1
|
Zhang Y, Yi K, Gong F, Tang Z, Feng Y, Tian Y, Xiang M, Zhou F, Liu M, Ji X, He Z. A simple, rapid and sensitive sandwich immunoassay based on poly(N-isopropylacrylamide) for the detection of alpha-fetoprotein. Talanta 2024; 274:125932. [PMID: 38537351 DOI: 10.1016/j.talanta.2024.125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
Alpha-fetoprotein (AFP), as a tumor marker, plays a vital role in the diagnosis of liver cancer. In this work, a novel sandwich immunoassay based on a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), was developed for the detection of AFP. This immunoassay could realize one-step rapid reaction within 1 h, and facilitate the separation of the target molecules by incorporating PNIPAM. In this method, a conjugate of PNIPAM and capture antibody (Ab1) was successfully synthesized as a capture probe and the synthetic method of PNIPAM-Ab1 was simple, while the detection antibody (Ab2) was labeled with fluorescein isothiocyanate (FITC) to form a fluorescent detection probe. By employing a sandwich immunoassay, the method achieved quantitative determination of AFP, exhibiting a wide linear range from 5 ng/mL to 200 ng/mL and a low detection limit of 2.44 ng/mL. Furthermore, it was successfully applied to the analysis of spiked human serum samples and the screening of patients with hepatic diseases in clinical samples, indicating its potential application prospect in the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kebing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yilong Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming Xiang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China
| | - Min Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
2
|
Wang C, Wang T, Gao Y, Tao Q, Ye W, Jia Y, Zhao X, Zhang B, Zhang Z. Multiplexed immunosensing of cancer biomarkers on a split-float-gate graphene transistor microfluidic biochip. LAB ON A CHIP 2024; 24:317-326. [PMID: 38087953 DOI: 10.1039/d3lc00709j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This work reports the development of a novel microfluidic biosensor using a graphene field-effect transistor (GFET) design for the parallel label-free analysis of multiple biomarkers. Overcoming the persistent challenge of constructing μm2-sized FET sensitive interfaces that incorporate multiple receptors, we implement a split-float-gate structure that enables the manipulation of multiplexed biochemical functionalization using microfluidic channels. Immunoaffinity biosensing experiments are conducted using the mixture samples containing three liver cancer biomarkers, carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and parathyroid hormone (PTH). The results demonstrate the capability of our label-free biochip to quantitatively detect multiple target biomarkers simultaneously by observing the kinetics in 10 minutes, with the detection limit levels in the nanomolar range. This microfluidic biosensor provides a valuable analytical tool for rapid multi-target biosensing, which can be potentially utilized for domiciliary tests of cancer screening and prognosis, obviating the need for sophisticated instruments and professional operations in hospitals.
Collapse
Affiliation(s)
- Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
| | - Tao Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Yujing Gao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
| | - Qiya Tao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Weixiang Ye
- Center for Theoretical Physics, Hainan University, Haikou 570228, China.
- Department of Physics, School of Physical Science and Optoelectrical Engineering, Hainan University, Haikou 570228, China
| | - Yuan Jia
- Industrialization Center of Micro/Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xiaonan Zhao
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Bo Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China.
- Department of Communication Engineering, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Zhixing Zhang
- Industrialization Center of Micro/Nano ICs and Devices, Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
3
|
Chen F, Hu Q, Li H, Xie Y, Xiu L, Zhang Y, Guo X, Yin K. Multiplex Detection of Infectious Diseases on Microfluidic Platforms. BIOSENSORS 2023; 13:bios13030410. [PMID: 36979622 PMCID: PMC10046538 DOI: 10.3390/bios13030410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/31/2023]
Abstract
Infectious diseases contribute significantly to the global disease burden. Sensitive and accurate screening methods are some of the most effective means of identifying sources of infection and controlling infectivity. Conventional detecting strategies such as quantitative polymerase chain reaction (qPCR), DNA sequencing, and mass spectrometry typically require bulky equipment and well-trained personnel. Therefore, mass screening of a large population using conventional strategies during pandemic periods often requires additional manpower, resources, and time, which cannot be guaranteed in resource-limited settings. Recently, emerging microfluidic technologies have shown the potential to replace conventional methods in performing point-of-care detection because they are automated, miniaturized, and integrated. By exploiting the spatial separation of detection sites, microfluidic platforms can enable the multiplex detection of infectious diseases to reduce the possibility of misdiagnosis and incomplete diagnosis of infectious diseases with similar symptoms. This review presents the recent advances in microfluidic platforms used for multiplex detection of infectious diseases, including microfluidic immunosensors and microfluidic nucleic acid sensors. As representative microfluidic platforms, lateral flow immunoassay (LFIA) platforms, polymer-based chips, paper-based devices, and droplet-based devices will be discussed in detail. In addition, the current challenges, commercialization, and prospects are proposed to promote the application of microfluidic platforms in infectious disease detection.
