1
|
Zhang M, Miao M, Zhao S, Yu B, Cheng X, Li Y. Photo-transformation of graphene oxide in synthetic and natural waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135040. [PMID: 38943888 DOI: 10.1016/j.jhazmat.2024.135040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Graphene oxide (GO) is widely employed due to its outstanding properties, leading to an increasing release into the environment and natural waters. Although some studies have reported on the photo-transformation of GO, its behavior in complex natural waters remains inadequately explored. This study demonstrates that different types of ions may promote the photoreduction of GO in the order of Ca2+ > K+ > NO3- > Na+ by interacting with the functional groups on the surface of GO, and the photoreduction is enhanced with increasing ion concentrations. Additionally, natural organic matter (NOM) can inhibit the photoreduction of GO by scavenging reactive oxygen species. However, with increasing NOM concentrations (≥ 5 mgC/L), more NOM adsorb onto the surface of GO through hydrogen bonding, Lewis acid-base interactions, and π-π interactions, thereby enhancing the photoreduction of GO. On this basis, our results further indicate that the combined effects of different ions, such as Ca2+, Mg2+, NOM, and other complex hydrochemical conditions in different natural waters can promote the photoreduction of GO, resulting in a reduction in oxygen functional groups and the formation of defects. This study provides a theoretical basis for assessing the long-term transformation and fate of GO in natural waters.
Collapse
Affiliation(s)
- Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Shasha Zhao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Bingqing Yu
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin 300350, China.
| |
Collapse
|
2
|
Keller AA, Zheng Y, Praetorius A, Quik JTK, Nowack B. Predicting environmental concentrations of nanomaterials for exposure assessment - a review. NANOIMPACT 2024; 33:100496. [PMID: 38266914 DOI: 10.1016/j.impact.2024.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
There have been major advances in the science to predict the likely environmental concentrations of nanomaterials, which is a key component of exposure and subsequent risk assessment. Considerable progress has been since the first Material Flow Analyses (MFAs) in 2008, which were based on very limited information, to more refined current tools that take into account engineered nanoparticle (ENP) size distribution, form, dynamic release, and better-informed release factors. These MFAs provide input for all environmental fate models (EFMs), that generate estimates of particle flows and concentrations in various environmental compartments. While MFA models provide valuable information on the magnitude of ENP release, they do not account for fate processes, such as homo- and heteroaggregation, transformations, dissolution, or corona formation. EFMs account for these processes in differing degrees. EFMs can be divided into multimedia compartment models (e.g., atmosphere, waterbodies and their sediments, soils in various landuses), of which there are currently a handful with varying degrees of complexity and process representation, and spatially-resolved watershed models which focus on the water and sediment compartments. Multimedia models have particular applications for considering predicted environmental concentrations (PECs) in particular regions, or for developing generic "fate factors" (i.e., overall persistence in a given compartment) for life-cycle assessment. Watershed models can track transport and eventual fate of emissions into a flowing river, from multiple sources along the waterway course, providing spatially and temporally resolved PECs. Both types of EFMs can be run with either continuous sources of emissions and environmental conditions, or with dynamic emissions (e.g., temporally varying for example as a new nanomaterial is introduced to the market, or with seasonal applications), to better understand the situations that may lead to peak PECs that are more likely to result in exceedance of a toxicological threshold. In addition, bioaccumulation models have been developed to predict the internal concentrations that may accumulate in exposed organisms, based on the PECs from EFMs. The main challenge for MFA and EFMs is a full validation against observed data. To date there have been no field studies that can provide the kind of dataset(s) needed for a true validation of the PECs. While EFMs have been evaluated against a few observations in a small number of locations, with results that indicate they are in the right order of magnitude, there is a great need for field data. Another major challenge is the input data for the MFAs, which depend on market data to estimate the production of ENPs. The current information has major gaps and large uncertainties. There is also a lack of robust analytical techniques for quantifying ENP properties in complex matrices; machine learning may be able to fill this gap. Nevertheless, there has been major progress in the tools for generating PECs. With the emergence of nano- and microplastics as a leading environmental concern, some EFMs have been adapted to these materials. However, caution is needed, since most nano- and microplastics are not engineered, therefore their characteristics are difficult to generalize, and there are new fate and transport processes to consider.
