1
|
Riexinger J, Caganek T, Wang X, Yin Y, Chung K, Zhou L, Bayley H, Krishna Kumar R. High-Resolution Patterned Delivery of Chemical Signals From 3D-Printed Picoliter Droplet Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2412292. [PMID: 40304119 DOI: 10.1002/adma.202412292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/11/2024] [Indexed: 05/02/2025]
Abstract
Synthetic cells, such as giant unilamellar vesicles, can be engineered to detect and release chemical signals to control target cell behavior. However, control over target-cell populations is limited due to poor spatial or temporal resolution and the inability of synthetic cells to deliver patterned signals. Here, 3D-printed picoliter droplet networks are described that direct gene expression in underlying bacterial populations by patterned release of a chemical signal with temporal control. Shrinkage of the droplet networks prior to use achieves spatial control over gene expression with ≈50 µm resolution. Ways to store chemical signals in the droplet networks and to activate release at controlled points in time are also demonstrated. Finally, it is shown that the spatially-controlled delivery system can regulate competition between bacteria by inducing the patterned expression of toxic bacteriocins. This system provides the groundwork for the use of picoliter droplet networks in fundamental biology and in medicine in applications that require the controlled formation of chemical gradients (i.e., for the purpose of local control of gene expression) within a target group of cells.
Collapse
Affiliation(s)
- Jorin Riexinger
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas Caganek
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Medical Sciences Division, University of Oxford, Headley Way, Oxford, OX3 9DU, UK
| | - Xingzao Wang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yutong Yin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Khoa Chung
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Linna Zhou
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Hagan Bayley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ravinash Krishna Kumar
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Ceballos Rodriguez-Conde F, Zhu S, Dikicioglu D. Harnessing microbial division of labor for biomanufacturing: a review of laboratory and formal modeling approaches. Crit Rev Biotechnol 2025:1-19. [PMID: 39972973 DOI: 10.1080/07388551.2025.2455607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 02/21/2025]
Abstract
Bioprocess industries aim to meet the increasing demand for product complexity by designing enhanced cellular and metabolic capabilities for the host. Monocultures, standard biomanufacturing workhorses, are often restricted in their capability to meet these demands, and the solution often involves the genetic modification of the host. Synthetic microbial communities are a promising alternative to monocultures because they exhibit division of labor, enabling efficient resource utilization and pathway modularity. This specialization minimizes metabolic burden and enhances robustness to perturbations, providing a competitive advantage. Despite this potential, their utilization in biotechnological or bioprocessing applications remains limited. The recent emergence of new and innovative community design tools and strategies, particularly those harnessing the division of labor, holds promise to change this outlook. Understanding the microbial interactions governing natural microbial communities can be used to identify complementary partners, informing synthetic community design. Therefore, we particularly consider engineering division of labor in synthetic microbial communities as a viable solution to accelerate progress in the field. This review presents the current understanding of how microbial interactions enable division of labor and how this information can be used to design synthetic microbial communities to perform tasks otherwise unfeasible to individual organisms. We then evaluate laboratory and formal modeling approaches specifically developed to: elucidate microbial community physiology, guide experimental design, and improve our understanding of complex community interactions assisting synthetic community design. By synthesizing these insights, we aim to present a comprehensive framework that advances the use of microbial communities in biomanufacturing applications.
Collapse
Affiliation(s)
| | - Sophie Zhu
- Department of Biochemical Engineering, University College London, London, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
3
|
Wang Y, Wang Q, Zhang G, Li Y, Guo H, Zhou J, Wang T, Jia H, Zhu L. Masks As a New Hotspot for Antibiotic Resistance Gene Spread: Reveal the Contribution of Atmospheric Pollutants and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16100-16111. [PMID: 39137285 DOI: 10.1021/acs.est.4c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The consumption of disposable surgical masks (DSMs) considerably increased during the coronavirus pandemic in 2019. Herein, we explored the spread of antibiotic resistance genes (ARGs) and the potential risks of antibiotic resistant bacteria (ARB) on DSMs. At environmentally relevant concentrations, the conjugate transfer frequency (CTF) of ARGs increased by 1.34-2.37 folds by 20 μg/m3 of atmospheric water-soluble inorganic ions (WSIIs), and it increased by 2.62-2.86 folds by 80 ng/m3 of polycyclic aromatic hydrocarbons (PAHs). Total suspended particulates (TSP) further promoted the CTF in combination with WSIIs or PAHs. Under WSII and PAH exposure, gene expression levels related to oxidative stress, cell membrane, and the adenosine triphosphate (ATP) were upregulated. WSIIs predominantly induced cellular contact, while PAHs triggered ATP formation and membrane damage. Molecular dynamics simulations showed that WSIIs and PAHs reduced membrane lipid fluidity and increased membrane permeability through interactions with the phosphatidylcholine bilayer. DSM filtering performance decreased, and the CTF of ARGs increased with the wearing time. The gut simulator test showed that ARB disrupted the human gut microbial community and increased total ARG abundance but did not change the ARG abundance carried by ARB themselves. A mathematical model showed that long-term WSII and PAH exposure accelerated ARG dissemination in DSMs.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Ugolini GS, Wang M, Secchi E, Pioli R, Ackermann M, Stocker R. Microfluidic approaches in microbial ecology. LAB ON A CHIP 2024; 24:1394-1418. [PMID: 38344937 PMCID: PMC10898419 DOI: 10.1039/d3lc00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Microbial life is at the heart of many diverse environments and regulates most natural processes, from the functioning of animal organs to the cycling of global carbon. Yet, the study of microbial ecology is often limited by challenges in visualizing microbial processes and replicating the environmental conditions under which they unfold. Microfluidics operates at the characteristic scale at which microorganisms live and perform their functions, thus allowing for the observation and quantification of behaviors such as growth, motility, and responses to external cues, often with greater detail than classical techniques. By enabling a high degree of control in space and time of environmental conditions such as nutrient gradients, pH levels, and fluid flow patterns, microfluidics further provides the opportunity to study microbial processes in conditions that mimic the natural settings harboring microbial life. In this review, we describe how recent applications of microfluidic systems to microbial ecology have enriched our understanding of microbial life and microbial communities. We highlight discoveries enabled by microfluidic approaches ranging from single-cell behaviors to the functioning of multi-cellular communities, and we indicate potential future opportunities to use microfluidics to further advance our understanding of microbial processes and their implications.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Miaoxiao Wang
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
- Laboratory of Microbial Systems Ecology, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
5
|
Zoheir AE, Stolle C, Rabe KS. Microfluidics for adaptation of microorganisms to stress: design and application. Appl Microbiol Biotechnol 2024; 108:162. [PMID: 38252163 PMCID: PMC10803453 DOI: 10.1007/s00253-024-13011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Microfluidic systems have fundamentally transformed the realm of adaptive laboratory evolution (ALE) for microorganisms by offering unparalleled control over environmental conditions, thereby optimizing mutant generation and desired trait selection. This review summarizes the substantial influence of microfluidic technologies and their design paradigms on microbial adaptation, with a primary focus on leveraging spatial stressor concentration gradients to enhance microbial growth in challenging environments. Specifically, microfluidic platforms tailored for scaled-down ALE processes not only enable highly autonomous and precise setups but also incorporate novel functionalities. These capabilities encompass fostering the growth of biofilms alongside planktonic cells, refining selection gradient profiles, and simulating adaptation dynamics akin to natural habitats. The integration of these aspects enables shaping phenotypes under pressure, presenting an unprecedented avenue for developing robust, stress-resistant strains, a feat not easily attainable using conventional ALE setups. The versatility of these microfluidic systems is not limited to fundamental research but also offers promising applications in various areas of stress resistance. As microfluidic technologies continue to evolve and merge with cutting-edge methodologies, they possess the potential not only to redefine the landscape of microbial adaptation studies but also to expedite advancements in various biotechnological areas. KEY POINTS: • Microfluidics enable precise microbial adaptation in controlled gradients. • Microfluidic ALE offers insights into stress resistance and distinguishes between resistance and persistence. • Integration of adaptation-influencing factors in microfluidic setups facilitates efficient generation of stress-resistant strains.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Camilla Stolle
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
6
|
Barua N, Herken AM, Melendez-Velador N, Platt TG, Hansen RR. Photo-addressable microwell devices for rapid functional screening and isolation of pathogen inhibitors from bacterial strain libraries. BIOMICROFLUIDICS 2024; 18:014107. [PMID: 38434239 PMCID: PMC10907074 DOI: 10.1063/5.0188270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Discovery of new strains of bacteria that inhibit pathogen growth can facilitate improvements in biocontrol and probiotic strategies. Traditional, plate-based co-culture approaches that probe microbial interactions can impede this discovery as these methods are inherently low-throughput, labor-intensive, and qualitative. We report a second-generation, photo-addressable microwell device, developed to iteratively screen interactions between candidate biocontrol agents existing in bacterial strain libraries and pathogens under increasing pathogen pressure. Microwells (0.6 pl volume) provide unique co-culture sites between library strains and pathogens at controlled cellular ratios. During sequential screening iterations, library strains are challenged against increasing numbers of pathogens to quantitatively identify microwells containing strains inhibiting the highest numbers of pathogens. Ring-patterned 365 nm light is then used to ablate a photodegradable hydrogel membrane and sequentially release inhibitory strains from the device for recovery. Pathogen inhibition with each recovered strain is validated, followed by whole genome sequencing. To demonstrate the rapid nature of this approach, the device was used to screen a 293-membered biovar 1 agrobacterial strain library for strains inhibitory to the plant pathogen Agrobacterium tumefaciens sp. 15955. One iterative screen revealed nine new inhibitory strains. For comparison, plate-based methods did not uncover any inhibitory strains from the library (n = 30 plates). The novel pathogen-challenge screening mode developed here enables rapid selection and recovery of strains that effectively suppress pathogen growth from bacterial strain libraries, expanding this microwell technology platform toward rapid, cost-effective, and scalable screening for probiotics, biocontrol agents, and inhibitory molecules that can protect against known or emerging pathogens.
