1
|
Li S, Chen W, Ma S, Zhou X, Li J, Li B. Expandable konjac fiber modulates appetite and chyme digestion in vivo by stomach-intestine-brain axis. Int J Biol Macromol 2025; 307:142089. [PMID: 40090644 DOI: 10.1016/j.ijbiomac.2025.142089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Appetite regulation is a lifestyle intervention strategy to maintain health. The regulatory effects of dietary fiber (especially insoluble dietary fiber), as a crucial element of the nutritional composition, on appetite remain poorly understood. This study investigated modulatory effects of konjac fiber (KF, with high and low expansion) and konjac powder (KP) on chyme digestion, gastrointestinal hormones, intestinal microbiota, appetite genes in hypothalamus, GLP-1 receptor (GLP-1R) protein in various tissues of rats by dietary intervention. The results showed that highly-expanded konjac fiber (HKF) significantly delayed gastric emptying and inhibited hydrolysis of chyme. Konjac fiber (KF), especially HKF, and KP increased short-chain fatty acid (SCFA) content and plasma glucagon-like peptide-1 (GLP-1) levels. HKF upregulated the expression of GLP-1R protein in rat stomachs, nucleus tractus solitaries (NTS), and area postrema (AP) of rat brain, but down-regulated the expression of appetite gene AgRP/NPY in hypothalamus, thus, inhibiting appetite, reducing daily food intake and weight gain. Overall, this study reveals the mechanism through which expandable konjac fiber modulates appetite and chyme digestion in vivo by stomach-intestine-brain axis. Our findings provide an insight into the regulatory effects of insoluble dietary fiber on appetite and offered a valuable reference for the development of satiety-enhancing functional foods.
Collapse
Affiliation(s)
- Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Wenjing Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shaohua Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xiaorui Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
2
|
Ji T, Fang B, Zhang M, Cheng L, Yuan X, Jin Y, Wu F, Zheng C, Ma Y. Oat beta-glucan inhibited obesity in mice though stem cell remodeling. Int J Biol Macromol 2025; 311:143747. [PMID: 40316099 DOI: 10.1016/j.ijbiomac.2025.143747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Oat beta-glucan has been reported to be beneficial to glucose and lipid metabolism in human and animal studies. However, weight-loss was shown only in animal studies, whereas human studies reported an improvement in hyperlipidemia. This study investigated the effects of oat beta-glucan on obesity and related metabolic disturbances at the doses based on the Chinese recommended daily intake of 100 g of whole grains which contain approximately 10 % β-glucan. Our data showed that 200 mg/kg efficiently blocked the process of obesity as determined by significantly decreased body weight (7.57 g) and adipose tissue mass (5.24 g) after the 4-week intervention. Lower serum low-density lipoprotein cholesterol (0.32 mmol/L) and reduced atherosclerosis were also observed. Oat beta-glucan improved hepatic lipid metabolism at the low dose (100 mg/kg) and restored it to normal levels in lean mice at the high dose. To our knowledge, our study is the first to analyze the effects of oat beta-glucan on adipose stem cells and reveal the anti-obesity mechanism of oat β-glucan is modulating the adipose stem cell microenvironment. This study determined an efficient supplementary dose for blocking high-fat diet-induced obesity, which not only improved lipid metabolism but also altered stem cell composition in adipose tissue.
Collapse
Affiliation(s)
- Tengteng Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China.
