1
|
Cao X, Islam MN, Lu D, Han C, Wang L, Tan M, Chen Y, Xin N. Effects of barley seedling powder on rheological properties of dough and quality of steamed bread. FOOD SCI TECHNOL INT 2025; 31:155-166. [PMID: 37464807 DOI: 10.1177/10820132231188988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In order to find the optimal share of barley seedling powder (BSP) to improve the rheological properties of wheat dough and physico-chemical properties of steamed bread (SB), BSP was added with wheat flour at various proportions (2-10%). Results showed that with the increasing amount of BSP additive, the farinograph index (86.33-123), dough stability (9.37-12.63 min), and dough development time (6.23-7.63 min) in blend flour increased. Similarly, with the increasing BSP, SB became darker and more greenish, and the total flavonoid content increased. The content of chlorophyll-b, and total chlorophyll demonstrated a faster increase than that of chlorophyll-a. The hardness and chewability of SB improved as well whereas the springiness increased first and then decreased. The best springiness and gumminess of SB were found with 2% and 8% BSP additives respectively. 2%, 4%, and 6% addition of BSP resulted in a slight fluctuation in the bound water quantity than 8% and 10% BSP additive. No new compound formation was confirmed by Infrared analysis and there was only a heat and mass transfer process. Results from this study indicated that SB with improved quality attributes can be prepared from wheat flour fortified with BSP at 2-4%.
Collapse
Affiliation(s)
- Xiaohuang Cao
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Food Safety and Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Dandan Lu
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Congying Han
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Lei Wang
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| | - Mingxiong Tan
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Yuan Chen
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - Ning Xin
- School of Chemistry and Food Science, Yulin Normal University, Yulin, China
| |
Collapse
|
2
|
Chen WM, Wang Y, Wang XM, Shao YH, Tu ZC, Liu J. Effect of superheated steam on Maillard reaction products, digestibility, and antioxidant activity in β-Lactoglobulin-glucose system. Int J Biol Macromol 2025; 287:138514. [PMID: 39647727 DOI: 10.1016/j.ijbiomac.2024.138514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
This study analyzes the interactions among Maillard reaction products (MRPs), digestibility and antioxidant activity in a β-lactoglobulin-glucose (βlg-Glu) model system during superheated steam treatment at 120 °C for 1 to 5 min. With an increase in treatment duration, there were significant increases in glucose loss, grafting degree, browning, and the formation of intermediate products in βlg-Glu. Characteristic MRPs, including α-dicarbonyl compounds, 5-hydroxymethylfurfural, and advanced glycation end products (AGEs), were formed through the degradation of sugars and condensation reactions between carbonyls and amines, accompanied by an increase in oxidative products. These changes impacted the molecular weight distribution and conformational structure of βlg-Glu, resulting in decreased digestibility. βLg-Glu with the highest level of glycation exhibited superior antioxidant activity after in vitro digestion, which was closely associated with the increase in AGEs and oxidation products. Therefore, the protein-sugar system treated by superheated steam with different heating time can significantly affect the formation and activity of the products, providing theoretical basis for superheated steam processing nutritious and healthy food.