Collapse
Affiliation(s)
- Fumin Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Huimin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Yi Xie
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Leshan Xiu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Yuqian Zhang
- Department of Surgery, Division of Surgery Research, Mayo Clinic, Rochester, MN 55905, USA
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, No. 227 Chongqing South Road, Shanghai 200025, China
- One Health Center, Shanghai Jiao Tong University—The University of Edinburgh, Shanghai 200025, China
| |
Collapse
|
4
|
Delgado P, Oshinowo O, Fay ME, Luna CA, Dissanayaka A, Dorbala P, Ravindran A, Shen L, Myers DR. Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics. BIOMICROFLUIDICS 2023; 17:014104. [PMID: 36687143 PMCID: PMC9848651 DOI: 10.1063/5.0122771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Integrating microfluidic mixers into lab-on-a-chip devices remains challenging yet important for numerous applications including dilutions, extractions, addition of reagents or drugs, and particle synthesis. High-efficiency mixers utilize large or intricate geometries that are difficult to manufacture and co-implement with lab-on-a-chip processes, leading to cumbersome two-chip solutions. We present a universal dry-film microfluidic mixing sticker that can retrofit pre-existing microfluidics and maintain high mixing performance over a range of Reynolds numbers and input mixing ratios. To attach our pre-mixing sticker module, remove the backing material and press the sticker onto an existing microfluidic/substrate. Our innovation centers around the multilayer use of laser-cut commercially available silicone-adhesive-coated polymer sheets as microfluidic layers to create geometrically complex, easy to assemble designs that can be adhered to a variety of surfaces, namely, existing microfluidic devices. Our approach enabled us to assemble the traditional yet difficult to manufacture "F-mixer" in minutes and conceptually extend this design to create a novel space-saving spiral F-mixer. Computational fluid dynamic simulations and experimental results confirmed that both designs maintained high performance for 0.1 < Re < 10 and disparate input mixing ratios of 1:10. We tested the integration of our system by using the pre-mixer to fluorescently tag proteins encapsulated in an existing microfluidic. When integrated with another microfluidic, our pre-mixing sticker successfully combined primary and secondary antibodies to fluorescently tag micropatterned proteins with high spatial uniformity, unlike a traditional pre-mixing "T-mixer" sticker. Given the ease of this technology, we anticipate numerous applications for point-of-care devices, microphysiological-systems-on-a-chip, and microfluidic-based biomedical research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - D. R. Myers
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing. Biomed Microdevices 2022; 24:38. [DOI: 10.1007/s10544-022-00629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/05/2022]
|
6
|
Konoplev G, Agafonova D, Bakhchova L, Mukhin N, Kurachkina M, Schmidt MP, Verlov N, Sidorov A, Oseev A, Stepanova O, Kozyrev A, Dmitriev A, Hirsch S. Label-Free Physical Techniques and Methodologies for Proteins Detection in Microfluidic Biosensor Structures. Biomedicines 2022; 10:207. [PMID: 35203416 PMCID: PMC8868674 DOI: 10.3390/biomedicines10020207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/01/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Proteins in biological fluids (blood, urine, cerebrospinal fluid) are important biomarkers of various pathological conditions. Protein biomarkers detection and quantification have been proven to be an indispensable diagnostic tool in clinical practice. There is a growing tendency towards using portable diagnostic biosensor devices for point-of-care (POC) analysis based on microfluidic technology as an alternative to conventional laboratory protein assays. In contrast to universally accepted analytical methods involving protein labeling, label-free approaches often allow the development of biosensors with minimal requirements for sample preparation by omitting expensive labelling reagents. The aim of the present work is to review the variety of physical label-free techniques of protein detection and characterization which are suitable for application in micro-fluidic structures and analyze the technological and material aspects of label-free biosensors that implement these methods. The most widely used optical and impedance spectroscopy techniques: absorption, fluorescence, surface plasmon resonance, Raman scattering, and interferometry, as well as new trends in photonics are reviewed. The challenges of materials selection, surfaces tailoring in microfluidic structures, and enhancement of the sensitivity and miniaturization of biosensor systems are discussed. The review provides an overview for current advances and future trends in microfluidics integrated technologies for label-free protein biomarkers detection and discusses existing challenges and a way towards novel solutions.
