way transition is governed by the formation of a multiple number of soluble oligomeric species consisting of varied stoichiometric ratios of both characterized homonuclear complexes.
Collapse
Affiliation(s)
- Gev Dovrat
- Energy Engineering Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Svetlana Pevzner
- Chemistry Department, Nuclear Research Centre Negev, IL-84190, Beer-Sheva, Israel
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Ana Lerner
- Israeli Atomic Energy Commission, Tel-Aviv, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, IL-84190, Beer-Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Radion Vainer
- Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Mark Karpasas
- Research Support Laboratories, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, Marcoule, France
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, IL-84190, Beer-Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, Beer-Sheva, 84105, Israel
| |
Collapse
|
29
|
Kofod N, Nawrocki P, Platas-Iglesias C, Sørensen TJ. Electronic Structure of Ytterbium(III) Solvates-a Combined Spectroscopic and Theoretical Study. Inorg Chem 2021; 60:7453-7464. [PMID: 33949865 DOI: 10.1021/acs.inorgchem.1c00743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The wide range of optical and magnetic properties of lanthanide(III) ions is associated with their intricate electronic structures which, in contrast to lighter elements, is characterized by strong relativistic effects and spin-orbit coupling. Nevertheless, computational methods are now capable of describing the ladder of electronic energy levels of the simpler trivalent lanthanide ions, as well as the lowest energy term of most of the series. The electronic energy levels result from electron configurations that are first split by spin-orbit coupling into groups of energy levels denoted by the corresponding Russell-Saunders terms. Each of these groups are then split by the ligand field into the actual electronic energy levels known as microstates or sometimes mJ levels. The ligand-field splitting directly informs on the coordination geometry and is a valuable tool for determining the structure and thus correlating the structure and properties of metal complexes in solution. The issue with lanthanide complexes is that the determination of complex structures from ligand-field splitting remains a very challenging task. In this paper, the optical spectra-absorption, luminescence excitation, and luminescence emission-of ytterbium(III) solvates were recorded in water, methanol, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide (DMF). The electronic energy levels, that is, the microstates, were resolved experimentally. Subsequently, density functional theory calculations were used to model the structures of the solvates, and ab initio relativistic complete active space self-consistent field calculations (CASSCF) were employed to obtain the microstates of the possible structures of each solvate. By comparing the experimental and theoretical data, it was possible to determine both the coordination number and solution structure of each solvate. In water, methanol, and N,N-dimethylformamide, the solvates were found to be eight-coordinated and have a square antiprismatic coordination geometry. In DMSO, the speciation was found to be more complicated. The robust methodology developed for comparing experimental spectra and computational results allows the solution structures of homoleptic lanthanide complexes to be determined.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Patrick Nawrocki
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Thomas Just Sørensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
30
|
Hylland KT, Gerz I, Wragg DS, Øien‐Ødegaard S, Tilset M. The Reactivity of Multidentate Schiff Base Ligands Derived from Bi‐ and Terphenyl Polyamines towards M(II) (M=Ni, Cu, Zn, Cd) and M(III) (M=Co, Y, Lu). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Knut Tormodssønn Hylland
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Isabelle Gerz
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - David S. Wragg
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Sigurd Øien‐Ødegaard
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| | - Mats Tilset
- Department of Chemistry University of Oslo P. O. Box 1033 Blindern 0315 Oslo Norway
- Centre for Materials Science and Nanotechnology University of Oslo P.O. Box 1126 Blindern 0316 Oslo Norway
| |
Collapse
|
31
|
Arnedo-Sanchez L, Smith KF, Deblonde GJP, Carter KP, Moreau LM, Rees JA, Tratnjek T, Booth CH, Abergel RJ. Combining the Best of Two Chelating Titans: A Hydroxypyridinone-Decorated Macrocyclic Ligand for Efficient and Concomitant Complexation and Sensitized Luminescence of f-Elements. Chempluschem 2021; 86:483-491. [PMID: 33733616 DOI: 10.1002/cplu.202100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/02/2021] [Indexed: 12/11/2022]
Abstract
An ideal chelator for f-elements features rapid kinetics of complexation, high thermodynamic stability, and slow kinetics of dissociation. Here we present the facile synthesis of a macrocyclic ligand bearing four 1-hydroxy-2-pyridinone units linked to a cyclen scaffold that rapidly forms thermodynamically stable complexes with lanthanides (Sm3+ , Eu3+ , Tb3+ , Dy3+ ) and a representative late actinide (Cm3+ ) in aqueous media and concurrently sensitizes them. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed an increase in the Ln/An-O bond lengths following the trend Cm>Eu>Tb and EXAFS data were compatible with time-resolved luminescence studies, which indicated one to two water molecules in the inner metal coordination sphere of Eu(III) and two water molecules for the Cm(III) complex. Spectrofluorimetric ligand competition titrations against DTPA confirmed the high thermodynamic stability of DOTHOPO complexes, with pM values between 19.9(1) and 21.9(2).
