1
|
Othman MA, Sivasothy Y. Acylphenols and Dimeric Acylphenols from the Genus Myristica: A Review of Their Phytochemistry and Pharmacology. PLANTS (BASEL, SWITZERLAND) 2023; 12:1589. [PMID: 37111813 PMCID: PMC10143527 DOI: 10.3390/plants12081589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
The genus Myristica is a medicinally important genus belonging to the Myristicaceae. Traditional medicinal systems in Asia have employed plants from the genus Myristica to treat a variety of ailments. Acylphenols and dimeric acylphenols are a rare group of secondary metabolites, which, to date, have only been identified in the Myristicaceae, in particular, in the genus Myristica. The aim of the review would be to provide scientific evidence that the medicinal properties of the genus Myristica could be attributed to the acylphenols and dimeric acylphenols present in the various parts of its plants and highlight the potential in the development of the acylphenols and dimeric acylphenols as pharmaceutical products. SciFinder-n, Web of Science, Scopus, ScienceDirect, and PubMed were used to conduct the literature search between 2013-2022 on the phytochemistry and the pharmacology of acylphenols and dimeric acylphenols from the genus Myristica. The review discusses the distribution of the 25 acylphenols and dimeric acylphenols within the genus Myristica, their extraction, isolation, and characterization from the respective Myristica species, the structural similarities and differences within each group and between the different groups of the acylphenols and dimeric acylphenols, and their in vitro pharmacological activities.
Collapse
Affiliation(s)
- Muhamad Aqmal Othman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yasodha Sivasothy
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
2
|
Sivagnanam S, Das K, Pan I, Barik A, Stewart A, Maity B, Das P. Functionalized Fluorescent Nanostructures Generated from Self-Assembly of a Cationic Tripeptide Direct Cell-Selective Chemotherapeutic Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:836-847. [PMID: 36757106 DOI: 10.1021/acsabm.2c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Nanodrug delivery systems (NDDs) capable of conveying chemotherapeutics directly into malignant cells without harming healthy ones are of significant interest in the field of cancer therapy. However, the development of nanostructures with the requisite biocompatibility, inherent optical properties, cellular penetration ability, encapsulation capability, and target selectivity has remained elusive. In an effort to develop cell-selective NDDs, we have synthesized a cationic tripeptide Boc-Arg-Trp-Phe-OMe (PA1), which self-assembles into well-ordered spheres in 100% aqueous medium. The inherent fluorescence properties of the peptide PA1 were shifted from the ultraviolet to the visible region by the self-assembly. These fluorescent nanostructures are proteolytically stable, photostable, and biocompatible, with characteristic blue fluorescence signals that permit us to monitor their intracellular entry in real time. We also demonstrate that these tripeptide spherical structures (TPSS) have the capacity to entrap the chemotherapeutic drug doxorubicin (Dox), shuttle the encapsulated drug within cancerous cells, and initiate the DNA damage signaling cascade, which culminates in apoptosis. Next, we functionalized the TPSS with an epithelial-cell-specific epithelial cell adhesion molecule aptamer. Aptamer-conjugated PA1 (PA1-Apt) facilitated efficient Dox delivery into the breast cancer epithelial cell line MCF7, resulting in cell death. However, cells of the human cardiomyocyte cell line AC16 were resistant to the cell killing actions of PA1-Apt. Together, these data demonstrate that not only can the self-assembly of cationic tripeptides like PA1 be exploited for efficient drug encapsulation and delivery but their unique chemistry also allows for functional modifications, which can improve the selectivity of these versatile NDDs.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ieshita Pan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Bauri AK, Du Y, Brodie PJ, Foro S, Kingston DGI. Anti-Proliferative Acyl Phenols and Arylnonanoids from the Fruit Rind of Myristica malabarica Lam. Chem Biodivers 2022; 19:e202200343. [PMID: 36263966 DOI: 10.1002/cbdv.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/20/2022] [Indexed: 12/27/2022]
Abstract
Phytochemical investigation of the methanol extract of the fruit rind of Myristica malabarica led to the isolation of eight known compounds that were identified as malabaricones A-D, promalabaricones B and C, 1-(2,6-dihydroxyphenyl)tetradecan-1-one, and ericanone by comparison with literature spectroscopic data. The structures of malabaricones A-D, promalabaricone B, and 1-(2,6-dihydroxyphenyl)tetradecan-1-one were confirmed by X-ray crystallography. In vitro assay of the isolated phenols indicated that they exhibited moderate anti-proliferative activity against the A2780 human ovarian cancer cell. Compounds (1, 3, 5, 6 and 7) had the most potent activities, whereas the anti-proliferative activities of compounds 2 and 4 were less potent.