Collapse
Affiliation(s)
- Georgii Konoplev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Darina Agafonova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Liubov Bakhchova
- Institute for Automation Technology, Otto-von-Guericke-University Magdeburg, 39106 Magdeburg, Germany;
| | - Nikolay Mukhin
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marharyta Kurachkina
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| | - Marc-Peter Schmidt
- Faculty of Electrical Engineering, University of Applied Sciences Dresden, 01069 Dresden, Germany;
| | - Nikolay Verlov
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov, National Research Centre Kurchatov Institute, 188300 Gatchina, Russia;
| | - Alexander Sidorov
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
- Fuculty of Photonics, ITMO University, 197101 Saint Petersburg, Russia
| | - Aleksandr Oseev
- FEMTO-ST Institute, CNRS UMR-6174, University Bourgogne Franche-Comté, 25000 Besançon, France;
| | - Oksana Stepanova
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Andrey Kozyrev
- Faculty of Electronics, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia; (D.A.); (A.S.); (O.S.); (A.K.)
| | - Alexander Dmitriev
- Department of Ecological Physiology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”), 197376 Saint Petersburg, Russia;
| | - Soeren Hirsch
- Department of Engineering, University of Applied Sciences Brandenburg, 14770 Brandenburg an der Havel, Germany; (M.K.); (S.H.)
| |
Collapse
|
7
|
Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Anal Bioanal Chem 2022; 414:167-180. [PMID: 34345949 PMCID: PMC8331214 DOI: 10.1007/s00216-021-03553-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Microfluidic devices can provide a versatile, cost-effective platform for disease diagnostics and risk assessment by quantifying biomarkers. In particular, simultaneous testing of several biomarkers can be powerful. Here, we critically review work from the previous 4 years up to February 2021 on developing microfluidic devices for multiplexed detection of biomarkers from samples. We focus on two principal approaches: electrical and optical detection methods that can distinguish and quantify biomarkers. Both electrical and spectroscopic multiplexed detection strategies are being employed to reach limits of detection below clinical sample levels. Some of the most promising strategies for point-of-care assays involve inexpensive materials such as paper-based microfluidic devices, or portable and accessible detectors such as smartphones. This review does not comprehensively cover all multiplexed microfluidic biomarker studies, but rather provides a critical evaluation of key work and suggests promising prospects for future advancement in this field. Electrical and optical multiplexing are powerful approaches for microfluidic biomarker analysis.
Collapse
Affiliation(s)
- Kaitlynn R Mitchell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Joule E Esene
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
8
|
Multistory Stairs-based, Fast and Point-of-care Testing for Disease Biomarker Using One-step Capillary Microfluidic Fluoroimmunoassay Chip via Continuous On-chip Labelling. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00025-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Gao N, Chang J, Dai P, Zhu Z, You H. One-sampling and Rapid Analysis of Cancer Biomarker on A Power-free and Low-cost Microfluidic Chip. ANAL SCI 2021; 37:1695-1700. [PMID: 34024865 DOI: 10.2116/analsci.21p098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alpha-fetoprotein (AFP) is an important disease biomarker, relating to cancers such as hepatocarcinomas and gastric cancer. However, traditional methods are time-consuming, relied on bulky instruments and trained professionals, cannot satisfy the demand for low cost and point-of-care testing (POCT). In this study, a power-free POCT device was developed for the rapid and low-cost detection of AFP via one-sampling. Based on the principle of sandwich immunofluorescence, the chip is capable of automatically accomplishing on-chip mixing, labeling and capturing procedures, which only require that operator add 40 μL sample into the chip one time. The proposed device is capable of sensitively detecting human AFP in FBS with a dynamic range of 10 - 1000 ng/mL and LOD (1.88 ng/mL) within a short time of 3 min. Predictably, our method holds a great potential to be applied in the POC diagnostics of proteins, especially for some regions that are resource-limited.