Collapse
Affiliation(s)
- Wen-Mei Chen
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yang Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Jun Liu
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
3
|
Wang Y, Li S, Zhang T, Wang J, Zhang X, Li M, Gao Y, Zhang M, Chen H. Effects of myricetin and its derivatives on nonenzymatic glycation: A mechanism study based on proteomic modification and fluorescence spectroscopy analysis. Food Chem 2024; 455:139880. [PMID: 38852282 DOI: 10.1016/j.foodchem.2024.139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Myricetin and its derivatives, myricitrin and dihydromyricetin, are flavonoids widely presented in foods and phytomedicine that possess tremendous health potential. In this study, we compared the antiglycation activity of myricetin and its derivatives, then investigated the underlying mechanism using proteomic modification and fluorescence spectroscopy analysis. All three compounds exhibited thorough inhibition on nonenzymatic glycation process, with the inhibitory effects on AGEs reaching 85% at 40 μmol/L. They effectively protected bovine serum albumin (BSA) structure by inhibiting protein oxidation, preventing the conversion from α-helix to β-sheet, and reducing amyloid-like cross-β structure formation. Among the three compounds, myricetin showed a predominant antiglycation activity. Proteomic analysis identified the early glycated sites that were protected by myricetin, including lysine K235, 256, 336, 421, 420, 489, etc. Additionally, fluorescence spectroscopy revealed spontaneous interactions between BSA and myricetin. Overall, myricetin holds promise as an antiglycation agent in both the food and drug industries.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Shuqin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Mingyue Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Yan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
4
|
Bojňanská T, Kolesárová A, Čech M, Tančinová D, Urminská D. Extracts with Nutritional Potential and Their Influence on the Rheological Properties of Dough and Quality Parameters of Bread. Foods 2024; 13:382. [PMID: 38338518 PMCID: PMC10855696 DOI: 10.3390/foods13030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Formulating basic food to improve its nutritional profile is one potential method for food innovation. One option in formulating basic food such as bread is to supplement flours with specified amounts of non-bakery raw materials with high nutritional benefits. In the research presented here, we studied the influence of the addition of curcumin and quercetin extracts in amounts of 2.5% and 5% to wheat flour (2.5:97.5; 5:95). The analysis of the rheological properties of dough was carried out using a Mixolab 2. A Rheofermentometer F4 was used to assess the dough's fermentation, and a Volscan was used to evaluate the baking trials. The effect of the extracts on the rheological properties of dough was measured and found to be statistically significant, with curcumin shortening both dough development time and dough stability. Doughs made with greater quantities of extract had a greater tendency to early starch retrogradation, which negatively affects the shelf life of the end products. The addition of extracts did not significantly affect either the ability to form gas during fermentation or its retention, which is important because this gas is prerequisite to forming a final product with the required volume and porosity of crumb. Less favourable results were found on sensory evaluation, wherein the trial bread was significantly worse than the control wheat bread. The panel's decision-making might have been influenced by the atypical colour of the bread made with additives, and in case of a trial bread made with quercetin, by a bitter taste. From the technological point of view, the results confirmed that the composite flours prepared with the addition of extracts of curcumin and quercetin in amounts of 2.5% and 5% can be processed according to standard procedures. The final product will be bread with improved nutritional profile and specific sensory properties, specifically an unconventional and attractive colour.
Collapse
Affiliation(s)
- Tatiana Bojňanská
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Anna Kolesárová
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Matej Čech
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.K.); (M.Č.)
| | - Dana Tančinová
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (D.T.); (D.U.)
| |
Collapse
|
5
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
6
|
Wu Q, Zhang F, Niu M, Yan J, Shi L, Liang Y, Tan J, Xu Y, Xu J, Wang J, Feng N. Extraction Methods, Properties, Functions, and Interactions with Other Nutrients of Lotus Procyanidins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14413-14431. [PMID: 37754221 DOI: 10.1021/acs.jafc.3c05305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Lotus procyanidins, natural polyphenolic compounds isolated from the lotus plant family, are widely recognized as potent antioxidants that scavenge free radicals in the human body and exhibit various pharmacological effects, such as anti-inflammatory, anticancer, antiobesity, and hypoglycemic. With promising applications in food and healthcare, lotus procyanidins have attracted extensive attention in recent years. This review provides a comprehensive summary of current research on lotus procyanidins, including extraction methods, properties, functions, and interactions with other nutrient components. Furthermore, this review offers an outlook on future research directions, providing ideas and references for the exploitation and utilization of lotus.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fen Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jia Yan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Yinggang Liang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiangying Tan
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yang Xu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Suizhou, Hubei 441300, China
| | - Jingyi Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
7
|
Improved in vitro bioaccessibility of quercetin by nanocomplexation with high-intensity ultrasound treated soy protein isolate. Food Chem 2023; 406:135004. [PMID: 36481514 DOI: 10.1016/j.foodchem.2022.135004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
The health benefits of quercetin are limited by its low bioaccessibility. This could be improved by developing plant-based protein delivery systems. Encapsulating quercetin using untreated and high-intensity ultrasound treated (20 kHz at 139 W for 10, 15 and 20 min) soy protein isolate (SPI) produced composite nanoparticles at around 127-136 nm. Ultrasound treatments on SPI caused structural changes of proteins (e.g. around 6-fold increase of surface hydrophobicity and protein solubility) favorable to encapsulation. The encapsulation efficiency for quercetin complexed with 15 min ultrasound treated SPI (76.5 %) was around 10-fold of that with the native SPI (7.2 %). Quercetin was significantly more in vitro bioaccessible when complexed with the treated SPI (61.1 %-64.5 %), as compared to the free quercetin (10.5 %-13.0 %). Ultrasound treated SPI seems to be a promising nanocarrier to encapsulate hydrophobic bioactive ingredients with higher solubility, stability, and bioaccessibility.