Collapse
Affiliation(s)
- Niloy Barua
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, USA
| | - Ashlee M. Herken
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas 66506, USA
| | | | - Thomas G. Platt
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas 66506, USA
| | - Ryan R. Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, USA
| |
Collapse
|
7
|
Liu L, Zhang QH, Li RT. In Situ and Individual-Based Analysis of the Influence of Polystyrene Microplastics on Escherichia coli Conjugative Gene Transfer at the Single-Cell Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15936-15944. [PMID: 37801563 DOI: 10.1021/acs.est.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The impact of microplastic particles of micro- and nanometer sizes on microbial horizontal gene transfer (HGT) remains a controversial topic. Existing studies rely on traditional approaches, which analyze population behavior, leading to conflicting conclusions and a limited understanding. The present study addressed these limitations by employing a novel microfluidic chamber system for in situ visualization and precise quantification of the effects of different concentrations of polystyrene (PS) microbeads on microbial HGT at the single-cell level. The statistical analysis indicated no significant difference in the division times of both the donor and recipient bacteria across different PS microbead concentrations. However, as the concentration of PS microbeads increased from 0 to 2000 mg L-1, the average conjugation frequency of Escherichia coli decreased from 0.028 ± 0.015 to 0.004 ± 0.003. Our observations from the microfluidic experiments revealed that 500 nm PS microbeads created a barrier effect on bacterial conjugative transfer. The presence of microbeads resulted in reduced contact and interaction between the donor and recipient strains, thereby causing a decrease in the conjugation transfer frequency. These findings were validated by an individual-based modeling framework parameterized by the data from the individual-level microfluidic experiments. Overall, this study offers a fresh perspective and strategy for investigating the risks associated with the dissemination of antibiotic resistance genes related to microplastics.
Collapse
Affiliation(s)
- Li Liu
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Qiang-Hong Zhang
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Rui-Tong Li
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
8
|
Mutz M, Kösters D, Wynands B, Wierckx N, Marienhagen J. Microbial synthesis of the plant natural product precursor p-coumaric acid with Corynebacterium glutamicum. Microb Cell Fact 2023; 22:209. [PMID: 37833813 PMCID: PMC10576375 DOI: 10.1186/s12934-023-02222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Phenylpropanoids such as p-coumaric acid represent important precursors for the synthesis of a broad range of plant secondary metabolites including stilbenoids, flavonoids, and lignans, which are of pharmacological interest due to their health-promoting properties. Although extraction from plant material or chemical synthesis is possible, microbial synthesis of p-coumaric acid from glucose has the advantage of being less expensive and more resource efficient. In this study, Corynebacterium glutamicum was engineered for the production of the plant polyphenol precursor p-coumaric acid from glucose. RESULTS Heterologous expression of the tyrosine ammonia-lyase encoding gene from Flavobacterium johnsoniae enabled the conversion of endogenously provided tyrosine to p-coumaric acid. Product consumption was avoided by abolishing essential reactions of the phenylpropanoid degradation pathway. Accumulation of anthranilate as a major byproduct was eliminated by reducing the activity of anthranilate synthase through targeted mutagenesis to avoid tryptophan auxotrophy. Subsequently, the carbon flux into the shikimate pathway was increased, phenylalanine biosynthesis was reduced, and phosphoenolpyruvate availability was improved to boost p-coumaric acid accumulation. A maximum titer of 661 mg/L p-coumaric acid (4 mM) in defined mineral medium was reached. Finally, the production strain was utilized in co-cultivations with a C. glutamicum strain previously engineered for the conversion of p-coumaric acid into the polyphenol resveratrol. These co-cultivations enabled the synthesis of 31.2 mg/L (0.14 mM) resveratrol from glucose without any p-coumaric acid supplementation. CONCLUSIONS The utilization of a heterologous tyrosine ammonia-lyase in combination with optimization of the shikimate pathway enabled the efficient production of p-coumaric acid with C. glutamicum. Reducing the carbon flux into the phenylalanine and tryptophan branches was the key to success along with the introduction of feedback-resistant enzyme variants.
Collapse
Affiliation(s)
- Mario Mutz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Dominic Kösters
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| |
Collapse
|
9
|
Lenz P, Bakkes PJ, Müller C, Malek M, Freudl R, Oldiges M, Drepper T, Jaeger KE, Knapp A. Analysis of protein secretion in Bacillus subtilis by combining a secretion stress biosensor strain with an in vivo split GFP assay. Microb Cell Fact 2023; 22:203. [PMID: 37805580 PMCID: PMC10559633 DOI: 10.1186/s12934-023-02199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Bacillus subtilis is one of the workhorses in industrial biotechnology and well known for its secretion potential. Efficient secretion of recombinant proteins still requires extensive optimization campaigns and screening with activity-based methods. However, not every protein can be detected by activity-based screening. We therefore developed a combined online monitoring system, consisting of an in vivo split GFP assay for activity-independent target detection and an mCherry-based secretion stress biosensor. The split GFP assay is based on the fusion of a target protein to the eleventh β-sheet of sfGFP, which can complement a truncated sfGFP that lacks this β-sheet named GFP1-10. The secretion stress biosensor makes use of the CssRS two component quality control system, which upregulates expression of mCherry in the htrA locus thereby allowing a fluorescence readout of secretion stress. RESULTS The biosensor strain B. subtilis PAL5 was successfully constructed by exchanging the protease encoding gene htrA with mCherry via CRISPR/Cas9. The Fusarium solani pisi cutinase Cut fused to the GFP11 tag (Cut11) was used as a model enzyme to determine the stress response upon secretion mediated by signal peptides SPPel, SPEpr and SPBsn obtained from naturally secreted proteins of B. subtilis. An in vivo split GFP assay was developed, where purified GFP1-10 is added to the culture broth. By combining both methods, an activity-independent high-throughput method was created, that allowed optimization of Cut11 secretion. Using the split GFP-based detection assay, we demonstrated a good correlation between the amount of secreted cutinase and the enzymatic activity. Additionally, we screened a signal peptide library and identified new signal peptide variants that led to improved secretion while maintaining low stress levels. CONCLUSION Our results demonstrate that the combination of a split GFP-based detection assay for secreted proteins with a secretion stress biosensor strain enables both, online detection of extracellular target proteins and identification of bottlenecks during protein secretion in B. subtilis. In general, the system described here will also enable to monitor the secretion stress response provoked by using inducible promoters governing the expression of different enzymes.
