1
|
Mansouri A, Farsani NK, Javanmard A, Eskandarisani M, Mohebbi S, Tajik M, Sadeghi S, Yeganeh FE, Noorbazargan H. Combating antimicrobial resistance: In vitro and in vivo efficacy of berberine-loaded metal-organic frameworks with hyaluronic acid coating. Int J Biol Macromol 2025; 308:142253. [PMID: 40120889 DOI: 10.1016/j.ijbiomac.2025.142253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
To create a new antimicrobial delivery system, we synthesized UiO-66-NH₂ (UN) metal-organic frameworks (MOF) loaded with berberine (UNB) and coated with hyaluronic acid (UNB@H) as a novel antimicrobial delivery system. Physicochemical techniques were used to successfully produce and characterize UNB@H nanoparticles, confirming their uniform size, excellent encapsulation efficiency, and structural integrity. pH-responsive drug release was 69.47% after 72 h, observed, with a sustained release under acidic conditions. The findings showed that UNB and UNB@H have extremely strong antibacterial activity. The findings of anti-biofilm activity tests showed that UNB@H significantly inhibited biofilms and downregulated the expression of efflux pump genes (MexA, MexB, norA, norB) and biofilm-related genes (icaA, icaB, ndvB, pelA) in all strains. The toxicity results indicated that the UNB@H exhibited 97.55 % cytotoxicity on HFF cells at a concentration of 50 μg/ml and 3.9% hemolysis, demonstrating excellent hemocompatibility. Additionally, H&E analysis confirmed in vivo wound infection investigations that demonstrated efficient infection control and faster healing. These results highlight UNB@H's potential as a multipurpose platform to fight antimicrobial resistance (AMR) by focusing on resistance mechanisms, biofilm formation, and offering biocompatible treatments for MDR infections.
Collapse
Affiliation(s)
- Afsoun Mansouri
- School of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasim Kaveh Farsani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Alireza Javanmard
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-1503, United States
| | | | - Shekoufe Mohebbi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammadreza Tajik
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA 15219, United States
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Cai XL, Chen Y, Liu L, Qin LK, Jia YL. Structures and interactions of bamboo shoot protein-shellac complexes prepared by pH-driven method. Int J Biol Macromol 2025; 298:139966. [PMID: 39826730 DOI: 10.1016/j.ijbiomac.2025.139966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
A previous study showed that the by-product of square bamboo shoot processing was rich in protein and contained many essential amino acids good for health. Bamboo shoot protein (BSP) had great potential as a naturally occurring functional protein. However, the utilization of single plant protein is limited due to its unstable degradation and reduced bio-activity in the gastrointestinal tract. Improving the stability and functional properties of BSP by complexion with other natural polymers is a potential strategy. And shellac (SHL), as a natural polymer, has good pH responsiveness and thermal stability. In this study, bamboo shoot protein-shellac (BS) complexes of different mass ratios were prepared by pH-driven method, which showed that the covalent and non-covalent interactions between the two reduced the particle size. At the ratio of 2:1 (BS-2:1), the complex generated had the smallest size of 193.97 nm, PDI of <0.20, and ζ-potential of -27.99 mV, its solution had higher stability and higher thermal tolerance. FTIR and fluorescence intensity further demonstrated that the pH-driven method resulted in structural changes of BSP and SHL, promoted inter-molecular interactions (mainly hydrophobic interactions, electrostatic interactions, and hydrogen bonding), modified the instability of BSP, and generated BS complexes with excellent physical, chemical, and functional properties. This study gives us a better understanding of BS complexes and lays the foundation for the loading of active compounds.