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, 100048 Beijing, China
| | - Le Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China
| | - Xinlei Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China; College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, 300457 Tianjin, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China
| | - Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China
| | - Chenyan Zheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China
| | - Yumeng Ma
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
3
|
Ji T, Fang B, Jin Y, Zheng C, Yuan X, Dong J, Cheng L, Wu F. Euglena Attenuates High-Fat-Diet-Induced Obesity and Especially Glucose Intolerance. Nutrients 2024; 16:3780. [PMID: 39519613 PMCID: PMC11548234 DOI: 10.3390/nu16213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Obesity, a global disease, can lead to different chronic diseases and a series of social health problems. Lifestyle changes, especially dietary changes, are the most effective way to treat obesity. Euglena, a novel food, has attracted much attention. Previous studies have shown that Euglena is an important modulator of the host immune response. In this study, the effects of Euglena as a nutritional intervention in high-fat-diet-induced obese C57BL/6J mice were investigated regarding adipose tissue accumulation and lipid and glucose metabolism by gavage at the dose of 100 mg/kg bodyweight for 9 weeks. This study is one of the few to investigate, in detail, the preventive effects of dietary Euglena on obesity. Methods: Five-week-old male C57BL/6J mice were fed with a high-fat diet (HFD) to induce obesity. An obesity model was created by feeding the high-fat diet for a period of 10 weeks. Obese mice were randomized into 2 groups with the same mean body weight, and no significant differences were observed between the groups: (1) the mice in the HEG group were maintained on a high-fat diet and daily gavaged with Euglena (100 mg/kg body weight) dissolved in saline (n = 7); and (2) the mice in the HFD group were maintained on a high-fat diet and daily gavaged with saline with the same volume (n = 7). The experiment finished after a nine-week period. Results: The results showed that Euglena could reduce the accumulation of white body fat, including subcutaneous fat and visceral fat, and mainly targeted subcutaneous fat. Euglena also reduced adipocyte particle size expansion, promoted lipolysis in adipose (adipose triglyceride lipase and hormone-sensitive triglyceride lipase) and liver tissue (reduced non-esterified fatty acid content), and improved obesity-induced ectopic fat deposition and glucose tolerance. Conclusions: Our findings suggest that Euglena, as a nutritional intervention in HFDs, efficiently reduces body weight and white adipose tissue deposition. The mechanism of Euglena is mainly though enhancing lipolysis. It is worth noting that Euglena β-glucan recovers the hyperglycemia and accumulation of ectopic fat within the liver induced by HFD. Our study is one of the few studies to report in detail the preventive effects of dietary Euglena on obesity in vivo. This study revealed that Euglena also has an important ameliorative effect on obesity and metabolic disorders, which laid a theoretical foundation for its future application in functional foods.
Collapse
Affiliation(s)
- Tengteng Ji
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chenyan Zheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xinlei Yuan
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China;
| | - Jianguo Dong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Le Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Oladimeji BM, Adebo OA. Antiobesity effect of healthy food crops and functional foods: A systematic review of their mechanisms. Food Sci Nutr 2024; 12:1380-1398. [PMID: 38455221 PMCID: PMC10916587 DOI: 10.1002/fsn3.3856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024] Open
Abstract
Diet is a modifiable risk factor in the prevention and management of obesity, and various foods have the potential to aid in obesity management by modulating different pathways involved in the disease's pathology. We performed a systematic review of literature, using CINAHL, PubMed, and Google Scholar, focusing on the antiobesity potential of foods crops and functional food products, and their mechanisms of action and clinical evidence. Sixty-four articles were identified, of which 41 investigated food crops, while 23 investigated functional products. Food crops, such as cereals, vegetables, fruits, mushrooms, seaweeds, legumes, herbs, spices, and cocoa seeds, have antiobesity effects through mechanisms such as altering the metabolism of glucolipids by inhibiting enzymes like α-amylase and α-glucosidase, stimulating the bioenergetics of thermogenic fat, modulating gut microbiota, and inhibiting lipogenesis and storage. In addition, developed functional teas, beverages, and yoghurt have antiobesity effects through similar or different mechanisms, such as enhancing energy expenditure and satiety, suppressing adipogenesis and lipolysis, improving glucose and lipid metabolism, and altering hormonal secretion. This review reemphasized the significance of food in the control of obesity, and highlights the distinct methods these explored foods exert their antiobesity effects. In conclusion, foods are safe and effective means of combating obesity without the side effects of conventional drugs, which can help inform dietary choices, assist professionals in providing more accurate advice, and also lead to better understanding of food and its effect on overall health of the public. This approach will eradicate global diseases, especially if more underutilized and indigenous food crops are extensively researched.