Collapse
Affiliation(s)
- Arturo A Keller
- Bren School of Environmental Science and Management, University of California Santa Barbara, United States of America.
| | - Yuanfang Zheng
- Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris T K Quik
- National Institute for Public Health and the Environment, Centre for Sustainability Health and Environment, Bilthoven, the Netherlands
| | - Bernd Nowack
- Empa-Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
3
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
4
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
5
|
Dasmahapatra AK, Tchounwou PB. Evaluation of pancreatic δ- cells as a potential target site of graphene oxide toxicity in Japanese medaka (Oryzias latipes) fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114649. [PMID: 36806823 PMCID: PMC10032203 DOI: 10.1016/j.ecoenv.2023.114649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/23/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
In continuation to our previous investigations on graphene oxide (GO) as an endocrine disrupting chemical (EDC), in the present experiment, we have investigated endocrine pancreas of Japanese medaka adults focusing on δ-cells in the islet organs as an endpoint. Breeding pairs of adult male and female fish were exposed to 0 mg/L (control) or 20 mg/L GO by continuous immersion (IMR) for 96 h, or to 0 µg/g or 100 µg/g GO by a single intraperitoneal (IP) administration and depurated 21 days in a GO-free environment. Histological investigations indicated that the endocrine cells are concentrated in one large principal islet, and several small secondary islets scattered within the mesentery near the liver and intestine. The cells of the islet organ are in various shapes with basophilic nuclei and eosinophilic cytoplasm. Immunohistochemical evaluation using rabbit polyclonal antisomatostatin antibody indicated that immunoreactivity is localized either at the periphery or at the central region in principal islets, and throughout the secondary islets, and found to be enhanced in fish exposed to GO than controls. The soma of δ-cells exhibits neuron-like morphology and have filopodia like processes. Cell sorting as non-communicating δ-cells (NCDC), communicating cells (CC), and non- δ-cells (NDC) indicated that within an islet organ, the population of NDCC is found to be the least and NDC is the highest. Our data further indicated that GO-induced impairments in the islet organs of medaka pancreas are inconsistent and could be affected by the exposure roots as well as the sex of the fish.
Collapse
Affiliation(s)
- Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS 38677, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
6
|
Ross BN, Knightes CD. Simulation of the Environmental Fate and Transformation of Nano Copper Oxide in a Freshwater Environment. ACS ES&T WATER 2022; 2:1532-1543. [PMID: 36118665 PMCID: PMC9469096 DOI: 10.1021/acsestwater.2c00157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Production of engineered nanomaterials (ENMs) has rapidly increased, yet uncertainty exists regarding the full extent of their environmental implications. This study investigates the fate, transformation, and speciation of nano copper oxide (nanoCuO) released into Lake Waccamaw, North Carolina, over 101 years. Using the Advanced Toxicant module of the Water Quality Analysis Simulation Program (WASP8), we assessed the accumulation and mass proportions of nanoCuO and Cu2+ (the product of nanoCuO's dissolution) in the water column and sediments. Our simulations suggest that when nanoCuO is released into Lake Waccamaw, the highest concentrations of both nanoCuO and Cu2+ are found in the surface sediments, followed by the subsurface sediments and the water column. Simulating different heteroaggregation attachment efficiencies of nanoCuO suggested that increases in attachment efficiency increased nanoCuO concentrations and mass proportions in the water column and sediments, while Cu2+ exhibited the opposite trends. After 101 years, most nanoCuO in the sediments was attached to particulate organic matter and clay particles at all attachment efficiencies, while low attachment efficiency slowed aggregate formation in the water column. Our results highlight the influence that heteroaggregation has on the behavior of nanoCuO inputs and suggest the potential for legacy contamination of nanoCuO and Cu2+ in sediments.
Collapse
Affiliation(s)
- Bianca N. Ross
- Atlantic
Coastal Environmental Sciences Division, Center for Environmental
Measurement & Modeling, Office of Research and Development, USEPA, 27 Tarzwell Drive, Narragansett, Rhode Island 02882, United States
- Oak
Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830, United States
| | - Christopher D. Knightes
- Atlantic
Coastal Environmental Sciences Division, Center for Environmental
Measurement & Modeling, Office of Research and Development, USEPA, 27 Tarzwell Drive, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
7
|
Syngouna VI, Kourtaki KI, Georgopoulou MP, Chrysikopoulos CV. The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19199-19211. [PMID: 34709550 DOI: 10.1007/s11356-021-17086-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The increased mass production and application of engineered nanomaterials (ENMs) have resulted in the release of nanoparticles (NPs) in the environment, raising uncertainties regarding their environmental impacts. This study examines the effect of graphene oxide (GO) and titanium dioxide (TiO2) NPs on the inactivation of the three model bacteria originated by mammalians including humans: Escherichia (E.) coli, Enterococcus (E.) faecalis, and Staphylococcus (S.) aureus. A series of dynamic batch experiments were conducted at constant room temperature (22 °C) in order to examine the inactivation of co-existing bacteria by NPs, in the presence and absence of quartz sand. The inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. The inactivation of E. coli and S. aureus was shown to increase in the co-presence of GO or TiO2 NPs and quartz sand comparing with the presence of GO or TiO2 NPs alone. For E. faecalis, no clear trend was observed. Moreover, quartz sand was shown to affect inactivation of bacteria by GO and TiO2 NPs. Among the bacteria examined, the highest inactivation rates were observed for S. aureus.