Collapse
Affiliation(s)
- Xiao-Li Cai
- School of Liquor and Food Engineering, Guizhou University, 550025 Guiyang, China
| | - Yue Chen
- School of Liquor and Food Engineering, Guizhou University, 550025 Guiyang, China
| | - Liu Liu
- School of Liquor and Food Engineering, Guizhou University, 550025 Guiyang, China
| | - Li-Kang Qin
- School of Liquor and Food Engineering, Guizhou University, 550025 Guiyang, China
| | - Yu-Long Jia
- School of Liquor and Food Engineering, Guizhou University, 550025 Guiyang, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Ding J, Yan Z, Peng L, Li J, Yang F, Zheng D. Inhibitory effects of berberine on fungal growth, biofilm formation, virulence, and drug resistance as an antifungal drug and adjuvant with prospects for future applications. World J Microbiol Biotechnol 2024; 41:5. [PMID: 39690297 DOI: 10.1007/s11274-024-04223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Berberine (BBR), an isoquinoline alkaloid found in medicinal plants such as Coptidis rhizoma, Berberis sp., and Hydrastis canadensis, is a distinctive compound known for its dual ability to exhibit broad-spectrum antifungal activity while offering beneficial effects to the host. These attributes make it a highly valuable candidate for antifungal therapy and as an antibiotic adjuvant. This review provides a comprehensive evaluation of BBR's antifungal properties, focusing on its in vitro and in vivo activity, underlying mechanisms, and its influence on fungal pathogenicity, including virulence, biofilm formation, and resistance. Additionally, the antifungal potential of BBR extracts, derivatives, and nanoformulations is examined in detail. BBR demonstrates fungicidal effects through multiple mechanisms. It targets critical fungal components such as mitochondria, cell membranes, and cell walls, while also inhibiting enzymatic activity and transcription processes. Furthermore, it suppresses the expression of virulence factors, effectively diminishing fungal pathogenicity. Beyond its direct antifungal activity, BBR exerts beneficial effects on the host by modulating gut microbiota, thereby bolstering host defenses against fungal infections and reducing potential adverse effects. BBR's interaction with conventional antifungal drugs presents a unique complexity, particularly in the context of resistance mechanisms. When used in combination therapies, conventional antifungal drugs enhance the intracellular accumulation of BBR, thereby amplifying its antifungal potency as the primary active agent. These synergistic effects position BBR as a promising candidate for combination strategies, especially in addressing drug-resistant fungal infections and persistent biofilms. As antifungal resistance and biofilm-associated infections continue to rise, the multifaceted properties of BBR and its advanced formulations highlight their significant therapeutic potential. However, the scarcity of robust in vivo and clinical studies limits a full understanding of its efficacy and safety profile. To bridge this gap, future investigations should prioritize well-designed in vivo and clinical trials to thoroughly evaluate the therapeutic effectiveness and safety of BBR in diverse clinical settings. This approach could pave the way for its broader application in combating fungal infections.
Collapse
Affiliation(s)
- Junping Ding
- Department of Pharmacy, Second People's Hospital of Ya'an City, Ya'an, 625000, China
| | - Zhong Yan
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Liang Peng
- Ya'an Polytechnic College Affiliated Hospital, Ya'an, 625000, China
| | - Jing Li
- Department of Wellness and Nursing, Tianfu College of SWUFE, Deyang, 618000, China
| | - Fuzhou Yang
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| | - Dongming Zheng
- Department of Nuclear Medicine, Ya'an People's Hospital, Ya'an, 625000, China.
| |
Collapse
|
4
|
Zuorro A, Lavecchia R, Contreras-Ropero JE, Martínez JBG, Barajas-Ferreira C, Barajas-Solano AF. Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. Int J Mol Sci 2024; 25:11826. [PMID: 39519377 PMCID: PMC11545849 DOI: 10.3390/ijms252111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Infectious diseases have significantly shaped human history, leading to significant advancements in medical science. The discovery and development of antibiotics represented a critical breakthrough, but the rise of antibiotic-resistant pathogens now presents a serious global health threat. Due to the limitations of current synthetic antimicrobials, such as toxicity and environmental concerns, it is essential to explore alternative solutions. Algae, particularly microalgae and cyanobacteria, have emerged as promising sources of bioactive antimicrobial compounds. This review provides a comprehensive analysis of the antimicrobial properties of algal-derived compounds, including polysaccharides, fatty acids, and phenols, which have shown effectiveness against multi-drug-resistant bacteria. A co-occurrence bibliometric analysis using VOSviewer highlighted five key research clusters: antibiotic resistance, algal extracts, biosynthesis, water treatment, and novel pharmacological compounds. Furthermore, the primary mechanisms of action of these bioactive compounds, such as the inhibition of protein synthesis and cell membrane disruption, were identified, demonstrating their potential against both common and multi-resistant pathogens. Future research should prioritize optimizing algal biomass production, utilizing genetic and metabolic engineering, and creating innovative delivery systems to enhance the efficient production of bioactive compounds.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Jefferson E. Contreras-Ropero