Collapse
Affiliation(s)
- Beatrice Mofoluwaso Oladimeji
- Food Innovation Research Group, Department of Biotechnology & Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology & Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
5
|
Sirotkin AV. The Effect of Dietary Oat Consumption and Its Constituents on Fat Storage and Obesity. Physiol Res 2023; 72:S157-S163. [PMID: 37565419 PMCID: PMC10660577 DOI: 10.33549/physiolres.934957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/23/2022] [Indexed: 12/01/2023] Open
Abstract
This review is to summarize and analyze the currently available knowledge concerning the action of oat (Avena sativa L.) consumption on obesity, as well as possible constituents and extra- and intracellular mediators responsible for its anti-obesity effect. The oat constituents could reduce fat storage via several mediatory mechanisms - brain centers regulating appetite, gastrointestinal functions, gut bacteria, fat synthesis and metabolism and maybe via changes in oxidative processes, steroid hormones receptors and adipose tissue vascularization. Several oat constituents (starch, fiber and beta-glucan) could have anti-obesity properties, whilst one oat constituent (starch or fiber) could affect fat storage via several mechanisms of action.
Collapse
Affiliation(s)
- A V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.
| |
Collapse
|
6
|
Li L, Li W, Yang L, Cheng L, Li Z, Li C, Hong Y, Gu Z. Butyl Group Distribution, Intestinal Digestion, and Colonic Fermentation Characteristics of Different Butyrylated Starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3289-3299. [PMID: 35258968 DOI: 10.1021/acs.jafc.1c07861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite being a promising butyrate carrier, butyrylated starch remains poorly understood in terms of the correlation between starch structure and fermentation characteristics. Herein, three butyrylated starches derived from different botanical sources were prepared with a similar degree of substitution. Raman microscopy and water contact angle analysis suggested that a relatively large proportion of butyl group substitutions occurred within the interior of butyrylated waxy maize starch (B-WMS) granules. In vitro digestion results showed that branch points provided butyl groups with a specific protection from enzymatic hydrolysis, whereas butyl groups significantly increased the resistant starch content of butyrylated starch. Moreover, the porous morphology with less distributed butyl groups on the granular surface contributed to a faster fermentation rate in B-WMS. The current study reveals the influence of botanical origin on butyl group distribution, which in turn plays a pivotal role in regulating the intestinal digestion and colonic fermentation of butyrylated starch.
Collapse
Affiliation(s)
- Lingjin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lihong Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
|
9
|
Li X, He Q, Zhang G. The impact of the physical form of torularhodin on its metabolic fate in the gastrointestinal tract. Food Funct 2021; 12:9955-9964. [PMID: 34494058 DOI: 10.1039/d1fo01950c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Torularhodin is a fungal carotenoid with multiple health benefits. However, the relationship between its physical form and metabolic fate in the gastrointestinal tract (GIT), which is essential to its bioavailability and health efficacy, has rarely been studied. Thus, physical forms of torularhodin including nanoemulsion powder (T-EP), capsules of the T-EP by alginate (T-EPA), and solution in MCT oil (T-oil) were used in the study. T-EP was produced through OSA-starch-mediated torularhodin emulsification and spray drying whereas the T-EPA was alginate-based capsules of the T-EP particles that were entrapped in the network structure of the alginate matrix as observed by scanning electron microscopy (SEM). The oil digestibility in the simulated small intestine was decreased from T-EP (100%), T-oil (60%) to T-EPA (40%), and the bioaccessibilities were 27%, 15% and 12%, respectively. The in vivo study using mice revealed that the content of torularhodin gradually decreased along with the digestion time in both the stomach and small intestine while a significantly higher colonic accumulation was observed in T-EPA compared to T-oil and T-EP. In vitro fecal fermentation showed that propionate (32 mM) was the predominant metabolite produced by torularhodin in the physical form of T-EPA. Thus, the physical form of torularhodin is a significant contributing factor to its GIT metabolic fate, and a health outcome-oriented design of the physical form of torularhodin or other nutraceuticals is beneficial for the development of functional foods with enhanced health benefits.