Collapse
Affiliation(s)
- Patrick Lenz
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Patrick J Bakkes
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Carolin Müller
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marzena Malek
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Roland Freudl
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marco Oldiges
- Institute of Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
- Institute of Bio- and Geoscience IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Castrol Germany GmbH, 41179, Mönchengladbach, Germany.
| |
Collapse
|
10
|
Kasahara K, Leygeber M, Seiffarth J, Ruzaeva K, Drepper T, Nöh K, Kohlheyer D. Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis. Front Microbiol 2023; 14:1198170. [PMID: 37408642 PMCID: PMC10318409 DOI: 10.3389/fmicb.2023.1198170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Microfluidic cultivation devices that facilitate O2 control enable unique studies of the complex interplay between environmental O2 availability and microbial physiology at the single-cell level. Therefore, microbial single-cell analysis based on time-lapse microscopy is typically used to resolve microbial behavior at the single-cell level with spatiotemporal resolution. Time-lapse imaging then provides large image-data stacks that can be efficiently analyzed by deep learning analysis techniques, providing new insights into microbiology. This knowledge gain justifies the additional and often laborious microfluidic experiments. Obviously, the integration of on-chip O2 measurement and control during the already complex microfluidic cultivation, and the development of image analysis tools, can be a challenging endeavor. A comprehensive experimental approach to allow spatiotemporal single-cell analysis of living microorganisms under controlled O2 availability is presented here. To this end, a gas-permeable polydimethylsiloxane microfluidic cultivation chip and a low-cost 3D-printed mini-incubator were successfully used to control O2 availability inside microfluidic growth chambers during time-lapse microscopy. Dissolved O2 was monitored by imaging the fluorescence lifetime of the O2-sensitive dye RTDP using FLIM microscopy. The acquired image-data stacks from biological experiments containing phase contrast and fluorescence intensity data were analyzed using in-house developed and open-source image-analysis tools. The resulting oxygen concentration could be dynamically controlled between 0% and 100%. The system was experimentally tested by culturing and analyzing an E. coli strain expressing green fluorescent protein as an indirect intracellular oxygen indicator. The presented system allows for innovative microbiological research on microorganisms and microbial ecology with single-cell resolution.
Collapse
Affiliation(s)
- Keitaro Kasahara
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Leygeber
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Seiffarth
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Karina Ruzaeva
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
11
|
Kaiser CF, Perilli A, Grossmann G, Meroz Y. Studying root-environment interactions in structured microdevices. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad122. [PMID: 37042515 PMCID: PMC10353529 DOI: 10.1093/jxb/erad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/19/2023]
Abstract
In negotiating with the environment, plant roots integrate sensory information over space and time, as the basis of decision making in roots under non-uniform conditions. The complexity and dynamic properties of soil across spatial and temporal scales pose a significant technical challenge for research on mechanisms that drive metabolism, growth and development in roots, as well as on inter-organismal networks in the rhizosphere. Synthetic environments, combining microscopic access and manipulation capabilities with soil-like heterogeneity, are needed to elucidate the intriguing tug-of-war that characterises subsurface ecosystems. Microdevices have provided opportunities for innovative approaches to observe, analyse and manipulate plant roots and advanced our understanding of their development, physiology and interactions with the environment. Initially conceived as perfusion platforms for root cultivation under hydroponic conditions, microdevice design has, in recent years, increasingly shifted to better reflect the complex growth conditions in soil. Heterogeneous micro-environments have been created through co-cultivation with microbes, laminar flow-based local stimulation and physical obstacles and constraints. As such, structured microdevices provide an experimental entry point to the complex network behaviour of soil communities.
Collapse
Affiliation(s)
- Christian-Frederic Kaiser
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alessia Perilli
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
13
|
Ulmer A, Veit S, Erdemann F, Freund A, Loesch M, Teleki A, Zeidan AA, Takors R. A Two-Compartment Fermentation System to Quantify Strain-Specific Interactions in Microbial Co-Cultures. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010103. [PMID: 36671675 PMCID: PMC9854596 DOI: 10.3390/bioengineering10010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at backmixing. Together with other physical settings, the existence of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that a proper metabolite supply between compartments was enabled. Implementing the two-compartment system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the strain-specific production and consumption rates of amino acids in an interacting S. thermophilus-L. bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be achieved. Both species produce and release amino acids. Only alanine was produced de novo from glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability in peptides was limited to S. thermophilus' growth, indicating active biosynthesis and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens the door for the quantification of exchange fluxes between microbes but also enables continuous production modes, for example, for targeted evolution studies.
Collapse
Affiliation(s)
- Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Veit
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maren Loesch
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ahmad A. Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
14
|
Lee J, Lee J, Kim M. Multiscale micro-/nanofluidic devices incorporating self-assembled particle membranes for bioanalysis: A review. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Martinez JA, Delvenne M, Henrion L, Moreno F, Telek S, Dusny C, Delvigne F. Controlling microbial co-culture based on substrate pulsing can lead to stability through differential fitness advantages. PLoS Comput Biol 2022; 18:e1010674. [PMID: 36315576 PMCID: PMC9648842 DOI: 10.1371/journal.pcbi.1010674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/10/2022] [Accepted: 10/22/2022] [Indexed: 11/12/2022] Open
Abstract
Microbial consortia are an exciting alternative for increasing the performances of bioprocesses for the production of complex metabolic products. However, the functional properties of microbial communities remain challenging to control, considering the complex interaction mechanisms occurring between co-cultured microbial species. Indeed, microbial communities are highly dynamic and can adapt to changing environmental conditions through complex mechanisms, such as phenotypic diversification. We focused on stabilizing a co-culture of Saccharomyces cerevisiae and Escherichia coli in continuous cultures. Our preliminary data pointed out that transient diauxic shifts could lead to stable co-culture by providing periodic fitness advantages to the yeast. Based on a computational toolbox called MONCKS (for MONod-type Co-culture Kinetic Simulation), we were able to predict the dynamics of diauxic shift for both species based on a cybernetic approach. This toolbox was further used to predict the frequency of diauxic shift to be applied to reach co-culture stability. These simulations were successfully reproduced experimentally in continuous bioreactors with glucose pulsing. Finally, based on a bet-hedging reporter, we observed that the yeast population exhibited an increased phenotypic diversification process in co-culture compared with mono-culture, suggesting that this mechanism could be the basis of the metabolic fitness of the yeast. Being able to manipulate the dynamics of microbial co-cultures is a technical challenge that need to be addressed in order to get a deeper insight about how microbial communities are evolving in their ecological context, as well as for exploiting the potential offered by such communities in an applied context e.g., for setting up more robust bioprocesses relying on the use of several microbial species. In this study, we used continuous cultures of bacteria (E. coli) and yeast (S. cerevisiae) in order to demonstrate that a simple nutrient pulsing strategy can be used for adjusting the composition of the community with time. As expected, during growth on glucose, E. coli quickly outcompeted S. cerevisiae. However, when glucose is pulsed into the culture, increased metabolic fitness of the yeast was observed upon reconsumption of the main side metabolites i.e., acetate and ethanol, leading to a robust oscillating growth profile for both species. The optimal pulsing frequency was predicted based on a cybernetic version of a Monod growth model taking into account the main metabolic routes involved in the process. Considering the limited number of metabolic details needed, this cybernetic approach could be generalized to other communities.