Collapse
|
8
|
Dhal S, Anis A, Shaikh HM, Alhamidi A, Pal K. Effect of Mixing Time on Properties of Whole Wheat Flour-Based Cookie Doughs and Cookies. Foods 2023; 12:941. [PMID: 36900458 PMCID: PMC10001416 DOI: 10.3390/foods12050941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This study investigated if whole wheat flour-based cookie dough's physical properties were affected by mixing time (1 to 10 min). The cookie dough quality was assessed using texture (spreadability and stress relaxation), moisture content, and impedance analysis. The distributed components were better organized in dough mixed for 3 min when compared with the other times. The segmentation analysis of the dough micrographs suggested that higher mixing time resulted in the formation of water agglomeration. The infrared spectrum of the samples was analyzed based on the water populations, amide I region, and starch crystallinity. The analysis of the amide I region (1700-1600 cm-1) suggested that β-turns and β-sheets were the dominating protein secondary structures in the dough matrix. Conversely, most samples' secondary structures (α-helices and random coil) were negligible or absent. MT3 dough exhibited the lowest impedance in the impedance tests. Test baking of the cookies from doughs mixed at different times was performed. There was no discernible change in appearance due to the change in the mixing time. Surface cracking was noticeable on all cookies, a trait often associated with cookies made with wheat flour that contributed to the impression of an uneven surface. There was not much variation in cookie size attributes. Cookies ranged in moisture content from 11 to 13.5%. MT5 (mixing time of 5 min) cookies demonstrated the strongest hydrogen bonding. Overall, it was observed that the cookies hardened as mixing time rose. The texture attributes of the MT5 cookies were more reproducible than the other cookie samples. In summary, it can be concluded that the whole wheat flour cookies prepared with a creaming time and mixing time of 5 min each resulted in good quality cookies. Therefore, this study evaluated the effect of mixing time on the physical and structural properties of the dough and, eventually, its impact on the baked product.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Arfat Anis
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hamid M Shaikh
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdullah Alhamidi
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
9
|
Fan Z, Wang L, Jiang Q, Fan D, Xiao J, Wang M, Zhao Y. Effects of quercetin on emissions of aldehydes from heated docosahexaenoic acid (DHA)-fortified soybean oil. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130134. [PMID: 36303358 DOI: 10.1016/j.jhazmat.2022.130134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Home cooking has been considered as an indoor pollution problem since cooking oil fumes contain various toxic chemicals such as aldehydes. Fortifying edible oils with docosahexaenoic acid (DHA) has been applied to enhance the nutritional value of oils. This study designed a frying simulation system and examined the effect of oil type, DHA fortification, heating time, and addition of natural antioxidant on the emissions of aldehydes from heated oils. Results showed that linseed oil had the highest total aldehyde emissions, followed by soybean oil, peanut oil, and palm oil. Fortifying soybean oil with DHA increased the toxic aldehydes emitted. Quercetin, a flavonoid, significantly reduced aldehydes emitted from DHA-fortified soybean oil (by up to 39.80%) to levels similar to those of normal soybean oil. Further analysis showed that DHA-fortified soybean oil with quercetin had a significantly higher DHA and unsaturated fatty acids (UFAs) content than the control oil at each heating time point. The result indicated that quercetin inhibited emissions of aldehydes, at least in part, by protecting UFAs from oxidation. Collectively, quercetin could be used as a natural additive in DHA-fortified and normal cooking oils to reduce aldehyde emissions, indoor air pollution, and preserve functional DHA and other UFAs.