Collapse
Affiliation(s)
- Xingming Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China 214122. .,Yitong Food Industry Co., Ltd, Xuzhou, China 221000
| | - Qian He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China 214122.
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China 214122.
| |
Collapse
|
10
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Zhang X, Yao Z, Sun X, Zhang G. Cross-linked arabinoxylan in a Ca 2+-alginate matrix reversed the body weight gain of HFD-fed C57BL/6J mice through modulation of the gut microbiome. Int J Biol Macromol 2021; 176:404-412. [PMID: 33571595 DOI: 10.1016/j.ijbiomac.2021.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Here, we compared the effects of different physical forms of arabinoxylan (AX) - a microsphere of cross-linked arabinoxylan (CAX) in a Ca2+-alginate matrix (MC) and physical mixture of AX and alginate (PM) on gut microbiota and development of obesity in C57BL/6J mice. Supplementation of MC in high fat (HF) diet to mice for 10 weeks significantly reversed the body weight gain induced by the HF diet, along with less fat accumulation in both livers and the epididymal adipose than the PM group. Microbiome analysis showed that MC significantly altered the gut microbiota composition with a noticeable increase of butyrogenic bacteria of Lachnospiraceae. The butyrate produced by MC fermentation and the increased abundance of Lachnospiraceae might be the underlying mechanism of the anti-obesity effect of MC. The results indicated that the physical forms of dietary fiber are closely associated with its health benefits, and MC might be served as a new functional food ingredient to prevent obesity.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zechen Yao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangjun Sun
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Wu G, Shi Y, Han L, Feng C, Ge Y, Yu Y, Tang X, Cheng X, Sun J, Le GW. Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7745-7756. [PMID: 32597175 DOI: 10.1021/acs.jafc.0c02965] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diet greatly influences gut microbiota. Dietary methionine restriction (MR) prevents and ameliorates age-related or high-fat-induced diseases and prolongs life span. This study aimed to reveal the impact of MR on gut microbiota in middle-aged mice with low-, medium-, high-fat diets. C57BL/6J mice were randomly divided into six groups with different MR and fat-content diets. Multiple indicators of intestinal function, fat accumulation, energy consumption, and inflammation were measured. 16S rRNA gene sequencing was used to analyze cecal microbiota. Our results indicated that MR considerably reduced the concentrations of lipopolysaccharide (LPS) and increased short-chain fatty acids (SCFAs) by upregulating the abundance of Corynebacterium and SCFA-producing bacteria Bacteroides, Faecalibaculum, and Roseburia and downregulating the LPS-producing or proinflammatory bacteria Desulfovibrio and Escherichia-Shigella. The effect of MR on LPS and SCFAs further reduced fat accumulation and systemic inflammation, enhanced heat production, and mediated the LPS/LBP/CD14/ TLR4 pathway to strength the intestinal mucosal immunity barrier in middle-aged mice.