Collapse
Affiliation(s)
- J. Andres Martinez
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Matheo Delvenne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Lucas Henrion
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Fabian Moreno
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Samuel Telek
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
| | - Christian Dusny
- Microscale Analysis and Engineering, Department of Solar Materials, Helmholtz-Centre for Environmental Research- UFZ Leipzig, Leipzig, Germany
| | - Frank Delvigne
- TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium
- * E-mail:
| |
Collapse
|
16
|
Dai J, Huang C, Zhang H, Samuel R, Li Y, Jayaraman A, de Figueiredo P, Han A. Microfluidic Dielectrophoretic Method Enables On-Demand Spatial Arrangement of Bacteria-Encapsulated Agarose Gel Microparticles. Anal Chem 2022; 94:13197-13204. [DOI: 10.1021/acs.analchem.2c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Dai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ryan Samuel
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Paul de Figueiredo
- Department of Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, United States
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843, United States
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Recent Progress in the Development of Droplet-based Microfluidic Technologies for Phenotypic Screening using Cell-cell Interactions. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
18
|
Viebrock K, Rabl D, Meinen S, Wunder P, Meyer JA, Frey LJ, Rasch D, Dietzel A, Mayr T, Krull R. Microsensor in Microbioreactors: Full Bioprocess Characterization in a Novel Capillary-Wave Microbioreactor. BIOSENSORS 2022; 12:bios12070512. [PMID: 35884315 PMCID: PMC9312480 DOI: 10.3390/bios12070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Microbioreactors (MBRs) with a volume below 1 mL are promising alternatives to established cultivation platforms such as shake flasks, lab-scale bioreactors and microtiter plates. Their main advantages are simple automatization and parallelization and the saving of expensive media components and test substances. These advantages are particularly pronounced in small-scale MBRs with a volume below 10 µL. However, most described small-scale MBRs are lacking in process information from integrated sensors due to limited space and sensor technology. Therefore, a novel capillary-wave microbioreactor (cwMBR) with a volume of only 7 µL has the potential to close this gap, as it combines a small volume with integrated sensors for biomass, pH, dissolved oxygen (DO) and glucose concentration. In the cwMBR, pH and DO are measured by established luminescent optical sensors on the bottom of the cwMBR. The novel glucose sensor is based on a modified oxygen sensor, which measures the oxygen uptake of glucose oxidase (GOx) in the presence of glucose up to a concentration of 15 mM. Furthermore, absorbance measurement allows biomass determination. The optical sensors enabled the characterization of an Escherichia coli batch cultivation over 8 h in the cwMBR as proof of concept for further bioprocesses. Hence, the cwMBR with integrated optical sensors has the potential for a wide range of microscale bioprocesses, including cell-based assays, screening applications and process development.
Collapse
Affiliation(s)
- Kevin Viebrock
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Dominik Rabl
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Sven Meinen
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Paul Wunder
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Jan-Angelus Meyer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Lasse Jannis Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Correspondence:
| |
Collapse
|
19
|
Ranjbaran M, Verma MS. Microfluidics at the interface of bacteria and fresh produce. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Hartmann FSF, Udugama IA, Seibold GM, Sugiyama H, Gernaey KV. Digital models in biotechnology: Towards multi-scale integration and implementation. Biotechnol Adv 2022; 60:108015. [PMID: 35781047 DOI: 10.1016/j.biotechadv.2022.108015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Industrial biotechnology encompasses a large area of multi-scale and multi-disciplinary research activities. With the recent megatrend of digitalization sweeping across all industries, there is an increased focus in the biotechnology industry on developing, integrating and applying digital models to improve all aspects of industrial biotechnology. Given the rapid development of this field, we systematically classify the state-of-art modelling concepts applied at different scales in industrial biotechnology and critically discuss their current usage, advantages and limitations. Further, we critically analyzed current strategies to couple cell models with computational fluid dynamics to study the performance of industrial microorganisms in large-scale bioprocesses, which is of crucial importance for the bio-based production industries. One of the most challenging aspects in this context is gathering intracellular data under industrially relevant conditions. Towards comprehensive models, we discuss how different scale-down concepts combined with appropriate analytical tools can capture intracellular states of single cells. We finally illustrated how the efforts could be used to develop digitals models suitable for both cell factory design and process optimization at industrial scales in the future.
Collapse
Affiliation(s)
- Fabian S F Hartmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Isuru A Udugama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Zhou S, Fu ES, Chen B, Yan H. Design and Modeling of a Microfluidic Coral Polyps Culture Chip with Concentration and Temperature Gradients. MICROMACHINES 2022; 13:mi13060832. [PMID: 35744446 PMCID: PMC9229692 DOI: 10.3390/mi13060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022]
Abstract
Traditional methods of cultivating polyps are costly and time-consuming. Microfluidic chip technology makes it possible to study coral polyps at the single-cell level, but most chips can only be analyzed for a single environmental variable. In this work, we addressed these issues by designing a microfluidic coral polyp culture chip with a multi-physical field for multivariable analyses and verifying the feasibility of the chip through numerical simulation. This chip used multiple serpentine structures to generate the concentration gradient and used a circuit to form the Joule effect for the temperature gradient. It could generate different temperature gradients at different voltages for studying the growth of polyps in different solutes or at different temperatures. The simulation of flow field and temperature showed that the solute and heat could be transferred evenly and efficiently in the chambers, and that the temperature of the chamber remained unchanged after 24 h of continuous heating. The thermal expansion of the microfluidic chip was low at the optimal culture temperature of coral polyps, which proves the feasibility of the use of the multivariable microfluidic model for polyp culture and provides a theoretical basis for the actual chip processing.
Collapse
Affiliation(s)
- Shizheng Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (S.Z.); (B.C.)
| | - Edgar S. Fu
- School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Bingbing Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (S.Z.); (B.C.)
| | - Hong Yan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (S.Z.); (B.C.)
- Correspondence:
| |
Collapse
|
22
|
Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, Li M, Yalikun Y. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. LAB ON A CHIP 2022; 22:1438-1468. [PMID: 35274649 DOI: 10.1039/d1lc01030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell analysis is essential to improve our understanding of cell functionality from cellular and subcellular aspects for diagnosis and therapy. Single-cell cultivation is one of the most important processes in single-cell analysis, which allows the monitoring of actual information of individual cells and provides sufficient single-cell clones and cell-derived products for further analysis. The microfluidic device is a fast-rising system that offers efficient, effective, and sensitive single-cell cultivation and real-time single-cell analysis conducted either on-chip or off-chip. Here, we introduce the importance of single-cell cultivation from the aspects of cellular and subcellular studies. We highlight the materials and structures utilized in microfluidic devices for single-cell cultivation. We further discuss biological applications utilizing single-cell cultivation-based microfluidics, such as cellular phenotyping, cell-cell interactions, and omics profiling. Finally, present limitations and future prospects of microfluidics for single-cell cultivation are also discussed.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Tsai HF, Carlson DW, Koldaeva A, Pigolotti S, Shen AQ. Optimization and Fabrication of Multi-Level Microchannels for Long-Term Imaging of Bacterial Growth and Expansion. MICROMACHINES 2022; 13:mi13040576. [PMID: 35457881 PMCID: PMC9028424 DOI: 10.3390/mi13040576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Bacteria are unicellular organisms whose length is usually around a few micrometers. Advances in microfabrication techniques have enabled the design and implementation of microdevices to confine and observe bacterial colony growth. Microstructures hosting the bacteria and microchannels for nutrient perfusion usually require separate microfabrication procedures due to different feature size requirements. This fact increases the complexity of device integration and assembly process. Furthermore, long-term imaging of bacterial dynamics over tens of hours requires stability in the microscope focusing mechanism to ensure less than one-micron drift in the focal axis. In this work, we design and fabricate an integrated multi-level, hydrodynamically-optimized microfluidic chip to study long-term Escherichia coli population dynamics in confined microchannels. Reliable long-term microscopy imaging and analysis has been limited by focus drifting and ghost effect, probably caused by the shear viscosity changes of aging microscopy immersion oil. By selecting a microscopy immersion oil with the most stable viscosity, we demonstrate successful captures of focally stable time-lapse bacterial images for ≥72 h. Our fabrication and imaging methodology should be applicable to other single-cell studies requiring long-term imaging.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan;
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-F.T.); (A.Q.S.); Tel.: +886-3-2118800 (ext. 3079) (H.-F.T.)
| | - Daniel W. Carlson
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan;
| | - Anzhelika Koldaeva
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; (A.K.); (S.P.)
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; (A.K.); (S.P.)