Collapse
Affiliation(s)
- Zhenyu Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Li Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qingqing Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
10
|
Günal-Köroğlu D, Turan S, Capanoglu E. Protein–phenolic interactions in lentil and wheat crackers with onion skin phenolics: effects of processing and in vitro gastrointestinal digestion. Food Funct 2023; 14:3538-3551. [PMID: 37009695 DOI: 10.1039/d2fo02885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
This study aimed to evaluate the protein–phenolic interaction in functional crackers made of wheat/lentil flour with onion skin phenolics (onion skin powder: OSP, onion skin phenolic extract: OSE, or quercetin: Q) after in vitro gastrointestinal digestion.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Semra Turan
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
11
|
Wu Q, Tan J, Qin J, Chen Z, Li B, Xu J, Jiao W, Feng N. Inhibitory effect of LSOPC on AGEs formation and sensory quality in cookies. Front Nutr 2022; 9:1064188. [PMID: 36590228 PMCID: PMC9798327 DOI: 10.3389/fnut.2022.1064188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
At the conclusion of the Maillard reaction (MR), free amino groups of proteins, amino acids, or lipids with the carboxyl groups of reducing sugars to form stable molecules known as advanced glycation end products (AGEs), which hasten aging and may potentially be the root cause of a number of chronic degenerative diseases. According to researches, lotus seedpod oligomeric procyanidins (LSOPC), a premium natural antioxidant produced from lotus waste, can be included in cookies to improve flavor and lower the risk of illnesses linked to AGEs. In this work, we used cookies without LSOPC as a control to examine the effects of adding various concentrations of LSOPC (0, 0.05, 0.1, 0.2, and 0.4%) on the AGEs formation and the sensory quality in cookies. The amounts of AGEs and N-ε-carboxymethyl lysine (CML) decreased with the increase of LSOPC concentration, indicating that the concentration of LSOPC was positively correlated with the ability to inhibit AGEs formation. It was also demonstrated that the amount of antioxidant capacity of the cookies increased significantly with the increase of LSOPC concentration. On the other hand, the chromaticity, texture, electronic nose, and other aspects of the cookies' sensory attributes were also evaluated. The color of the cookies deepened and the flavor varied as LSOPC added content increased. The sensory quality of the cookies was examined, and the findings indicated that LSOPC would somewhat improve that quality. These findings implied that AGEs formation could be decreased in cookies while also enhancing their sensory quality by adding LSOPC.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Jiangying Tan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Jiabin Qin
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Ziting Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Bing Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., Ltd., Suizhou, Hubei, China
| | - Weiting Jiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China,Weiting Jiao,
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, China,*Correspondence: Nianjie Feng,
| |
Collapse
|
12
|
Chen Z, Tan J, Qin J, Feng N, Liu Q, Zhang C, Wu Q. Effects of lotus seedpod oligomeric procyanidins on the inhibition of AGEs formation and sensory quality of tough biscuits. Front Nutr 2022; 9:1031550. [PMID: 36276842 PMCID: PMC9583143 DOI: 10.3389/fnut.2022.1031550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
The advanced glycation end products (AGEs) are formed in baked products through the Maillard reaction (MR), which are thought to be a contributing factor to chronic diseases such as heart diseases and diabetes. Lotus seedpod oligomeric procyanidins (LSOPC) are natural antioxidants that have been added to tough biscuit to create functional foods that may lower the risk of chronic diseases. The effect of LSOPC on AGEs formation and the sensory quality of tough biscuit were examined in this study. With the addition of LSOPC, the AGEs scavenging rate and antioxidant capacity of LSOPC-added tough biscuits were dramatically improved. The chromatic aberration (ΔE) value of tough biscuits containing LSOPC increased significantly. Higher addition of LSOPC, on the other hand, could effectively substantially reduced the moisture content, water activity, and pH of LSOPC toughen biscuits. These findings imply that using LSOPC as additive not only lowers the generation of AGEs, but also improves sensory quality of tough biscuit.