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Janet B. García Martínez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Crisóstomo Barajas-Ferreira
- School of Chemical Engineering, Universidad Industrial de Santander, Cra 27, Calle 9, Bucaramanga 680006, Colombia;
| | - Andrés F. Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| |
Collapse
|
5
|
Piri M, Mahdavi AH, Hajian M, Nasr-Esfahani MH, Soltani L, Vash NT. Effects of nano-berberine and berberine loaded on green synthesized selenium nanoparticles on cryopreservation and in vitro fertilization of goat sperm. Sci Rep 2024; 14:24171. [PMID: 39406889 PMCID: PMC11480442 DOI: 10.1038/s41598-024-75792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
After cryopreservation, reactive oxygen species (ROS) can damage sperm. Antioxidants are the primary defense against oxidative damage. Berberine is a bioactive alkaloid found in Berberis vulgaris, Curcuma longa, and Ergon grape, and is a potent antioxidant. Due to the negative effects of free radicals in oxidative stress processes, antioxidant chemicals are required to protect sperm. However, berberine has low bioavailability, making it less effective. Loading techniques on nanoparticles and nanotechnology can help overcome this limitation. Selenium nanoparticles were synthesized with barberry extract, and berberine was loaded on them. Berberine nanoparticles were then synthesized using anti-solvent precipitation with a syringe pump technique. The synthesis of nanoparticles was confirmed by EDX, UV-visible, FE-SEM, Zeta-Potential, and FTIR tests. In this experiment, we aim to investigate the impact of nano-berberine and berberine loaded on Se-NPs on goat sperm parameters after freeze-thawing. We assessed the generation of reactive oxygen species (ROS), in vitro fertility, and the subsequent embryo development of zygote with treated sperm after determining the optimal concentration of various chemicals on sperm parameters. The study found that all treatments had significant differences from the control group in terms of motility, viability, DNA and membrane integrity, ROS level, lipid peroxidation, in vitro fertility ability, and the capacity to develop inseminated oocytes (p < 0.05). The most significant outcomes were observed with berberine loaded on Se-NPs and the combination of selenium nanoparticles with berberine nanoparticles.
Collapse
Affiliation(s)
- Mehrangiz Piri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
6
|
Wang A, Madden LA, Paunov VN. Enhanced anticancer effect of lysozyme-functionalized metformin-loaded shellac nanoparticles on a 3D cell model: role of the nanoparticle and payload concentrations. Biomater Sci 2024; 12:4735-4746. [PMID: 39083027 DOI: 10.1039/d4bm00692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Here we used a 3D human hepatic tumour cell culture model to assess the in vitro efficacy of "active" metformin-loaded nanoparticles (NPs) as anticancer therapeutics. The metformin nanocarrier design was repurposed from previous studies targeting bacterial and fungal biofilms with antimicrobials loaded in protease-coated nanoparticles. These active nanocarriers were constructed with shellac cores loaded with metformin as the anticancer agent and featured a surface coating of the cationic protease lysozyme. The lysozyme's role as a nanocarrier surface coating is to partially digest the extracellular matrix (ECM) of the 3D tumour cell culture which increases its porosity and the nanocarrier penetration. Hep-G2 hepatic 3D clusteroids were formed using a water-in-water (w/w) Pickering emulsion based on an aqueous two-phase system (ATPS). Our specific metformin nano-formulation, comprising 0.25 wt% lysozyme-coated, 0.4 wt% metformin-loaded, 0.2 wt% shellac NPs sterically stabilized with 0.25 wt% Poloxamer 407, demonstrated significantly enhanced anticancer efficiency on 3D hepatic tumour cell clusteroids. We examined the role of the lysozyme surface functionality of the metformin nanocarriers in their ability to kill both 2D and 3D hepatic tumour cell cultures. The anticancer efficiency at high metformin payloads was compared with that at a high concentration of nanocarriers with a lower metformin payload. It was discovered that the high metformin payload NPs were more efficient than the lower metformin payload NPs with a higher nanocarrier concentration. This study introduces a reliable in vitro model for potential targeting of solid tumours with smart nano-therapeutics, presenting a viable alternative to animal testing for evaluating anticancer nanotechnologies.
Collapse
Affiliation(s)
- Anheng Wang
- Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau SAR, China
- Zhuhai UM Science and Technology Research Institute, University of Macau, Hengqin, Guangdong, China
| | - Leigh A Madden
- Centre for Biomedicine, Hull York Medical School, University of Hull, HU67RX, UK
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000, Kazakhstan.