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan;
- Correspondence: (H.-F.T.); (A.Q.S.); Tel.: +886-3-2118800 (ext. 3079) (H.-F.T.)
| |
Collapse
|
24
|
Bourguignon N, Kamat V, Perez M, Mathee K, Lerner B, Bhansali S. New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles. Appl Microbiol Biotechnol 2022; 106:2729-2738. [PMID: 35325273 DOI: 10.1007/s00253-022-11855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
Abstract
Microbial biofilms are composed of surface-adhered microorganisms enclosed in extracellular polymeric substances. The biofilm lifestyle is the intrinsic drug resistance imparted to bacterial cells protected by the matrix. So far, conventional drug susceptibility tests for biofilm are reagent and time-consuming, and most of them are in static conditions. Rapid and easy-to-use methods for biofilm formation and antibiotic activity testing need to be developed to accelerate the discovery of new antibiofilm strategies. Herein, a Lab-On-Chip (LOC) device is presented that provides optimal microenvironmental conditions closely mimicking real-life clinical biofilm status. This new device allows homogeneous attachment and immobilization of Pseudomonas aeruginosa PA01-EGFP cells, and the biofilms grown can be monitored by fluorescence microscopy. P. aeruginosa is an opportunistic pathogen known as a model for drug screening biofilm studies. The influence of flow rates on biofilms growth was analyzed by flow simulations using COMSOL® 5.2. Significant cell adhesion to the substrate and biofilm formation inside the microchannels were observed at higher flow rates > 100 µL/h. After biofilm formation, the effectiveness of silver nanoparticles (SNP), chitosan nanoparticles (CNP), and a complex of chitosan-coated silver nanoparticles (CSNP) to eradicate the biofilm under a continuous flow was explored. The most significant loss of biofilm was seen with CSNP with a 65.5% decrease in average live/dead cell signal in biofilm compared to the negative controls. Our results demonstrate that this system is a user-friendly tool for antibiofilm drug screening that could be simply applied in clinical laboratories.Key Points• A continuous-flow microreactor that mimics real-life clinical biofilm infections was developed.• The antibiofilm activity of three nano drugs was evaluated in dynamic conditions.• The highest biofilm reduction was observed with chitosan-silver nanoparticles.
Collapse
Affiliation(s)
- Natalia Bourguignon
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
- IREN Center, National Technological University, Haedo, 1706, Buenos Aires, Argentina
| | - Vivek Kamat
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Maximiliano Perez
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
- IREN Center, National Technological University, Haedo, 1706, Buenos Aires, Argentina
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| | - Betiana Lerner
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA.
- IREN Center, National Technological University, Haedo, 1706, Buenos Aires, Argentina.
| | - Shekhar Bhansali
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| |
Collapse
|
25
|
Unraveling antimicrobial resistance using metabolomics. Drug Discov Today 2022; 27:1774-1783. [PMID: 35341988 DOI: 10.1016/j.drudis.2022.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The emergence of antimicrobial resistance (AMR) in bacterial pathogens represents a global health threat. The metabolic state of bacteria is associated with a range of genetic and phenotypic resistance mechanisms. This review provides an overview of the roles of metabolic processes that are associated with AMR mechanisms, including energy production, cell wall synthesis, cell-cell communication, and bacterial growth. These metabolic processes can be targeted with the aim of re-sensitizing resistant pathogens to antibiotic treatments. We discuss how state-of-the-art metabolomics approaches can be used for comprehensive analysis of microbial AMR-related metabolism, which may facilitate the discovery of novel drug targets and treatment strategies. TEASER: Novel treatment strategies are needed to address the emerging threat of antimicrobial resistance (AMR) in bacterial pathogens. Metabolomics approaches may help to unravel the biochemical underpinnings of AMR, thereby facilitating the discovery of metabolism-associated drug targets and treatment strategies.
Collapse
|
26
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
Hogenkamp F, Hilgers F, Bitzenhofer NL, Ophoven V, Haase M, Bier C, Binder D, Jaeger K, Drepper T, Pietruszka J. Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different Promoter Systems. Chembiochem 2022; 23:e202100467. [PMID: 34750949 PMCID: PMC9299732 DOI: 10.1002/cbic.202100467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Indexed: 12/05/2022]
Abstract
Photocaged compounds are applied for implementing precise, optochemical control of gene expression in bacteria. To broaden the scope of UV-light-responsive inducer molecules, six photocaged carbohydrates were synthesized and photochemically characterized, with the absorption exhibiting a red-shift. Their differing linkage through ether, carbonate, and carbamate bonds revealed that carbonate and carbamate bonds are convenient. Subsequently, those compounds were successfully applied in vivo for controlling gene expression in E. coli via blue light illumination. Furthermore, benzoate-based expression systems were subjected to light control by establishing a novel photocaged salicylic acid derivative. Besides its synthesis and in vitro characterization, we demonstrate the challenging choice of a suitable promoter system for light-controlled gene expression in E. coli. We illustrate various bottlenecks during both photocaged inducer synthesis and in vivo application and possibilities to overcome them. These findings pave the way towards novel caged inducer-dependent systems for wavelength-selective gene expression.
Collapse
Affiliation(s)
- Fabian Hogenkamp
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Vera Ophoven
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Mona Haase
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Claus Bier
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Dennis Binder
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf at Forschungszentrum JülichStetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
| | - Jörg Pietruszka
- Institute of Bioorganic ChemistryHeinrich Heine University Düsseldorf at Forschungszentrum Jülich Stetternicher Forst52426JülichGermany
- Bioeconomy Science Center (BioSC)
- Institute of Bio- and Geosciences (IBG-1: Biotechnology)Forschungszentrum Jülich GmbH52426JülichGermany
| |
Collapse
|
28
|
Rahman SM, Martin EC, Melvin AT. Co-culture of Two Different Cell Lines in a Two-Layer Microfluidic Device. Methods Mol Biol 2022; 2535:33-47. [PMID: 35867220 DOI: 10.1007/978-1-0716-2513-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microfluidic devices have become a promising alternative approach for cellular co-culture. Many approaches incorporate a semipermeable barrier to physically separate, yet chemically connect, two cell types; however, the majority of these approaches utilize batch culture conditions which can result in nutrient depletion and waste accumulation. This chapter describes an alternative approach that allows for the continuous infusion of media, relieving the constraints of batch culture. The microfluidic device consists of two separate layers: a bottom layer of 3% (w/v) agarose to facilitate chemical diffusion and a top polydimethylsiloxane (PDMS) layer into which four parallel fluidic channels were imprinted. The microfluidic approach allows for facile visualization of cells with light microscopy and the ability to add (or subtract) drugs or biomolecules to interrogate the system or modulate the cellular response. Finally, the approach allows for terminal immunostaining of either (or both) cell types.
Collapse
Affiliation(s)
- Sharif M Rahman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Elizabeth C Martin
- Department of Agricultural and Biological Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
29
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
30
|
Abstract
Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia.
Collapse
|
31
|
Four species of bacteria deterministically assemble to form a stable biofilm in a millifluidic channel. NPJ Biofilms Microbiomes 2021; 7:64. [PMID: 34354076 PMCID: PMC8342524 DOI: 10.1038/s41522-021-00233-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Multispecies microbial adherent communities are widespread in nature and organisms, although the principles of their assembly and development remain unclear. Here, we test the possibility of establishing a simplified but relevant model of multispecies biofilm in a non-invasive laboratory setup for the real-time monitoring of community development. We demonstrate that the four chosen species (Bacillus thuringiensis, Pseudomonas fluorescens, Kocuria varians, and Rhodocyclus sp.) form a dynamic community that deterministically reaches its equilibrium after ~30 h of growth. We reveal the emergence of complexity in this simplified community as reported by an increase in spatial heterogeneity and non-monotonic developmental kinetics. Importantly, we find interspecies interactions consisting of competition for resources-particularly oxygen-and both direct and indirect physical interactions. The simplified experimental model opens new avenues to the study of adherent bacterial communities and their behavior in the context of rapid global change.