Collapse
Affiliation(s)
- Ziting Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiangying Tan
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jiabin Qin
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China,*Correspondence: Nianjie Feng
| | - Qianting Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Chan Zhang
- Beijing Laboratory of Food Quality and Safety, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China,Chan Zhang
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China,Qian Wu
| |
Collapse
|
13
|
Zhang S, Li X, Ai B, Zheng L, Zheng X, Yang Y, Xiao D, Sheng Z. Binding of β-lactoglobulin to three phenolics improves the stability of phenolics studied by multispectral analysis and molecular modeling. Food Chem X 2022; 15:100369. [PMID: 35769329 PMCID: PMC9234335 DOI: 10.1016/j.fochx.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 10/25/2022] Open
|
14
|
Complexation of Anthocyanin-Bound Blackcurrant Pectin and Whey Protein: Effect of pH and Heat Treatment. Molecules 2022; 27:molecules27134202. [PMID: 35807448 PMCID: PMC9268037 DOI: 10.3390/molecules27134202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023] Open
Abstract
A complexation study between blackcurrant pectin (BCP) and whey protein (WP) was carried out to investigate the impact of bound anthocyanins on pectin−protein interactions. The effects of pH (3.5 and 4.5), heating (85 °C, 15 min), and heating sequence (mixed-heated or heated-mixed) were studied. The pH influenced the color, turbidity, particle size, and zeta-potential of the mixtures, but its impact was mainly significant when heating was introduced. Heating increased the amount of BCP in the complexes—especially at pH 3.5, where 88% w/w of the initial pectin was found in the sedimented (insoluble) fraction. Based on phase-separation measurements, the mixed-heated system at pH 4.5 displayed greater stability than at pH 3.5. Heating sequence was essential in preventing destabilization of the systems; mixing of components before heating produced a more stable system with small complexes (<300 nm) and relatively low polydispersity. However, heating WP before mixing with BCP prompted protein aggregation—producing large complexes (>400 nm) and worsening the destabilization. Peak shifts and emergence (800−1200 cm−1) in infrared spectra confirmed that BCP and WP functional groups were altered after mixing and heating via electrostatic, hydrophobic, and hydrogen bonding interactions. This study demonstrated that appropriate processing conditions can positively impact anthocyanin-bound pectin−protein interactions.
Collapse
|
15
|
Gao J, Koh AHS, Zhou W. Enhancing health benefits of bakery products using phytochemicals. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:239-281. [PMID: 35595395 DOI: 10.1016/bs.afnr.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There has been a growing interest in functional bakery products with enhanced health benefits, especially the prevention of some chronic diseases such as type 2 diabetes, cardiovascular diseases and neurodegenerative disorders. Fortification of wheat flour with phytochemicals, plant components with various bio-activities, is one of the promising approaches to improving public health with the ubiquitous consumption of baked goods. This chapter reviews the current knowledge of several representative phytochemicals, mainly plant polyphenols, including catechins, anthocyanins, fucoidan and quercetin extracted from various plant resources, and their application in bakery products, regarding their stability, impact on product quality and potential health benefits.
Collapse
Affiliation(s)
- Jing Gao
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Audrey Hui Si Koh
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
16
|
Characterization of aroma-active compounds in steamed breads fermented with Chinese traditional sourdough. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Wu XQ, Zhang DD, Wang YN, Tan YQ, Yu XY, Zhao YY. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic Biol Med 2021; 171:260-271. [PMID: 34019934 DOI: 10.1016/j.freeradbiomed.2021.05.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease that inevitably progress to end-stage kidney disease. Intervention strategies such as blood glucose control is effective for preventing DKD, but many patients with DKD still reach end-stage kidney disease. Although comprehensive mechanisms shed light on the progression of DKD, the most compelling evidence has highlighted that hyperglycemia-related advanced glycation end products (AGEs) formation plays a central role in the pathogenesis of DKD. Pathologically, accumulation of AGEs-mediated receptor for AGEs (RAGE) triggers oxidative stress and inflammation, which is the major deleterious effect of AGEs in host and intestinal microenvironment of diabetic and ageing conditions. The activation of AGEs-mediated RAGE could evoke nicotinamide adenine dinucleotide phosphate oxidase-induced reactive oxygen and nitrogen species production and subsequently give rise to oxidative stress in DKD and ageing kidney. Therefore, targeting RAGE with its ligands mediated oxidative stress and chronic inflammation is considered as an additional intervention strategy for DKD and ageing kidney. In this review, we summarize AGEs/RAGE-mediated oxidative stress and inflammation signaling pathways in DKD and ageing kidney, discussing opportunities and challenges of targeting at AGEs/RAGE-induced oxidative stress that could hold the promising potential approach for improving DKD and ageing kidney.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yue-Qi Tan