Collapse
Affiliation(s)
- Leticia Arnedo-Sanchez
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt F Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Glenn T. Seaborg Institute, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Korey P Carter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Liane M Moreau
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julian A Rees
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Toni Tratnjek
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA 94709, USA
| |
Collapse
|
32
|
Gao Y, Chen N, Tian Y, Zhang J, Jia D. Polymeric Iodoargentate Hybrids Incorporating Octakis- or Heptakis-Solvated Lanthanide Complexes: Syntheses, Crystal Structures, and Photocatalysis. Inorg Chem 2021; 60:3761-3772. [DOI: 10.1021/acs.inorgchem.0c03528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Niannian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yiming Tian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jiahua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Dingxian Jia
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
33
|
Structural diversity and luminescent properties of coordination complexes obtained from trivalent lanthanide ions with the ligands: tris((1H-benzo[d]imidazol-2-yl)methyl)amine and 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Yim KH, Yeung CT, Wong HY, Law GL. Structural variation of self-assembled lanthanide supramolecular complexes induced by reaction conditions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00115a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structural variation of self-assembled lanthanide supramolecular complexes which can be induced by different factors such as concentration, anion and solvent, cationic radii, stoichiometric ratio and light.
Collapse
Affiliation(s)
- King-Him Yim
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Chi-Tung Yeung
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Ho-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| | - Ga-Lai Law
- State Key Laboratory of Chemical Biology and Drug Discovery
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Hung Hom
- Hong Kong
| |
Collapse
|
35
|
Dasari S, Maparu AK, Abbas Z, Kumar P, Birla H, Sivakumar S, Patra AK. Bimetallic Europium and Terbium Complexes Containing Substituted Terpyridines and the NSAID Drug Tolfenamic Acid: Structural Differences, Luminescence Properties, and Theranostic Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Srikanth Dasari
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Auhin Kumar Maparu
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Zafar Abbas
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Priyaranjan Kumar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Hariom Birla
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Sri Sivakumar
- Department of Chemical Engineering; Center for Environmental Science and Engineering; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Ashis K. Patra
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| |
Collapse
|
36
|
Del Giorgio E, Sørensen TJ. HOCl Responsive Lanthanide Complexes Using Hydroquinone Caging Units. Molecules 2020; 25:E1959. [PMID: 32340115 PMCID: PMC7221670 DOI: 10.3390/molecules25081959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/14/2023] Open
Abstract
Redox biology is still looking for tools to monitor redox potential in cellular biology and, despite a large and sustained effort, reliable molecular probes have yet to emerge. In contrast, molecular probes for reactive oxygen and nitrogen have been widely explored. In this manuscript, three kinetically inert lanthanide complexes that selectively react with hypochlorous acid are prepared and characterized. The design is based on 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) and 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A) ligands appended with one or two redox active hydroquinone derived arms, thereby forming octadentate ligands ideally suited to complex trivalent lanthanide ions. The three complexes are found to react selectively with hypochlorous acid to form highly symmetric lanthanide(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacedic acid (DOTA) complexes. The conversion of the probe to [Ln.DOTA]- is followed by luminescence, absorption, and NMR spectroscopy in a model system comprised of a Triton-X modified HEPES buffer. It was concluded that the design principle works, and that simple caging units like hydroquinones can work well in conjugation with lanthanide(III) complexes.
Collapse
Affiliation(s)
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken5, 2100 København Ø, Denmark;
| |
Collapse
|
37
|
Dansholm CN, Junker AKR, Nielsen LG, Kofod N, Pal R, Sørensen TJ. π-Expanded Thioxanthones - Engineering the Triplet Level of Thioxanthone Sensitizers for Lanthanide-Based Luminescent Probes with Visible Excitation. Chempluschem 2020; 84:1778-1788. [PMID: 31943860 DOI: 10.1002/cplu.201900309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Indexed: 12/17/2022]
Abstract
Bright lanthanide based probes for optical bioimaging must rely on the antenna principle, where the lanthanide-centred excited state is formed by a complex sensitization process. Efficient sensitization of lanthanide-centred emission occurs via triplet states centred on the sensitizing chromophore. Here, the triplet state of thioxanthone chromophores is modulated by extending the π-system. Three thioxanthone chromophores-thioxanthone, benzo[c]thioxanthone, and naphtho[2,3-c]thioxanthone were synthesised and characterised. The triplet state energies and lifetimes is found to change as expected, and two dyes are found to be suitable sensitizers for europium(iii) luminescence. Reactive derivatives of thioxanthone and benzo[c]thioxanthone were prepared and coupled to a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) lanthanide binding pocket. The photophysics and the performance in optical bioimaging of the resulting europium(iii) complexes were investigated. It is concluded that while the energetics favour efficient sensitization, the solution structure does not. While it was found that the complexes are too lipophilic to be efficient luminescent probes for optical bioimaging, we successfully demonstrated bioimaging using europium(iii) luminescence following 405 nm excitation.