Collapse
Affiliation(s)
- Vasiliki I Syngouna
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
- Department of Environment, Ionian University, 29100, Zakynthos, Greece.
| | - Kleanthi I Kourtaki
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Maria P Georgopoulou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | | |
Collapse
|
8
|
Holt BD, Arnold AM, Sydlik SA. The Blanket Effect: How Turning the World Upside Down Reveals the Nature of Graphene Oxide Cytocompatibility. Adv Healthc Mater 2021; 10:e2001761. [PMID: 33645004 DOI: 10.1002/adhm.202001761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Indexed: 01/14/2023]
Abstract
Extensive cytocompatibility testing of 2D nanocarbon materials including graphene oxide (GO) has been performed, but results remain contradictory. Literature has yet to account for settling-although sedimentation is visible to the eye and physics suggests that even individual graphenic flakes will settle. To investigate settling, a series of functional graphenic materials (FGMs) with differing oxidation levels, functionalities, and physical dimensions are synthesized. Though zeta potential indicates colloidal stability, significant gravitational settling of the FGMs is theoretically and experimentally demonstrated. By creating a setup to culture cells in traditional and inverted orientations in the same well, a "blanket effect" is demonstrated in which FGMs settle out of solution and cover cells at the bottom of the well, ultimately reducing viability. Inverted cells protected from the blanket effect are unaffected. Therefore, these results demonstrate that settling is a crucial factor that must be considered for FGM cytocompatibility experiments.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Anne M. Arnold
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- National Security Directorate Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Stefanie A. Sydlik
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
- Department of Biomedical Engineering Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
9
|
Suhendra E, Chang CH, Hou WC, Hsieh YC. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. Int J Mol Sci 2020; 21:ijms21124554. [PMID: 32604975 PMCID: PMC7349326 DOI: 10.3390/ijms21124554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Exposure assessment is a key component in the risk assessment of engineered nanomaterials (ENMs). While direct and quantitative measurements of ENMs in complex environmental matrices remain challenging, environmental fate models (EFMs) can be used alternatively for estimating ENMs' distributions in the environment. This review describes and assesses the development and capability of EFMs, focusing on surface waters. Our review finds that current engineered nanomaterial (ENM) exposure models can be largely classified into three types: material flow analysis models (MFAMs), multimedia compartmental models (MCMs), and spatial river/watershed models (SRWMs). MFAMs, which is already used to derive predicted environmental concentrations (PECs), can be used to estimate the releases of ENMs as inputs to EFMs. Both MCMs and SRWMs belong to EFMs. MCMs are spatially and/or temporally averaged models, which describe ENM fate processes as intermedia transfer of well-mixed environmental compartments. SRWMs are spatiotemporally resolved models, which consider the variability in watershed and/or stream hydrology, morphology, and sediment transport of river networks. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. We find that while ENM fate processes, such as heteroaggregation and dissolution, are commonly included in current EFMs, few models consider photoreaction and sulfidation, evaluation of the relative importance of fate processes, and the fate of weathered/transformed ENMs. We conclude the review by identifying the opportunities and challenges in using EFMs for ENMs.