| |
Collapse
|
7
|
Baek J, Ramasamy M, Cho DG, Chung Soo CC, Kapar S, Lee JY, Tam KC. A new approach for the encapsulation of Saccharomyces cerevisiae using shellac and cellulose nanocrystals. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Filby BW, Weldrick PJ, Paunov VN. Overcoming Beta-Lactamase-Based Antimicrobial Resistance by Nanocarrier-Loaded Clavulanic Acid and Antibiotic Cotreatments. ACS APPLIED BIO MATERIALS 2022; 5:3826-3840. [PMID: 35819369 DOI: 10.1021/acsabm.2c00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antimicrobial resistance (AMR) is one of the major threats to modern healthcare. Many types of bacteria have developed resistance to multiple antibiotic treatments, while additional antibiotics have not been recently brought to market. One approach to counter AMR based on the beta-lactamase enzyme has been to use cotreatments of an antibiotic and an inhibitor, to enhance the antibiotic action. Here, we aimed to enhance this technique by developing nanocarriers of two cationic beta-lactam class antibiotics, amoxicillin, and ticarcillin, combined with a beta-lactamase inhibitor, clavulanic acid, which can potentially overcome this type of AMR. We demonstrate for the first time that beta-lactamase inhibitor-loaded nanocarriers in cotreatments with either free or nanocarrier-loaded beta-lactam antibiotics can enhance their effectiveness further than when used alone. We use surface-functionalized shellac-/Poloxamer 407-stabilized antibiotic nanocarriers on Pseudomonas aeruginosa, which is susceptible to ticarcillin but is resistant to amoxicillin. We show an amplification of the antibiotic effect of amoxicillin and ticarcillin loaded in shellac nanoparticles, both alone and as a cotreatment with free or nanocarrier-loaded clavulanic acid. We also report a significant increase in the antimicrobial effects of clavulanic acid loaded in such nanocarriers as a cotreatment. We explain the increased antimicrobial activity of the cationically functionalized antibiotic-loaded nanoparticles with electrostatic attraction to the bacterial cell wall, which delivers higher local antibiotic and inhibitor concentrations. The effect is due to the accumulation of the clavulanic acid-loaded nanocarriers on the bacterial cell walls that allows a higher proportion of the inhibitor to engage with the produced intracellular beta-lactamases. These nanocarriers were also found to have a very low cytotoxic effect against human keratinocytes, which shows great potential for overcoming enzyme-based AMR.
Collapse
Affiliation(s)
- Benjamin W Filby
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Paul J Weldrick
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, United Kingdom
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave 53, Nur-Sultan 020000, Kazakhstan
| |
Collapse
|
9
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
10
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
11
|
Wang A, Weldrick PJ, Madden LA, Paunov VN. Enhanced clearing of Candida biofilms on a 3D urothelial cell in vitro model using lysozyme-functionalized fluconazole-loaded shellac nanoparticles. Biomater Sci 2021; 9:6927-6939. [PMID: 34528638 DOI: 10.1039/d1bm01035b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Candida urinary tract biofilms are increasingly witnessed in nosocomial infections due to reduced immunity of patients and the hospital ecosystem. The indwelling devices utilized to support patients with urethral diseases that connect the unsterilized external environment with the internal environment of the patient are another significant source of urinary tract biofilm infections. Recently, nanoparticle (NP)-associated therapeutics have gained traction in a number of areas, including fighting antibiotic-resistant bacterial biofilm infection. However, most studies on nanotherapeutic delivery have only been carried out in laboratory settings rather than in clinical trials due to the lack of precise in vitro and in vivo models for testing their efficiency. Here we develop a novel biofilm-infected 3D human urothelial cell culture model to test the efficiency of nanoparticle (NP)-based antifungal therapeutics. The NPs were designed based on shellac cores, loaded with fluconazole and coated with the cationic enzyme lysozyme. Our formulation of 0.2 wt% lysozyme-coated 0.02 wt% fluconazole-loaded 0.2 wt% shellac NPs, sterically stabilised by 0.25 wt% poloxamer 407, showed an enhanced efficiency in removing Candida albicans biofilms formed on 3D layer of urothelial cell clusteroids. The NP formulation exhibited low toxicity to urothelial cells. This study provides a reliable in vitro model for Candida urinary tract biofilm infections, which could potentially replace animal models in the testing of such antifungal nanotechnologies. The reproducibility and availability of a well-defined biofilm-infected 3D urothelial cell culture model give valuable insights into the formation and clearing of fungal biofilms and could accelerate the clinical use of antifungal nanotherapeutics.