Collapse
Affiliation(s)
- Nailong Gao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China.,Institute of Intelligent Machines, Chinese Academy of Sciences
| | - Jianguo Chang
- Institute of Intelligent Machines, Chinese Academy of Sciences
| | - Peng Dai
- School of Mechanical Engineering, Guangxi University
| | - Ziming Zhu
- School of Mechanical Engineering, Guangxi University
| | - Hui You
- School of Mechanical Engineering, Guangxi University
| |
Collapse
|
10
|
Jia XX, Li S, Han DP, Chen RP, Yao ZY, Ning BA, Gao ZX, Fan ZC. Development and perspectives of rapid detection technology in food and environment. Crit Rev Food Sci Nutr 2021; 62:4706-4725. [PMID: 33523717 DOI: 10.1080/10408398.2021.1878101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.
Collapse
Affiliation(s)
- Xue-Xia Jia
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China.,State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| | - Shuang Li
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Dian-Peng Han
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Rui-Peng Chen
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Bao-An Ning
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P.R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P.R. China
| |
Collapse
|
11
|
Vaz R, Frasco MF, Sales MGF. Photonics in nature and bioinspired designs: sustainable approaches for a colourful world. NANOSCALE ADVANCES 2020; 2:5106-5129. [PMID: 36132040 PMCID: PMC9416915 DOI: 10.1039/d0na00445f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 05/07/2023]
Abstract
Biological systems possess nanoarchitectures that have evolved for specific purposes and whose ability to modulate the flow of light creates an extraordinary diversity of natural photonic structures. In particular, the striking beauty of the structural colouration observed in nature has inspired technological innovation in many fields. Intense research has been devoted to mimicking the unique vivid colours with newly designed photonic structures presenting stimuli-responsive properties, with remarkable applications in health care, safety and security. This review highlights bioinspired photonic approaches in this context, starting by presenting many appealing examples of structural colours in nature, followed by describing the versatility of fabrication methods and designed coloured structures. A particular focus is given to optical sensing for medical diagnosis, food control and environmental monitoring, which has experienced a significant growth, especially considering the advances in obtaining inexpensive miniaturized systems, more reliability, fast responses, and the use of label-free layouts. Additionally, naturally derived biomaterials and synthetic polymers are versatile and fit many different structural designs that are underlined. Progress in bioinspired photonic polymers and their integration in novel devices is discussed since recent developments have emerged to lift the expectations of smart, flexible, wearable and portable sensors. The discussion is expanded to give emphasis on additional functionalities offered to related biomedical applications and the use of structural colours in new sustainable strategies that could meet the needs of technological development.