Collapse
|
10
|
Georgopoulou MP, Syngouna VI, Chrysikopoulos CV. Influence of graphene oxide nanoparticles on the transport and cotransport of biocolloids in saturated porous media. Colloids Surf B Biointerfaces 2020; 189:110841. [DOI: 10.1016/j.colsurfb.2020.110841] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 02/01/2020] [Indexed: 01/19/2023]
|
11
|
Xie Y, Gao Y, Ren X, Song G, Alsaedi A, Hayat T, Chen C. Colloidal Behaviors of Two-Dimensional Titanium Carbide in Natural Surface Waters: The Role of Solution Chemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3353-3362. [PMID: 32083478 DOI: 10.1021/acs.est.9b05372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although two-dimensional titanium carbide (Ti3C2Tx MXene) has emerged as a shining star material in various communities, its environmental behaviors and fate remain unknown. Herein, the colloidal properties and stability of Ti3C2Tx MXene are explored in aquatic systems for the first time, considering the roles of solution chemistry conditions (e.g., pH, ionic types, and strength). It was found that pH had no effect on the stability of Ti3C2Tx in the range of 5.0-11.0, whereas ionic valence and concentrations displayed significant effects on the aggregation behavior of Ti3C2Tx. By employing time-resolved dynamic light scattering measurements, the critical coagulation concentration (CCC) value of Ti3C2Tx was determined to be 12 mM for NaCl. The divalent cations Ca2+ and Mg2+ exhibited higher destabilizing capacity to Ti3C2Tx, as evidenced by the lower CCC values (0.3 and 0.4 mM for CaCl2 and MgCl2, respectively) and faster coagulation rates. Long-term stability studies implied that Ti3C2Tx MXene was less likely to be transported over long distances in the synthetic or natural waters. These findings provided significant insights into the fate and transport of Ti3C2Tx in the aquatic environment.
Collapse
Affiliation(s)
- Yi Xie
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yang Gao
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China
| | - Xuemei Ren
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ahmed Alsaedi
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tasawar Hayat
- NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Changlun Chen
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
12
|
Zepp R, Ruggiero E, Acrey B, Davis MJB, Han C, Hsieh HS, Vilsmeier K, Wohlleben W, Sahle-Demessie E. Fragmentation of polymer nanocomposites: modulation by dry and wet weathering, fractionation, and nanomaterial filler. ENVIRONMENTAL SCIENCE. NANO 2020; 7:1742-1758. [PMID: 33564464 PMCID: PMC7869489 DOI: 10.1039/c9en01360a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent years, an increasing number of polymeric composites incorporating engineered nanomaterials (ENMs) have reached the market. Such nano-enabled products (NEPs) present enhanced performance through improved mechanical, thermal, UV protection, electrical, and gas barrier properties. However, little is known about how environmental weathering impacts ENM release, especially for high-tonnage NEPs like kaolin products, which have not been extensively examined by the scientific community. Here we study the simulated environmental weathering of different polymeric nanocomposites (epoxy, polyamide, polypropylene) filled with organic (multiwalled carbon nanotube, graphene, carbon black) and inorganic (WS2, SiO2, kaolin, Fe2O3, Cu-phthalocyanines) ENMs. Multiple techniques were employed by researchers at three laboratories to extensively evaluate the effect of weathering: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), optical microscopy, contact angle measurements, gravimetric analysis, analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. This work aimed to elucidate the extent to which weathering protocol (i.e. wet vs. dry) and diverse filler characteristics modulate fragment release and polymer matrix degradation. In doing so, it expanded the established NanoRelease protocol, previously used for analyzing fragment emission, by evaluating two significant additions: (1) simulated weathering with rain events and (2) fractionation of sample leachate prior to analysis. Comparing different composite materials and protocols demonstrated that the polymer matrix is the most significant factor in NEP aging. Wet weathering is more realistic than dry weathering, but dry weathering seems to provide a more controlled release of material over wet. Wet weathering studies could be complicated by leaching, and the addition of a fractionation step can improve the quality of UV-vis measurements.