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, No. 2 Xihuamen, Xi'an, Shaanxi, 710003, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
18
|
Abstract
Quercetin is a flavonoid present in a wide variety of plant resources. Over the years, extensive efforts have been devoted to examining the potential biological effects of quercetin and to manipulating the chemical and physical properties of the flavonoid. However, limited studies have reviewed the opportunities and challenges of using quercetin in the development of functional foods. To address this necessity, in this review; we foremost present an overview of the chemical properties and stability of quercetin in food products followed by a detailed discussion of various strategies that enhance its oral bioavailability. We further highlight the areas to be practically considered during development of quercetin-based functional foods. By revisiting the current status of applied research on quercetin, it is anticipated that useful insights enabling research on quercetin can be potentially translated into practical applications in food product development.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
19
|
Wang Y, Zhao J, Xu F, Zhang Q, Ai Z, Li B. GC‐MS analyses of volatile compounds of steamed breads fermented by Chinese traditional starter “Jiaozi” from different regions. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuan‐Hui Wang
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Henan Agricultural University Zhengzhou China
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Jing‐Wen Zhao
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Fei Xu
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| | - Qi‐Dong Zhang
- Zhengzhou Tobacco Research Institute of CNTC Zhengzhou China
| | - Zhi‐Lu Ai
- Key Laboratory of Staple Grain Processing Ministry of Agriculture and Rural Affairs of the People's Republic of China Henan Agricultural University Zhengzhou China
| | - Bo‐Yu Li
- College of Food Science and Technology Henan University of Technology Zhengzhou China
| |
Collapse
|
20
|
Leyva-Soto A, Alejandra Chavez-Santoscoy R, Porras O, Hidalgo-Ledesma M, Serrano-Medina A, Alejandra Ramírez-Rodríguez A, Alejandra Castillo-Martinez N. Epicatechin and quercetin exhibit in vitro antioxidant effect, improve biochemical parameters related to metabolic syndrome, and decrease cellular genotoxicity in humans. Food Res Int 2021; 142:110101. [PMID: 33773697 DOI: 10.1016/j.foodres.2020.110101] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome is a condition whose incidence has been increasing around the world. It promotes a metabolic state of chronic systemic inflammation, correlated to cellular stress and genetic mutations, and subsequently with deadly chronic diseases, such as type 2 diabetes mellitus, cardiovascular diseases, and cancer. A randomized placebo-controlled study (n = 156) was conducted to determine the effects of consuming an enriched bread with 0.05% of a 1:1 mixture of (-)-epicatechin and quercetin on anthropometric and biochemical parameters of the participants. As a result, total cholesterol, LDL-cholesterol, total triglycerides, and fasting plasma glucose significantly decreased after three months of daily enriched bread consumption. Nuclear abnormalities in buccal epithelium cells also decreased (15.8 ± 3.2 down to 8.3 ± 1.0), showing a genoprotective effect. The antioxidant properties of these compounds were observed by monitoring changes in the cytoplasmic redox tone of intact Caco-2 cells expressing HyPer, a fluorescent redox biosensor. The combination of (-)-epicatechin and quercetin changes the cytoplasmic redox ambient in living cells and significantly improves biochemical parameters related to metabolic syndrome, and decreases the number of cell abnormalities in buccal epithelium cells of patients.
Collapse
Affiliation(s)
- Aldo Leyva-Soto
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC) - Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, 22390 Tijuana, B.C., Mexico
| | - Rocío Alejandra Chavez-Santoscoy
- Escuela de Ingeniería y Ciencias, Centro de Biotecnologia FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, N.L., Mexico.