Collapse
|
32
|
Burmeister A, Akhtar Q, Hollmann L, Tenhaef N, Hilgers F, Hogenkamp F, Sokolowsky S, Marienhagen J, Noack S, Kohlheyer D, Grünberger A. (Optochemical) Control of Synthetic Microbial Coculture Interactions on a Microcolony Level. ACS Synth Biol 2021; 10:1308-1319. [PMID: 34075749 DOI: 10.1021/acssynbio.0c00382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic microbial cocultures carry enormous potential for applied biotechnology and are increasingly the subject of fundamental research. So far, most cocultures have been designed and characterized based on bulk cultivations without considering the potentially highly heterogeneous and diverse single-cell behavior. However, an in-depth understanding of cocultures including their interacting single cells is indispensable for the development of novel cultivation approaches and control of cocultures. We present the development, validation, and experimental characterization of an optochemically controllable bacterial coculture on a microcolony level consisting of two Corynebacterium glutamicum strains. Our coculture combines an l-lysine auxotrophic strain together with a l-lysine-producing variant carrying the genetically IPTG-mediated induction of l-lysine production. We implemented two control approaches utilizing IPTG as inducer molecule. First, unmodified IPTG was supplemented to the culture enabling a medium-based control of the production of l-lysine, which serves as the main interacting component. Second, optochemical control was successfully performed by utilizing photocaged IPTG activated by appropriate illumination. Both control strategies were validated studying cellular growth on a microcolony level. The novel microfluidic single-cell cultivation strategies applied in this work can serve as a blueprint to validate cellular control strategies of synthetic mono- and cocultures with single-cell resolution at defined environmental conditions.
Collapse
Affiliation(s)
- Alina Burmeister
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, 33615 Bielefeld, Germany
| | - Qiratt Akhtar
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lina Hollmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Fabian Hogenkamp
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sascha Sokolowsky
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Aachener Verfahrenstechnik (AVT-MSB), RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
33
|
Ceballos-González CF, Bolívar-Monsalve EJ, Quevedo-Moreno DA, Lam-Aguilar LL, Borrayo-Montaño KI, Yee-de León JF, Zhang YS, Alvarez MM, Trujillo-de Santiago G. High-Throughput and Continuous Chaotic Bioprinting of Spatially Controlled Bacterial Microcosms. ACS Biomater Sci Eng 2021; 7:2408-2419. [PMID: 33979127 DOI: 10.1021/acsbiomaterials.0c01646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microorganisms do not work alone but instead function as collaborative microsocieties. The spatial distribution of different bacterial strains (micro-biogeography) in a shared volumetric space and their degree of intimacy greatly influences their societal behavior. Current microbiological techniques are commonly focused on the culture of well-mixed bacterial communities and fail to reproduce the micro-biogeography of polybacterial societies. Here, we bioprinted fine-scale bacterial microcosms using chaotic flows induced by a printhead containing a static mixer. This straightforward approach (i.e., continuous chaotic bacterial bioprinting) enables the fabrication of hydrogel constructs with intercalated layers of bacterial strains. These multilayered constructs are used to analyze how the spatial distributions of bacteria affect their social behavior. For example, we show that bacteria within these biological microsystems engage in either cooperation or competition, depending on the degree of shared interface. The extent of inhibition in predator-prey scenarios (i.e., probiotic-pathogen bacteria) increases when bacteria are in greater intimacy. Furthermore, two Escherichia coli strains exhibit competitive behavior in well-mixed microenvironments, whereas stable coexistence prevails for longer times in spatially structured communities. We anticipate that chaotic bioprinting will contribute to the development of a greater complexity of polybacterial microsystems, tissue-microbiota models, and biomanufactured materials.
Collapse
Affiliation(s)
| | | | - Diego Alonso Quevedo-Moreno
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, México
| | - Li Lu Lam-Aguilar
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, México
| | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge 02139, Massachusetts United States
| | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, México.,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, México
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, México.,Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, México
| |
Collapse
|
34
|
Menezes RC, Piechulla B, Warber D, Svatoš A, Kai M. Metabolic Profiling of Rhizobacteria Serratia plymuthica and Bacillus subtilis Revealed Intra- and Interspecific Differences and Elicitation of Plipastatins and Short Peptides Due to Co-cultivation. Front Microbiol 2021; 12:685224. [PMID: 34135882 PMCID: PMC8200778 DOI: 10.3389/fmicb.2021.685224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Rhizobacteria live in diverse and dynamic communities having a high impact on plant growth and development. Due to the complexity of the microbial communities and the difficult accessibility of the rhizosphere, investigations of interactive processes within this bacterial network are challenging. In order to better understand causal relationships between individual members of the microbial community of plants, we started to investigate the inter- and intraspecific interaction potential of three rhizobacteria, the S. plymuthica isolates 4Rx13 and AS9 and B. subtilis B2g, using high resolution mass spectrometry based metabolic profiling of structured, low-diversity model communities. We found that by metabolic profiling we are able to detect metabolite changes during cultivation of all three isolates. The metabolic profile of S. plymuthica 4Rx13 differs interspecifically to B. subtilis B2g and surprisingly intraspecifically to S. plymuthica AS9. Thereby, the release of different secondary metabolites represents one contributing factor of inter- and intraspecific variations in metabolite profiles. Interspecific co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g showed consistently distinct metabolic profiles compared to mono-cultivated species. Thereby, putative known and new variants of the plipastatin family are increased in the co-cultivation of S. plymuthica 4Rx13 and B. subtilis B2g. Interestingly, intraspecific co-cultivation of S. plymuthica 4Rx13 and S. plymuthica AS9 revealed a distinct interaction zone and showed distinct metabolic profiles compared to mono-cultures. Thereby, several putative short proline-containing peptides are increased in co-cultivation of S. plymuthica 4Rx13 with S. plymuthica AS9 compared to mono-cultivated strains. Our results demonstrate that the release of metabolites by rhizobacteria alters due to growth and induced by social interactions between single members of the microbial community. These results form a basis to elucidate the functional role of such interaction-triggered compounds in establishment and maintenance of microbial communities and can be applied under natural and more realistic conditions, since rhizobacteria also interact with the plant itself and many other members of plant and soil microbiota.