Collapse
Affiliation(s)
- Richard Zepp
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Brad Acrey
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
| | - Mary J B Davis
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Changseok Han
- ORISE Research Fellow, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37830, USA
- EPA, ORD, Center for Environmental Solutions and Emergency Response (CESER), Cincinnati, OH, USA
- Department of Environmental Engineering, INHA University, Incheon, Korea
| | - Hsin-Se Hsieh
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Center for Environmental Measurement and Modeling (CEMM), 960 College Station Rd., Athens, GA, USA
- NRC Post-Doctoral Fellow, National Research Council (NRC), Washington DC, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics and Analytics, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
13
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Susana Y. Kimura
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Hsieh HS, Zepp RG. Reactivity of graphene oxide with reactive oxygen species (hydroxyl radical, singlet oxygen, and superoxide anion). ENVIRONMENTAL SCIENCE. NANO 2019; 6:3734-3744. [PMID: 32218919 PMCID: PMC7098813 DOI: 10.1039/c9en00693a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increases in the production and applications of graphene oxide (GO), coupled with reports of its toxic effects, are raising concerns about its health and ecological risks. To better understand GO's fate and transport in aquatic environments, we investigated its reactivity with three major reactive oxygen species (ROS): HO˙, 1O2, and O2˙-. Second-order degradation rate constants were calculated on the loss of dissolved organic carbon (DOC) and steady-state concentration of individual ROS species. Absolute second-order rate constants were determined by competition kinetics to be 6.24 × 104, 8.65 × 102, and 0.108 mg-C-1 L s-1 for HO˙, 1O2, and O2˙-, respectively. Photoreduced GO products had a similar reactivity to HO˙ as GO, with rate constants comparable to polycyclic aromatic compounds, but about two times higher than dissolved organic matter on a per carbon basis. Reaction with HO˙ resulted in decomposition of GO, with loss of color and formation of photoluminescent products. In contrast, reaction with 1O2 showed no effect on DOC, UV-vis spectra or particle size, while reaction with O2˙- slightly reduced GO. These results demonstrate that interactions with ROS will affect GO's persistence in water and should be considered in exposure assessment or environmental application of GO.
Collapse
Affiliation(s)
- Hsin-Se Hsieh
- National Research Council Associate, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
| | - Richard G Zepp
- National Exposure Research Laboratory, Exposure Methods & Measurement Division, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
| |
Collapse
|
15
|
Ren D, Ren Z, Chen F, Wang B, Huang B. Predictive role of spectral slope ratio towards 17α-ethynylestradiol photodegradation sensitized by humic acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112959. [PMID: 31377327 DOI: 10.1016/j.envpol.2019.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Humic acids (HAs) have been shown to dominate the photodegradation of steroid estrogens in natural waters. Nevertheless, how the photosensitizing ability of HAs relates to their structural and optical characteristics remains largely unknown. In this study, 17α-ethynylestradiol (EE2) was selected as a model compound to study to what extent easily-measurable characteristics of HAs might be used to predict their photosensitization potency. HAs were extracted from sediments of two different sources, and then subjected to structural and optical properties characterization using elemental analyzer, UV-vis spectroscopy and fluorescence spectroscopy. Photochemical experiments show that the HAs from the two sources can effectively meditate EE2 photodegradation. Although with drastically different structural and optical properties, the photosensitizing ability of these HAs towards EE2 can be well described by simple linear regressions using a spectroscopic index, the spectral slope ratio (SR). This optical indicator is correlated with various physicochemical properties of HAs, including the molecular weight, lignin content, charge-transfer interaction potential, photobleaching extent and sources. No universal prediction model could be established for predicting EE2 photodegradation kinetics on the basis of SR, but in specific waters SR could be a powerful indictor for predicting the EE2 photodegradation sensitized by HAs.
Collapse
Affiliation(s)
- Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Fang Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
16
|
Bangeppagari M, Park SH, Kundapur RR, Lee SJ. Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: In-vivo toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:810-820. [PMID: 31005017 DOI: 10.1016/j.scitotenv.2019.04.082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has wide engineering applications in various areas, including electronics, energy storage, pharmaceuticals, nanomedicine, environmental remediation and biotechnology, because of its unique physico-chemical properties. In the present study, the risk-related information of GO was evaluated to examine the potential ecological and health risks of developmental toxicity. Although the overall developmental toxicity of GO has been well characterized in zebrafish, however, its release effect at a certain concentration of living organisms with specific cardiovascular defects remains largely elusive. Therefore, this study was conducted to further evaluate the toxicity of GO on embryonic development and cardiovascular defects in zebrafish embryos used as an in-vivo animal model. As a result, the presence of GO at a small concentration (0.1-0.3 mg/mL) does not affect the embryonic development. However, GO at higher concentrations (0.4-1 mg/mL) induces significant embryonic mortality, increase heartbeat, delayed hatching, cardiotoxicity, cardiovascular defects, retardation of cardiac looping, increased apoptosis and decreased hemoglobinization. These results provide valuable information that can be used to study the eco-toxicological effects of GO for assessing its bio-safety according to environmental concentration. In addition, the present results would also be usefully utilized for understanding the environmental risks associated with GO on human health in general.
Collapse
Affiliation(s)
- Manjunatha Bangeppagari
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sung Ho Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | | | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.
| |
Collapse
|