| | - Omar Porras
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Miltha Hidalgo-Ledesma
- Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Aracely Serrano-Medina
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California (UABC) - Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, 22390 Tijuana, B.C., Mexico
| | - Ana Alejandra Ramírez-Rodríguez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC) - Campus Tijuana, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, 22390 Tijuana, B.C., Mexico
| | - Nydia Alejandra Castillo-Martinez
- Facultad de Ciencias de la Salud, Universidad Autónoma de Baja California, Blvd Universitario No. 1000, Valle San Pedro, 21500 Tijuana, B.C., Mexico
| |
Collapse
|
21
|
|
22
|
Girard AL, Awika JM. Effects of edible plant polyphenols on gluten protein functionality and potential applications of polyphenol-gluten interactions. Compr Rev Food Sci Food Saf 2020; 19:2164-2199. [PMID: 33337093 DOI: 10.1111/1541-4337.12572] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 04/15/2020] [Indexed: 01/20/2023]
Abstract
Expanding plant-based protein applications is increasingly popular. Polyphenol interactions with wheat gluten proteins can be exploited to create novel functional foods and food ingredients. Polyphenols are antioxidants, thus generally decrease gluten strength by reducing disulfide cross-linking. Monomeric polyphenols can be used to reduce dough mix time and improve flexibility of the gluten network, including to plasticize gluten films. However, high-molecular-weight polyphenols (tannins) cross-link gluten proteins, thereby increasing protein network density and strength. Tannin-gluten interactions can greatly increase gluten tensile strength in dough matrices, as well as batter viscosity and stability. This could be leveraged to reduce detrimental effects of healthful inclusions, like bran and fiber, to loaf breads and other wheat-based products. Further, the dual functions of tannins as an antioxidant and gluten cross-linker could help restructure gluten proteins and improve the texture of plant-based meat alternatives. Tannin-gluten interactions may also be used to reduce inflammatory effects of gluten experienced by those with gluten allergies and celiac disease. Other potential applications of tannin-gluten interactions include formation of food matrices to reduce starch digestibility; creation of novel biomaterials for edible films or medical second skin type bandages; or targeted distribution of micronutrients in the digestive tract. This review focuses on the effects of polyphenols on wheat gluten functionality and discusses emerging opportunities to employ polyphenol-gluten interactions.
Collapse
Affiliation(s)
- Audrey L Girard
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas
| | - Joseph M Awika
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| |
Collapse
|
23
|
Healthy eating recommendations: good for reducing dietary contribution to the body's advanced glycation/lipoxidation end products pool? Nutr Res Rev 2020; 34:48-63. [PMID: 32450931 DOI: 10.1017/s0954422420000141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present review aims to give dietary recommendations to reduce the occurrence of the Maillard reaction in foods and in vivo to reduce the body's advanced glycation/lipoxidation end products (AGE/ALE) pool. A healthy diet, food reformulation and good culinary practices may be feasible for achieving the goal. A varied diet rich in fresh vegetables and fruits, non-added sugar beverages containing inhibitors of the Maillard reaction, and foods prepared by steaming and poaching as culinary techniques is recommended. Intake of supplements and novel foods with low sugars, low fats, enriched in bioactive compounds from food and waste able to modulate carbohydrate metabolism and reduce body's AGE/ALE pool is also recommended. In conclusion, the recommendations made for healthy eating by the Spanish Society of Community Nutrition (SENC) and Harvard University seem to be adequate to reduce dietary AGE/ALE, the body's AGE/ALE pool and to achieve sustainable nutrition and health.
Collapse
|
24
|
Formation of advanced glycation endproducts in foods during cooking process and underlying mechanisms: a comprehensive review of experimental studies. Nutr Res Rev 2019; 33:77-89. [PMID: 31699165 DOI: 10.1017/s0954422419000209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation endproducts (AGE) are a group of complex and heterogeneous molecules, sharing some common characteristics such as covalent cross-link formation among proteins, the effect of transforming the colour of food products into yellow-brown colours and fluorescence formation. AGE are linked to many diseases including diabetes, renal diseases, CVD, liver diseases, neuro-degenerative and eye disorders, female reproductive dysfunction, and even cancer. AGE are formed endogenously but are also provided from exogenous sources including diet and tobacco. Western diet, rich in processed and/or heat-treated foods, fat and sugar, increases the exposure to AGE. The foods that contain high levels of fat and protein are generally rich in terms of AGE, and are also prone to AGE formation during cooking compared with carbohydrate-rich foods such as vegetables, fruits, legumes and whole grains. The present article aimed to review the literature about the effects of different cooking methods and conditions on the AGE content of food and AGE formation mechanisms using a comprehensive approach.