Collapse
Affiliation(s)
- Charlotte Nybro Dansholm
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Anne Kathrine R Junker
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Lea G Nielsen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Nicolaj Kofod
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Robert Pal
- Department of Chemistry, Durham University Lower Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| |
Collapse
|
38
|
Nawrocki PR, Kofod N, Juelsholt M, Jensen KMØ, Sørensen TJ. The effect of weighted averages when determining the speciation and structure–property relationships of europium(iii) dipicolinate complexes. Phys Chem Chem Phys 2020; 22:12794-12805. [DOI: 10.1039/d0cp00989j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Europium(iii) dipicolinate complexes have been a model system in lanthanide solution chemistry for decades, here it is investigated in unprecedented detail.
Collapse
Affiliation(s)
- Patrick R. Nawrocki
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Nicolaj Kofod
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Mikkel Juelsholt
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Kirsten M. Ø. Jensen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| |
Collapse
|
39
|
Nielsen LG, Sørensen TJ. Including and Declaring Structural Fluctuations in the Study of Lanthanide(III) Coordination Chemistry in Solution. Inorg Chem 2019; 59:94-105. [DOI: 10.1021/acs.inorgchem.9b01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lea Gundorff Nielsen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Thomas Just Sørensen
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| |
Collapse
|
40
|
Soek RN, Ferreira CM, Santana FS, Hughes DL, Poneti G, Ribeiro RR, Nunes FS. Structure and magnetic properties of two new lanthanide complexes with the 1-((E)-2-pyridinylmethylidene)semicarbazone ligand. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Junker AKR, Sørensen TJ. Illuminating the Intermolecular vs. Intramolecular Excited State Energy Transfer Quenching by Europium(III) Ions. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anne Kathrine R. Junker
- Nano‐Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Thomas Just Sørensen
- Nano‐Science Center & Department of Chemistry University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|
42
|
Kofod N, Arppe-Tabbara R, Sørensen TJ. Electronic Energy Levels of Dysprosium(III) ions in Solution. Assigning the Emitting State and the Intraconfigurational 4f–4f Transitions in the Vis–NIR Region and Photophysical Characterization of Dy(III) in Water, Methanol, and Dimethyl Sulfoxide. J Phys Chem A 2019; 123:2734-2744. [DOI: 10.1021/acs.jpca.8b12034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Riikka Arppe-Tabbara
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
43
|
Abbas Z, Dasari S, Beltrán-Leiva MJ, Cantero-López P, Páez-Hernández D, Arratia-Pérez R, Butcher RJ, Patra AK. Luminescent europium(iii) and terbium(iii) complexes of β-diketonate and substituted terpyridine ligands: synthesis, crystal structures and elucidation of energy transfer pathways. NEW J CHEM 2019. [DOI: 10.1039/c9nj02838b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of coordinatively saturated LnIII complexes: [Ln(R-TPY)(TTA)3] (1–6) were designed and structurally characterized and plausible energy transfer (ET) pathways determined using a theoretical method.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - María J. Beltrán-Leiva
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Plinio Cantero-López
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Dayán Páez-Hernández
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | - Ramiro Arratia-Pérez
- Relativistic Molecular Physics (ReMoPh) Group
- Ph.D. Program in Molecular Physical Chemistry
- Universidad Andrés Bello
- Santiago 8370146
- Chile
| | | | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
44
|
Junker AKR, Sørensen TJ. Shining light on the excited state energy cascade in kinetically inert Ln(iii) complexes of a coumarin-appended DO3A ligand. Dalton Trans 2019; 48:964-970. [DOI: 10.1039/c8dt04464c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lanthanide based molecular probes for bioimaging relies on the antenna effect, here we are unravelling the excited state energy cascade that results in sensitized lanthanide luminescence.
Collapse
Affiliation(s)
- Anne Kathrine R. Junker
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry
- University of Copenhagen
- 2100 København Ø
- Denmark
| |
Collapse
|
45
|
Alves LG, Madeira F, Munhá RF, Maulide N, Veiros LF, Martins AM. Cooperative Metal–Ligand Hydroamination Catalysis Supported by C–H Activation in Cyclam Zr(IV) Complexes. Inorg Chem 2018; 57:13034-13045. [DOI: 10.1021/acs.inorgchem.8b02396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis G. Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Filipe Madeira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Rui F. Munhá
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Ana M. Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
46
|
Arppe‐Tabbara R, Carro‐Temboury MR, Hempel C, Vosch T, Sørensen TJ. Luminescence from Lanthanide(III) Ions Bound to the Glycocalyx of Chinese Hamster Ovary Cells. Chemistry 2018; 24:11885-11889. [DOI: 10.1002/chem.201802799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/25/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Riikka Arppe‐Tabbara
- Nano-Science Center & Department of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Miguel R. Carro‐Temboury
- Nano-Science Center & Department of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Casper Hempel
- Department of Micro- and NanotechnologyTechnical University of Denmark Kgs Lyngby Denmark
| | - Tom Vosch
- Nano-Science Center & Department of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| | - Thomas Just Sørensen
- Nano-Science Center & Department of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 København Ø Denmark
| |
Collapse
|