Collapse
Affiliation(s)
- Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Han
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yihao Yu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangrong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Guo-Wei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
The impact of Tartary buckwheat extract on the nutritional property of starch in a whole grain context. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102798] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Luo J, Qi J, Wang W, Luo Z, Liu L, Zhang G, Zhou Q, Liu J, Peng X. Antiobesity Effect of Flaxseed Polysaccharide via Inducing Satiety due to Leptin Resistance Removal and Promoting Lipid Metabolism through the AMP-Activated Protein Kinase (AMPK) Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7040-7049. [PMID: 31199141 DOI: 10.1021/acs.jafc.9b02434] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Obesity is a metabolic syndrome worldwide that causes many chronic diseases. Recently, we found an antiobesity effect of flaxseed polysaccharide (FP), but the mechanism remains to be elucidated. In this study, rats were first induced to develop obesity by being fed a high-fat diet. The obese rats were then fed a control diet, AIN-93M (group HFD), or a 10% FP diet (group FPD). The body weight, body fat, adipose tissue and liver sections, serous total triglycerides, levels of fasting blood glucose in serum, serous insulin, inflammatory cytokines in serum, and serous proteins within the leptin-neuropeptide Y (NPY) and AMP-activated protein kinase (AMPK) signaling pathway were determined and analyzed. FP intervention significantly reduced body weight and abdominal fat from 530 ± 16 g and 2.15% ± 0.30% in group HFD to 478 ± 10 g and 1.38% ± 0.48% in group FPD, respectively. This effect was achieved by removing leptin resistance possibly by inhibiting inflammation and recovering satiety through the significant downregulation of NPY and the upregulation of glucagon-like peptide 1. Adiponectin was then significantly upregulated probably via the gut-brain axis and further activated the AMPK signaling pathway to improve lipid metabolism including the improvement of lipolysis and fatty acid oxidation and the suppression of lipogenesis. This is the first report of the proposed antiobesity mechanism of FP, thereby providing a comprehensive understanding of nonstarch polysaccharides and obesity.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Jiamei Qi
- College of Life Science and Technology , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Wenjun Wang
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Zhenhuan Luo
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Liu Liu
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Guangwen Zhang
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Qinghua Zhou
- The Center for Precision Medicine of First Affiliated Hospital, Biomedical Translational Research Institute, School of Pharmacy , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Jiesheng Liu
- College of Life Science and Technology , Jinan University , Guangzhou , 510632 Guangdong , China
| | - Xichun Peng
- Department of Food Science and Engineering , Jinan University , Guangzhou , 510632 Guangdong , China
| |
Collapse
|
15
|
Farup PG, Lydersen S, Valeur J. Are Nonnutritive Sweeteners Obesogenic? Associations between Diet, Faecal Microbiota, and Short-Chain Fatty Acids in Morbidly Obese Subjects. J Obes 2019; 2019:4608315. [PMID: 31662903 PMCID: PMC6791210 DOI: 10.1155/2019/4608315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/28/2019] [Accepted: 08/31/2019] [Indexed: 01/16/2023] Open
Abstract
Obesity has been associated with changes in the gut microbiota and its metabolites. The study explored changes in the faecal microbiota and short-chain fatty acids (SCFA) associated with the diet (including nonnutritive sweeteners (NNSs)) and evaluated metabolic consequences in subjects with morbid obesity. The diet was assessed with a validated food frequency questionnaire. One unit of NNSs was 100 mL beverage with NNSs or 2 tablets/teaspoons of NNSs. The faecal microbiota was assessed with GA-map® dysbiosis test and SCFA with gas chromatography and flame ionisation detection. Fourteen men and 75 women with a mean age of 44.6 (SD 8.7) years, BMI 41.8 (SD 3.6) kg/m2, and intake of NNSs 7.5 units/day (SD 3.2; range 0-43) were included. Faecal butyric acid was positively and negatively associated with the intake of starch (partial correlation = 0.264; p=0.015) and NNSs (partial correlation = -0.274; p=0.011), respectively. NNSs were associated with changes in four out of 39 bacterial groups. Butyric acid has antiobesogenic effects, reduces insulin resistance, and improves dyslipidaemia. Since the weight-reducing effect of NNSs on obese adults trying to lose weight is dubious, it seems imprudent to use NNSs that might counteract the favourable effects of butyric acid.
Collapse
Affiliation(s)
- Per G. Farup
- Department of Research, Innlandet Hospital Trust, PB 104, N-2381 Brumunddal, Norway
- Unit for Applied Clinical Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Box 8905, N-7491 Trondheim, Norway
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Box 8905, N-7491 Trondheim, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, N-0440 Oslo, Norway
| |
Collapse
|
16
|
Luo K, Wang X, Zhang G. Starch and β-glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food Funct 2019; 10:5091-5101. [DOI: 10.1039/c9fo00798a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
WGLSF improves hepatic insulin resistance and glucose homeostasis in diet-induced obese mice.
Collapse
Affiliation(s)
- Kaiyun Luo
- Key Laboratory of Food Science and Technology School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xufeng Wang
- Institute of Biotechnology
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Genyi Zhang
- Key Laboratory of Food Science and Technology School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|