Collapse
|
25
|
Use of Grape Pomace Phenolics to Counteract Endogenous and Exogenous Formation of Advanced Glycation End-Products. Nutrients 2019; 11:nu11081917. [PMID: 31443235 PMCID: PMC6723612 DOI: 10.3390/nu11081917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
The increase in consumption of "ultra-processed" foods has raised attention because of the possible adverse effects deriving from the Maillard reaction leading to the formation of toxic advanced glycation end-products (AGEs) during food processing. Additionally, the increasing trend and consumption of sugar-added foods and sweetened beverages is related to the endogenous formation of the same toxic compounds. However, ultra-processing in the context of food technology can bring challenges as well as a wealth of opportunities. Indeed, re-processing of grape pomace, a by-product of winemaking, can yield phenolic-rich fractions that efficiently counteract the effects of AGEs. In this review, the process of endogenous and exogenous AGE formation is illustrated. Then, the ability of grape phenolics to act as inhibitors of AGE formation is presented, including the efficacy ranking of various individual compounds measured in vitro and the outcome of in vivo double-blinded randomized crossover trials designed to prove the efficacy of grape phenolics as inhibitors of protein carbonylation. Finally, a survey of model functional foods added with grape phenolics, either to lower the dietary load of AGEs or to deliver antiglycation agents in vivo is listed in order to highlight the opportunity to develop safe and tailor-made "anti-AGEs" food applications.
Collapse
|
26
|
Wu Q, Min Y, Xiao J, Feng N, Chen Y, Luo Q, Zhou M, Li D, Hu Z, Wang C. Liquid state fermentation vinegar enriched with catechin as an antiglycative food product. Food Funct 2019; 10:4877-4887. [PMID: 31334505 DOI: 10.1039/c8fo01892h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Catechin, a natural antiglycative agent, was incorporated into fermented vinegar, and has high potential to lower the risk of diabetes. In this study, vinegar containing 5% catechin as a substrate for acetous fermentation significantly inhibited the formation of total fluorescent advanced glycation end-products (AGEs), as well as Nε-(carboxymethyl)lysine (CML)/Nε-(carboxyethyl)lysine (CEL), especially when added during acetic fermentation. Further study proved that catechin could not only significantly suppress the increase of blood glucose levels, but also inhibit α-amylase, α-glucosidase and β-glucosidase strongly with IC50 values of 0.533 mg mL-1, 0.307 mg mL-1 and 0.413 mg mL-1, respectively. Moreover, 32 volatile compounds were finally identified by headspace solid phase microextraction gas chromatography-mass spectrometry (HSPM-GC-MS) and electronic nose. The flavor of the catechin-vinegars, which possess relatively high ester and low acid contents, was superior to that of traditional vinegar. Therefore, it was helpful to use catechin as a functional food ingredient in vinegar to prevent AGE-associated diseases and alleviate postprandial hyperglycemia, through limiting the digestion of starch and inhibiting the uptake of glucose. Meanwhile, the pleasant flavor and safety of catechin-vinegar were better than traditional vinegar, which represents prominent value to attract consumers.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin J, Teo LM, Leong LP, Zhou W. In vitro bioaccessibility and bioavailability of quercetin from the quercetin-fortified bread products with reduced glycemic potential. Food Chem 2019; 286:629-635. [DOI: 10.1016/j.foodchem.2019.01.199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/30/2018] [Accepted: 01/31/2019] [Indexed: 02/08/2023]
|
28
|
|
29
|
Guo X, Shi L, Yang S, Yang R, Dai X, Zhang T, Liu R, Chang M, Jin Q, Wang X. Effect of sea-buckthorn pulp and flaxseed residues on quality and shelf life of bread. Food Funct 2019; 10:4220-4230. [DOI: 10.1039/c8fo02511h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sea-buckthorn and flaxseed residues are high-value materials with potential application in bread-baking.
Collapse
|
30
|
Han L, Lin Q, Liu G, Han D, Niu L, Su D. Catechin inhibits glycated phosphatidylethanolamine formation by trapping dicarbonyl compounds and forming quinone. Food Funct 2019; 10:2491-2503. [DOI: 10.1039/c9fo00155g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catechin inhibits glycated phosphatidylethanolamine formation by trapping dicarbonyl compounds and forming quinone.
Collapse
Affiliation(s)
- Lipeng Han
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Qingna Lin
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Guoqin Liu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| | - Dongxue Han
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Li Niu
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| | - Dongxiao Su
- Center for Advanced Analytical Science
- School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou 510006
- China
| |
Collapse
|