Collapse
Affiliation(s)
- Riya C Menezes
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Birgit Piechulla
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Dörte Warber
- Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Research Group Mass Spectrometry/Proteomics, Max-Planck Institute for Chemical Ecology, Jena, Germany.,Department of Biochemistry, University of Rostock, Institute for Biological Sciences, Rostock, Germany
| |
Collapse
|
35
|
Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol 2021; 42:46-72. [PMID: 33980092 DOI: 10.1080/07388551.2021.1921691] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The application of microbial co-cultures is now recognized in the fields of biotechnology, ecology, and medicine. Understanding the biological interactions that govern the association of microorganisms would shape the way in which artificial/synthetic co-cultures or consortia are developed. The ability to accurately predict and control cell-to-cell interactions fully would be a significant enabler in synthetic biology. Co-culturing method development holds the key to strategically engineer environments in which the co-cultured microorganism can be monitored. Various approaches have been employed which aim to emulate the natural environment and gain access to the untapped natural resources emerging from cross-talk between partners. Amongst these methods are the use of a communal liquid medium for growth, use of a solid-liquid interface, membrane separation, spatial separation, and use of microfluidics systems. Maximizing the information content of interactions monitored is one of the major challenges that needs to be addressed by these designs. This review critically evaluates the significance and drawbacks of the co-culturing approaches used to this day in biotechnological applications, relevant to biomanufacturing. It is recommended that experimental results for a co-cultured species should be validated with different co-culture approaches due to variations in interactions that could exist as a result of the culturing method selected.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Gloria Padmaperuma
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
| | - Supattra Maneein
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK.,Department of Pharmaceutical, Chemical & Environmental Sciences, The University of Greenwich, Kent, UK
| | | |
Collapse
|
36
|
Hu B, Xu P, Ma L, Chen D, Wang J, Dai X, Huang L, Du W. One cell at a time: droplet-based microbial cultivation, screening and sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:169-188. [PMID: 37073344 PMCID: PMC10077293 DOI: 10.1007/s42995-020-00082-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Microbes thrive and, in turn, influence the earth's environment, but most are poorly understood because of our limited capacity to reveal their natural diversity and function. Developing novel tools and effective strategies are critical to ease this dilemma and will help to understand their roles in ecology and human health. Recently, droplet microfluidics is emerging as a promising technology for microbial studies with value in microbial cultivating, screening, and sequencing. This review aims to provide an overview of droplet microfluidics techniques for microbial research. First, some critical points or steps in the microfluidic system are introduced, such as droplet stabilization, manipulation, and detection. We then highlight the recent progress of droplet-based methods for microbiological applications, from high-throughput single-cell cultivation, screening to the targeted or whole-genome sequencing of single cells.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xu
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA
| | - Liang Ma
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
| | - Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
37
|
Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia. BIOLOGY 2021; 10:biology10040282. [PMID: 33915681 PMCID: PMC8065533 DOI: 10.3390/biology10040282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Collapse
|
38
|
Liu F, Giometto A, Wu M. Microfluidic and mathematical modeling of aquatic microbial communities. Anal Bioanal Chem 2021; 413:2331-2344. [PMID: 33244684 PMCID: PMC7990691 DOI: 10.1007/s00216-020-03085-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/27/2023]
Abstract
Aquatic microbial communities contribute fundamentally to biogeochemical transformations in natural ecosystems, and disruption of these communities can lead to ecological disasters such as harmful algal blooms. Microbial communities are highly dynamic, and their composition and function are tightly controlled by the biophysical (e.g., light, fluid flow, and temperature) and biochemical (e.g., chemical gradients and cell concentration) parameters of the surrounding environment. Due to the large number of environmental factors involved, a systematic understanding of the microbial community-environment interactions is lacking. In this article, we show that microfluidic platforms present a unique opportunity to recreate well-defined environmental factors in a laboratory setting in a high throughput way, enabling quantitative studies of microbial communities that are amenable to theoretical modeling. The focus of this article is on aquatic microbial communities, but the microfluidic and mathematical models discussed here can be readily applied to investigate other microbiomes.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
39
|
Molinaro C, Da Cunha V, Gorlas A, Iv F, Gallais L, Catchpole R, Forterre P, Baffou G. Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms. RSC Adv 2021; 11:12500-12506. [PMID: 35423787 PMCID: PMC8697133 DOI: 10.1039/d1ra00184a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Culturing cells confined in microscale geometries has been reported in many studies this last decade, in particular following the development of microfluidic-based applications and lab-on-a-chip devices. Such studies usually examine growth of Escherichia coli. In this article, we show that E. coli may be a poor model and that spatial confinement can severely prevent the growth of many micro-organisms. By studying different bacteria and confinement geometries, we determine that the growth inhibition observed for some bacteria results from fast dioxygen depletion, inherent to spatial confinement, and not to any depletion of nutriments. This article unravels the physical origin of confinement problems in cell culture, highlighting the importance of oxygen depletion, and paves the way for the effective culturing of bacteria in confined geometries by demonstrating enhanced cell growth in confined geometries in the proximity of air bubbles.
Collapse
Affiliation(s)
- Céline Molinaro
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille Marseille France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Aurore Gorlas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - François Iv
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille Marseille France
| | - Laurent Gallais
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille Marseille France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille University, Centrale Marseille Marseille France
| |
Collapse
|
40
|
Du H, Xu W, Zhang Z, Han X. Bacterial Behavior in Confined Spaces. Front Cell Dev Biol 2021; 9:629820. [PMID: 33816474 PMCID: PMC8012557 DOI: 10.3389/fcell.2021.629820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022] Open
Abstract
In confined spaces, bacteria exhibit unexpected cellular behaviors that are related to the biogeochemical cycle and human health. Types of confined spaces include lipid vesicles, polymer vesicles, emulsion droplets, microfluidic chips, and various laboratory-made chambers. This mini-review summarizes the behaviors of living bacteria in these confined spaces, including (a) growth and proliferation, (b) cell communication, and (c) motion. Future trends and challenges are also discussed in this paper.
Collapse
Affiliation(s)
- Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.,Center for Marine Antifouling Engineering Technology of Shandong Province, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhizhou Zhang
- Center for Marine Antifouling Engineering Technology of Shandong Province, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
41
|
Schlembach I, Grünberger A, Rosenbaum MA, Regestein L. Measurement Techniques to Resolve and Control Population Dynamics of Mixed-Culture Processes. Trends Biotechnol 2021; 39:1093-1109. [PMID: 33573846 PMCID: PMC7612867 DOI: 10.1016/j.tibtech.2021.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Microbial mixed cultures are gaining increasing attention as biotechnological production systems, since they offer a large but untapped potential for future bioprocesses. Effects of secondary metabolite induction and advantages of labor division for the degradation of complex substrates offer new possibilities for process intensification. However, mixed cultures are highly complex, and, consequently, many biotic and abiotic parameters are required to be identified, characterized, and ideally controlled to establish a stable bioprocess. In this review, we discuss the advantages and disadvantages of existing measurement techniques for identifying, characterizing, monitoring, and controlling mixed cultures and highlight promising examples. Moreover, existing challenges and emerging technologies are discussed, which lay the foundation for novel analytical workflows to monitor mixed-culture bioprocesses.
Collapse
Affiliation(s)
- Ivan Schlembach
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Bachstrasse 18K, 07743 Jena, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany; Faculty for Biological Sciences, Friedrich-Schiller-University Jena, Bachstrasse 18K, 07743 Jena, Germany
| | - Lars Regestein
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Adolf-Reichwein-Str. 23, 07745 Jena, Germany.
| |
Collapse
|
42
|
|
43
|
Dynamic Co-Cultivation Process of Corynebacterium glutamicum Strains for the Fermentative Production of Riboflavin. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Residual streams from lignocellulosic processes contain sugar mixtures of glucose, xylose, and mannose. Here, the industrial workhorse Corynebacterium glutamicum was explored as a research platform for the rational utilization of a multiple sugar substrate. The endogenous manA gene was overexpressed to enhance mannose utilization. The overexpression of the xylA gene from Xanthomonas campestris in combination with the endogenous xylB gene enabled xylose consumption by C. glutamicum. Furthermore, riboflavin production was triggered by overexpressing the sigH gene from C. glutamicum. The resulting strains were studied during batch fermentations in flasks and 2 L lab-scale bioreactors separately using glucose, mannose, xylose, and a mixture of these three sugars as a carbon source. The production of riboflavin and consumption of sugars were improved during fed-batch fermentation thanks to a dynamic inoculation strategy of manA overexpressing strain and xylAB overexpressing strain. The final riboflavin titer, yield, and volumetric productivity from the sugar mixture were 27 mg L−1, 0.52 mg g−1, and 0.25 mg L−1 h−1, respectively. It reached a 56% higher volumetric productivity with 45% less by-product formation compared with an equivalent process inoculated with a single strain overexpressing the genes xylAB and manA combined. The results indicate the advantages of dynamic multi strains processes for the conversion of sugar mixtures.
Collapse
|
44
|
Barua N, Herken AM, Stern KR, Reese S, Powers RL, Morrell-Falvey JL, Platt TG, Hansen RR. Simultaneous Discovery of Positive and Negative Interactions Among Rhizosphere Bacteria Using Microwell Recovery Arrays. Front Microbiol 2021; 11:601788. [PMID: 33469450 PMCID: PMC7813777 DOI: 10.3389/fmicb.2020.601788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
Understanding microbe-microbe interactions is critical to predict microbiome function and to construct communities for desired outcomes. Investigation of these interactions poses a significant challenge due to the lack of suitable experimental tools available. Here we present the microwell recovery array (MRA), a new technology platform that screens interactions across a microbiome to uncover higher-order strain combinations that inhibit or promote the function of a focal species. One experimental trial generates 104 microbial communities that contain the focal species and a distinct random sample of uncharacterized cells from plant rhizosphere. Cells are sequentially recovered from individual wells that display highest or lowest levels of focal species growth using a high-resolution photopolymer extraction system. Interacting species are then identified and putative interactions are validated. Using this approach, we screen the poplar rhizosphere for strains affecting the growth of Pantoea sp. YR343, a plant growth promoting bacteria isolated from Populus deltoides rhizosphere. In one screen, we montiored 3,600 microwells within the array to uncover multiple antagonistic Stenotrophomonas strains and a set of Enterobacter strains that promoted YR343 growth. The later demonstrates the unique ability of the platform to discover multi-membered consortia that generate emergent outcomes, thereby expanding the range of phenotypes that can be characterized from microbiomes. This knowledge will aid in the development of consortia for Populus production, while the platform offers a new approach for screening and discovery of microbial interactions, applicable to any microbiome.