Collapse
Affiliation(s)
- Ajoy Kumar Bauri
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 85, India
| | - Yongle Du
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Peggy Jane Brodie
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| | - Sabine Foro
- Institute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany
| | - David G I Kingston
- Department of Chemistry, M/C 0212, Virginia Tech, Blacksburg, Virginia, 24061, USA
| |
Collapse
|
4
|
Sivagnanam S, Das K, Sivakadatcham V, Mahata T, Basak M, Pan I, Stewart A, Maity B, Das P. Generation of Self‐Assembled Structures Composed of Amphipathic, Charged Tripeptides for Intracellular Delivery of Pro‐Apoptotic Chemotherapeutics. Isr J Chem 2022. [DOI: 10.1002/ijch.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| | - Kiran Das
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Vijay Sivakadatcham
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| | - Tarun Mahata
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Ieshita Pan
- Department of Biotechnology Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Saveetha University Tamil Nadu 602105 India
| | - Adele Stewart
- Department of Biomedical Science Charles E. Schmidt College of Medicine Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR) Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus, Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry SRM Institute of Science and Technology, SRM Nagar, Potheri University building, Room No 1210/8 Kattankulathur Tamil Nadu-603203 India
| |
Collapse
|
5
|
Sivagnanam S, Das K, Basak M, Mahata T, Stewart A, Maity B, Das P. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones. NANOSCALE ADVANCES 2022; 4:1694-1706. [PMID: 36134376 PMCID: PMC9417502 DOI: 10.1039/d1na00885d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 06/16/2023]
Abstract
Self-assembled peptide-based nanostructures, comprised of naturally occurring amino acids, display excellent biocompatibility, biodegradability, flexible responsiveness, and synthetic feasibility and can be customized for various biomedical applications. However, the lack of inherent optical properties of peptide-based nanoparticles is a limitation on their use as imaging probes or drug delivery vehicles. To overcome this impediment, we generated Boc protected tyrosine-tryptophan dipeptide-based nanoparticles (DPNPs) with structure rigidification by Zn(ii), which shifted the peptide's intrinsic fluorescent properties from the ultraviolet to the visible range. These DPNPs are photostable, biocompatible and have visible fluorescence signals that allow for real-time monitoring of their entry into cells. We further show that two DPNPs (PS1-Zn and PS2-Zn) can encapsulate the chemotherapeutic drug doxorubicin (Dox) and facilitate intracellular drug delivery resulting in cancer cell killing actions comparable to the unencapsulated drug. Finally, we chemically modified our DPNPs with an aptamer directed toward the epithelial cell surface marker EPCAM, which improved Dox delivery to the lung cancer epithelial cell line A549. In contrast, the aptamer conjugated DPNPs failed to deliver Dox into the cardiomyocyte cell line AC16. Theoretically, this strategy could be employed in vivo to specifically deliver Dox to cancer cells while sparing the myocardium, a major source of dose-limiting adverse events in the clinic. Our work represents an important proof-of-concept exercise demonstrating that ultra-short peptide-based fluorescent nanostructures have great promise for the development of new imaging probes and targeted drug delivery vehicles.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
6
|
Gandhi VV, Gandhi KA, Kumbhare LB, Goda JS, Gota V, Priyadarsini KI, Kunwar A. 3,3'-Diselenodipropionic acid (DSePA) induces reductive stress in A549 cells triggering p53-independent apoptosis: A novel mechanism for diselenides. Free Radic Biol Med 2021; 175:1-17. [PMID: 34425189 DOI: 10.1016/j.freeradbiomed.2021.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
The aim of present study was to investigate the anticancer mechanisms of 3,3'-diselenodipropionic acid (DSePA), a redox-active organodiselenide in human lung cancer cells. DSePA elicited a significant concentration and time-dependent cytotoxicity in human lung cancer cell line A549 than in normal WI38 cells. The cytotoxic effect of DSePA was preceded by an acute decrease in the level of basal reactive oxygen species (ROS) and a concurrent increase in levels of reducing equivalents (like GSH/GSSG and NADH/NAD) within cells. Further, a series of experiments were performed to measure the markers of intrinsic (Bax, cytochrome c and caspase-9), extrinsic (TNFR, FADR and caspase-8) and endoplasmic reticulum (ER) stress (protein ubiquitylation, calcium flux, Bip, CHOP and caspase-12) pathways in DSePA treated cells. DSePA treatment significantly increased the levels of all the above markers. Moreover, DSePA did not alter the expression and phosphorylation (Ser15) of p53 but caused a significant damage to mitochondria. Pharmacological modulation of GSH level by BSO and NAC in DSePA treated cells led to partial abrogation and augmentation of cell kill respectively. This established the role of reductive stress as a trigger for the apoptosis induced by DSePA treatment. Finally, in vitro anticancer activity of DSePA was also corroborated by its in vivo efficacy of suppressing the growth of A549 derived xenograft tumor in SCID mice. In conclusion, above results suggest that DSePA induces apoptosis in a p53 independent manner by involving extrinsic and intrinsic pathways together with ER stress which can an interesting strategy for lung cancer therapy.