Collapse
Affiliation(s)
- Raquel Vaz
- BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University Coimbra Portugal
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto Porto Portugal
- CEB, Centre of Biological Engineering, Minho University Braga Portugal
| | - Manuela F Frasco
- BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University Coimbra Portugal
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto Porto Portugal
- CEB, Centre of Biological Engineering, Minho University Braga Portugal
| | - M Goreti F Sales
- BioMark Sensor Research/UC, Faculty of Sciences and Technology, Coimbra University Coimbra Portugal
- BioMark Sensor Research/ISEP, School of Engineering, Polytechnic Institute of Porto Porto Portugal
- CEB, Centre of Biological Engineering, Minho University Braga Portugal
| |
Collapse
|
12
|
Zhou M, Gao D, Yang Z, Zhou C, Tan Y, Wang W, Jiang Y. Streaming-enhanced, chip-based biosensor with acoustically active, biomarker-functionalized micropillars: A case study of thrombin detection. Talanta 2020; 222:121480. [PMID: 33167205 DOI: 10.1016/j.talanta.2020.121480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/10/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Enzyme-linked immunosorbent assay is a widely used analytical technique for detecting and quantifying disease-specific protein biomarkers. Despite recent progresses in disease-specific protein biomarkers detection with microfluidic chips, many devices still suffer from the limited mass transport of target molecules, and consequently low detection efficiency or long incubation time. In this work, we present a novel strategy to significantly enhance the sensing efficiency of a chip-based biosensor by exploiting micro-streaming in an acoustofluidic device, which boosts intermolecular interactions and a hybridization chain reaction to increase the fluorescent signals. This device was made of a microfluidic chip that contains an array of PDMS micropillars in a ship-shaped microchannel. And the inner surface of the channel was functionalized with capture aptamers that bind with thrombin, chosen as a model target molecule. An ultrasonic transducer underneath the chip operating at 150 kHz generates circular micro-streaming flows around the pillars that significantly improves the binding efficiency of thrombin with capture aptamers by 1) increasing the retention time and 2) enhancing mass transport via local convection versus diffusion. The effects of ultrasound parameters, such as operating frequencies and voltages, on the distribution and magnitude of flows were optimized to obtain a better performance of the sensor chip. Under the optimized conditions, the detection limit was increased by one order of magnitude. Although this work has focused on the detection of thrombin as a model molecule, this streaming-enhanced, microstructure-based sensing strategy can be applied to detect a wide range of molecules or even cells.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Zhou Yang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
13
|
Tian H, Zhao W, Liu X, Liu C, Peng N. Integrated Single Microbead-Arrayed μ-Fluidic Platform for the Automated Detection of Multiplexed Biomarkers. ACS Sens 2020; 5:798-806. [PMID: 32046487 DOI: 10.1021/acssensors.9b02450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An automated, single microbead-arrayed μ-fluidic immunoassay (AMIA) device is innovatively devised in this study, which enables the highly sensitive and simultaneous detection of multiplex biomarkers with fully automatic operations. The AMIA platform not only achieves automated assay processing and multiplexed target detection by integrating single microbead manipulation, sample loading, multistep washing, and immunoreaction on a microfluidic chip but also confers high sensitivity due to the highly efficient signal enriching effect on a single microbead by the use of only a routine sandwich immunoreaction. As such, as low as the pg/mL level of multiplexed protein biomarkers can be simultaneously determined in a quite small volume of serum (∼20 μL is enough), which can well meet the clinical demand for disease screening and prognosis. What is more, the detection results of several clinically important biomarkers in clinical samples with the AMIA platform exhibit excellent consistency with those obtained by using a standard clinical test. Thus, in virtue of the excellent features in terms of high sensitivity, multiplexing capability, generality, and high degree of automation, the AMIA provides a practical and user-friendly platform for assaying different biomarkers in clinical diagnostics and point-of-care testing.
Collapse
Affiliation(s)
- Hui Tian
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| | - Wenhan Zhao
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
14
|
Zhang J, Meng Z, Liu J, Chen S, Yu Z. Spherical Colloidal Photonic Crystals with Selected Lattice Plane Exposure and Enhanced Color Saturation for Dynamic Optical Displays. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42629-42634. [PMID: 31623433 DOI: 10.1021/acsami.9b15352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
While structural color materials have nonfading properties and contribute significantly to the sustainable development of pigments or dyes, they are plagued by low color saturation and limited color tunability. Here, we describe a new type of spherical colloidal photonic crystals (CPCs) prepared by a droplet-based microfluidic strategy, featuring enhanced color saturation and tunable structural colors. Methyl viologen (MV) functionalized SiO2 colloids were synthesized and used for the preparation of CPCs in microdroplets. Because of the absorption of incoherently scattered light by MV, the ratio of peak-to-background amplitude in the reflectance spectra of CPCs is increased, leading to brilliant structural color with enhanced saturation. The lattice plane exposure of spherical CPCs depends on the refractive index contrast between the filling medium and SiO2 building blocks, and this offers an alternative way to tune the structural color in a spherical CPC. Accordingly, a dynamic optical display was constructed, providing valuable insights to the future development of structural color-based sensors, surface coatings, or displays.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211816 , P. R. China
| | - Zhijun Meng
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Ji Liu
- Department of Mechanical and Energy Engineering , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211816 , P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering , Nanjing Tech University , 30 Puzhu South Road , Nanjing 211816 , P. R. China
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| |
Collapse
|