Collapse
Affiliation(s)
- Niloy Barua
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, United States
| | - Ashlee M. Herken
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Kyle R. Stern
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, United States
| | - Sean Reese
- Powers and Zahr, Augusta, KS, United States
| | | | | | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Ryan R. Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
45
|
Zhang F, Sun Y, Luo C. Microfluidic approaches for synthetic gene circuits’ construction and analysis. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Wright NR, Rønnest NP, Sonnenschein N. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats. Front Bioeng Biotechnol 2020; 8:579841. [PMID: 33392163 PMCID: PMC7775484 DOI: 10.3389/fbioe.2020.579841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in continuous manufacturing within the bioprocessing community. In this context, the chemostat process is an important unit operation. The current application of chemostat processes in industry is limited although many high yielding processes are reported in literature. In order to reach the full potential of the chemostat in continuous manufacture, the output should be constant. However, adaptation is often observed resulting in changed productivities over time. The observed adaptation can be coupled to the selective pressure of the nutrient-limited environment in the chemostat. We argue that population heterogeneity should be taken into account when studying adaptation in the chemostat. We propose to investigate adaptation at the single-cell level and discuss the potential of different single-cell technologies, which could be used to increase the understanding of the phenomena. Currently, none of the discussed single-cell technologies fulfill all our criteria but in combination they may reveal important information, which can be used to understand and potentially control the adaptation.
Collapse
Affiliation(s)
- Naia Risager Wright
- Novo Nordisk A/S, Bagsvaerd, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
47
|
Schmitz J, Täuber S, Westerwalbesloh C, von Lieres E, Noll T, Grünberger A. Development and application of a cultivation platform for mammalian suspension cell lines with single-cell resolution. Biotechnol Bioeng 2020; 118:992-1005. [PMID: 33200818 DOI: 10.1002/bit.27627] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
In bioproduction processes, cellular heterogeneity can cause unpredictable process outcomes or even provoke process failure. Still, cellular heterogeneity is not examined systematically in bioprocess research and development. One reason for this shortcoming is the applied average bulk analyses, which are not able to detect cell-to-cell differences. In this study, we present a microfluidic tool for mammalian single-cell cultivation (MaSC) of suspension cells. The design of our platform allows cultivation in highly controllable environments. As a model system, Chinese hamster ovary cells (CHO-K1) were cultivated over 150 h. Growth behavior was analyzed on a single-cell level and resulted in growth rates between 0.85 and 1.16 day-1 . At the same time, heterogeneous growth and division behavior, for example, unequal division time, as well as rare cellular events like polynucleation or reversed mitosis were observed, which would have remained undetected in a standard population analysis based on average measurements. Therefore, MaSC will open the door for systematic single-cell analysis of mammalian suspension cells. Possible fields of application represent basic research topics like cell-to-cell heterogeneity, clonal stability, pharmaceutical drug screening, and stem cell research, as well as bioprocess related topics such as media development and novel scale-down approaches.
Collapse
Affiliation(s)
- Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Sarah Täuber
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Christoph Westerwalbesloh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Eric von Lieres
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
48
|
Ortseifen V, Viefhues M, Wobbe L, Grünberger A. Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Front Bioeng Biotechnol 2020; 8:589074. [PMID: 33282849 PMCID: PMC7691494 DOI: 10.3389/fbioe.2020.589074] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Microfluidics and novel lab-on-a-chip applications have the potential to boost biotechnological research in ways that are not possible using traditional methods. Although microfluidic tools were increasingly used for different applications within biotechnology in recent years, a systematic and routine use in academic and industrial labs is still not established. For many years, absent innovative, ground-breaking and “out-of-the-box” applications have been made responsible for the missing drive to integrate microfluidic technologies into fundamental and applied biotechnological research. In this review, we highlight microfluidics’ offers and compare them to the most important demands of the biotechnologists. Furthermore, a detailed analysis in the state-of-the-art use of microfluidics within biotechnology was conducted exemplarily for four emerging biotechnological fields that can substantially benefit from the application of microfluidic systems, namely the phenotypic screening of cells, the analysis of microbial population heterogeneity, organ-on-a-chip approaches and the characterisation of synthetic co-cultures. The analysis resulted in a discussion of potential “gaps” that can be responsible for the rare integration of microfluidics into biotechnological studies. Our analysis revealed six major gaps, concerning the lack of interdisciplinary communication, mutual knowledge and motivation, methodological compatibility, technological readiness and missing commercialisation, which need to be bridged in the future. We conclude that connecting microfluidics and biotechnology is not an impossible challenge and made seven suggestions to bridge the gaps between those disciplines. This lays the foundation for routine integration of microfluidic systems into biotechnology research procedures.
Collapse
Affiliation(s)
- Vera Ortseifen
- Proteome and Metabolome Research, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Lutz Wobbe
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
49
|
Hengoju S, Tovar M, Man DKW, Buchheim S, Rosenbaum MA. Droplet Microfluidics for Microbial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:129-157. [PMID: 32888037 DOI: 10.1007/10_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Droplet microfluidics has recently evolved as a prominent platform for high-throughput experimentation for various research fields including microbiology. Key features of droplet microfluidics, like compartmentalization, miniaturization, and parallelization, have enabled many possibilities for microbiology including cultivation of microorganisms at a single-cell level, study of microbial interactions in a community, detection and analysis of microbial products, and screening of extensive microbial libraries with ultrahigh-throughput and minimal reagent consumptions. In this book chapter, we present several aspects and applications of droplet microfluidics for its implementation in various fields of microbial biotechnology. Recent advances in the cultivation of microorganisms in droplets including methods for isolation and domestication of rare microbes are reviewed. Similarly, a comparison of different detection and analysis techniques for microbial activities is summarized. Finally, several microbial applications are discussed with a focus on exploring new antimicrobials and high-throughput enzyme activity screening. We aim to highlight the advantages, limitations, and current developments in droplet microfluidics for microbial biotechnology while envisioning its enormous potential applications in the future.
Collapse
Affiliation(s)
- Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - DeDe Kwun Wai Man
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Stefanie Buchheim
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany.
| |
Collapse
|
50
|
Poonoosamy J, Soulaine C, Burmeister A, Deissmann G, Bosbach D, Roman S. Microfluidic flow-through reactor and 3D Raman imaging for in situ assessment of mineral reactivity in porous and fractured porous media. LAB ON A CHIP 2020; 20:2562-2571. [PMID: 32573607 DOI: 10.1039/d0lc00360c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An in-depth understanding of dissolution and precipitation of minerals in porous and fractured porous media and the complex feedback on the transport of fluids is essential for various subsurface applications. In this context, we developed a novel non-destructive "lab-on-chip" approach for quantitative in situ assessments of mineralogical changes in porous media. Our experimental approach involves a microfluidic flow-through reactor of reactive homogeneous and heterogeneous (fractured) porous media coupled with high-resolution imaging. Here, the reactive medium consists of compacted celestine grains seeded in a reservoir within the microfluidic chip. This medium reacts with a barium chloride solution injected into the microreactor at a constant flow rate, leading to the dissolution of celestine and growth of barite. Various seeding processes of the mineral grains allow the creation of homogeneous reactive porous media or the introduction of large heterogeneities such as fractures. Hence, our approach enables high-resolution investigations of reactive transport in fractured porous media. The use of confocal Raman spectroscopic techniques enables the spatio-temporal visualization of the mineral transformation at the pore-scale in two- and three-dimensions. Moreover, advanced pore-scale modelling correlates the hydrological heterogeneities to the geochemical observations in the micro-reactor, which explains the observed discrepancies between homogeneous and heterogeneous reactive media. Eventually, the proposed methodology can be applied to other chemical systems to provide new insights into hydro-geochemical coupling in porous and fractured porous media as well as high-fidelity datasets to benchmark reactive transport codes that are currently under development.
Collapse
Affiliation(s)
- Jenna Poonoosamy
- Institute of Energy and Climate Research (IEK-6): Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|