Collapse
Affiliation(s)
- V V Gandhi
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - K A Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, India
| | - L B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - J S Goda
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India; Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, India
| | - V Gota
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India; Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi, Mumbai, India
| | - K I Priyadarsini
- UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Mumbai, 400098, India
| | - A Kunwar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400 094, India; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
7
|
Sivagnanam S, Basak M, Kumar A, Das K, Mahata T, Rana P, Sengar AS, Ghosh S, Subramanian M, Stewart A, Maity B, Das P. Supramolecular Structures Generated via Self-Assembly of a Cell Penetrating Tetrapeptide Facilitate Intracellular Delivery of a Pro-apoptotic Chemotherapeutic Drug. ACS APPLIED BIO MATERIALS 2021; 4:6807-6820. [PMID: 35006981 DOI: 10.1021/acsabm.1c00530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of drug carriers, which can chaperone xenobiotics directly to their site of action, is an essential step for the advancement of precision medicine. Cationic nanoparticles can be used as a drug delivery platform for various agents including chemotherapeutics, oligonucleotides, and antibodies. Self-assembly of short peptides facilitates the formation of well-defined nanostructures suitable for drug delivery, and varying the polarity of the self-assembly medium changes the nature of noncovalent interactions in such a way as to generate numerous unique nanostructures. Here, we have synthesized an ultrashort cell-penetrating tetrapeptide (sequence Lys-Val-Ala-Val), with Lys as a cationic amino acid, and studied the self-assembly property of the BOC-protected (L1) and -deprotected (L2) analogues. Spherical assemblies obtained from L1/L2 in a 1:1 aqueous ethanol system have the ability to encapsulate small molecules and successfully enter into cells, thus representing them as potential candidates for intracellular drug delivery. To verify the efficacy of these peptides in the facilitation of drug efficacy, we generated encapsulated versions of the chemotherapeutic drug doxorubicin (Dox). L1- and L2-encapsulated Dox (Dox-L1 and Dox-L2), similar to the unencapsulated drug, induced upregulation of regulator of G protein signaling 6 (RGS6) and Gβ5, the critical mediators of ATM/p53-dependent apoptosis in Dox-treated cancer cells. Further, Dox-L1/L2 damaged DNA, triggered oxidative stress and mitochondrial dysfunction, compromised cell viability, and induced apoptosis. The ability of Dox-L1 to mediate cell death could be ameliorated via knockdown of either RGS6 or Gβ5, comparable to the results obtained with the unencapsulated drug. These data provide an important proof of principle, identifying L1/L2 as drug delivery matrices.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abilesh Kumar
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priya Rana
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Abhishek Singh Sengar
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Soumyajit Ghosh
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre (BARC), Anushaktinagar, Mumbai 400085, Maharashtra, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences (SGPGI) Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
8
|
Gamre S, Tyagi M, Chatterjee S, Patro BS, Chattopadhyay S, Goswami D. Synthesis of Bioactive Diarylheptanoids from Alpinia officinarum and Their Mechanism of Action for Anticancer Properties in Breast Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2021; 84:352-363. [PMID: 33587631 DOI: 10.1021/acs.jnatprod.0c01012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An efficient synthesis of the Alpinia officinarum-derived diarylheptanoids, viz., enantiomers of a β-hydroxyketone (1) and an α,β-unsaturated ketone (2) was developed starting from commercially available eugenol. Among these, compound 2 showed a superior antiproliferative effect against human breast adenocarcinoma MCF-7 cells. Besides reducing clonogenic cell survival, compound 2 dose-dependently increased the sub G1 cell population and arrested the G2-phase of the cell cycle, as revealed by flow cytometry. Mechanistically, compound 2 acts as an intracellular pro-oxidant by generating copious amounts of reactive oxygen species. Compound 2 also induced both loss of mitochondrial membrane potential (MMP) as well as lysosomal membrane permeabilization (LMP) in the MCF-7 cells. The impaired mitochondrial and lysosomal functions due to reactive oxygen species (ROS)-generation by compound 2 may contribute to its apoptotic property.
Collapse
Affiliation(s)
- Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Mrityunjay Tyagi
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Sucheta Chatterjee
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
| | - Birija S Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| | | | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, 400085
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, India, 400094
| |
Collapse
|
9
|
Pramanik S, Chakraborty S, Sivan M, Patro BS, Chatterjee S, Goswami D. Cell Permeable Imidazole-Desferrioxamine Conjugates: Synthesis and In Vitro Evaluation. Bioconjug Chem 2019; 30:841-852. [PMID: 30762349 DOI: 10.1021/acs.bioconjchem.8b00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Desferrioxamine (DFO), a clinically approved iron chelator used for iron overload, is unable to chelate labile plasma iron (LPI) because of its limited cell permeability. Herein, alkyl chain modified imidazolium cations with varied hydrophobicities have been conjugated with DFO. The iron binding abilities and the antioxidant properties of the conjugates were found to be similar to DFO. The degree of cellular internalization was much higher in the octyl-imidazolium-DFO conjugate (IV) compared with DFO, and IV was able to chelate LPI in vitro. This opens up a new avenue in using N-alkyl imidazolium salts as a delivery vector for hydrophilic cell-impermeable drugs.
Collapse
Affiliation(s)
- Shreya Pramanik
- Centre for Excellence in Basic Sciences , Mumbai 400098 , India
| | - Saikat Chakraborty
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India
| | - Malavika Sivan
- Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Birija S Patro
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| | - Sucheta Chatterjee
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India
| | - Dibakar Goswami
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| |
Collapse
|