Collapse
Affiliation(s)
- Anheng Wang
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Paul J Weldrick
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU67RX, UK
| | - Leigh A Madden
- Department of Biomedical Sciences, University of Hull, Hull, HU67RX, UK
| | - Vesselin N Paunov
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
12
|
Al-Obaidy SSM, Greenway GM, Paunov VN. Enhanced Antimicrobial Action of Chlorhexidine Loaded in Shellac Nanoparticles with Cationic Surface Functionality. Pharmaceutics 2021; 13:1389. [PMID: 34575466 PMCID: PMC8470920 DOI: 10.3390/pharmaceutics13091389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022] Open
Abstract
We report on an active nanocarrier for chlorhexidine (CHX) based on sterically stabilized shellac nanoparticles (NPs) with dual surface functionalization, which greatly enhances the antimicrobial action of CHX. The fabrication process for the CHX nanocarrier is based on pH-induced co-precipitation of CHX-DG from an aqueous solution of ammonium shellac and Poloxamer 407 (P407), which serves as a steric stabilizing agent. This is followed by further surface modification with octadecyl trimethyl ammonium bromide (ODTAB) through a solvent change to yield cationic surface functionality. In this study, we assessed the encapsulation efficiency and release kinetics of the novel nanocarrier for CHX. We further examined the antimicrobial effects of the CHX nanocarriers and their individual components in order to gain better insight into how they work, to improve their design and to explore the impacts of their dual functionalization. The antimicrobial actions of CHX loaded in shellac NPs were examined on three different proxy microorganisms: a Gram-negative bacterium (E. coli), a yeast (S. cerevisiae) and a microalgae (C. reinhardtii). The antimicrobial actions of free CHX and CHX-loaded shellac NPs were compared over the same CHX concentration range. We found that the non-coated shellac NPs loaded with CHX showed inferior action compared with free CHX due to their negative surface charge; however, the ODTAB-coated, CHX-loaded shellac NPs strongly amplified the antimicrobial action of the CHX for the tested microorganisms. The enhancement of the CHX antimicrobial action was thought to be due to the increased electrostatic adhesion between the cationic surface of the ODTAB-coated, CHX-loaded shellac NPs and the anionic surface of the cell walls of the microorganisms, ensuring direct delivery of CHX with a high concentration locally on the cell membrane. The novel CHX nanocarriers with enhanced antimicrobial action may potentially find applications in dentistry for the development of more efficient formulations against conditions such as gingivitis, periodontitis and other oral infections, as well as enabling formulations to have lower CHX concentrations.
Collapse
Affiliation(s)
- Saba S. M. Al-Obaidy
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK; (S.S.M.A.-O.); (G.M.G.)
- Department of Chemistry, College of Science, University of Babylon, Hilla 51001, Iraq
| | - Gillian M. Greenway
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK; (S.S.M.A.-O.); (G.M.G.)
| | - Vesselin N. Paunov
- Department of Chemistry, Nazarbayev University, Kabanbay Batyr Ave. 53, Nursultan 010000, Kazakhstan
| |
Collapse
|
13
|
Henry P, Halbus AF, Athab ZH, Paunov VN. Enhanced Antimould Action of Surface Modified Copper Oxide Nanoparticles with Phenylboronic Acid Surface Functionality. Biomimetics (Basel) 2021; 6:19. [PMID: 33804236 PMCID: PMC8006150 DOI: 10.3390/biomimetics6010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Antimould agents are widely used in different applications, such as specialty paints, building materials, wood preservation and crop protection. However, many antimould agents can be toxic to the environment. This work aims to evaluate the application of copper oxide nanoparticles (CuONPs) surface modified with boronic acid (BA) terminal groups as antimould agents. We developed CuONPs grafted with (3-glycidyloxypropyl) trimethoxysilane (GLYMO), coupled with 4-hydroxyphenylboronic acid (4-HPBA), which provided a strong boost of their action as antimould agents. We studied the antimould action of the 4-HPBA-functionalized CuONPs against two mould species: Aspergillus niger (A. niger) and Penicillium chrysogenum (P. chrysogenum). The cis-diol groups of polysaccharides expressed on the mould cell walls can form reversible covalent bonds with the BA groups attached on the CuONPs surface. This allowed them to bind strongly to the mould surface, resulting in a very substantial boost of their antimould activity, which is not based on electrostatic adhesion, as in the case of bare CuONPs. The impact of these BA-surface functionalized nanoparticles was studied by measuring the growth of the mould colonies versus time. The BA-functionalized CuONPs showed significant antimould action, compared to the untreated mould sample at the same conditions and period of time. These results can be applied for the development of more efficient antimould treatments at a lower concentration of active agent with potentially substantial economic and environmental benefits.
Collapse
Affiliation(s)
- Patricia Henry
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
| | - Ahmed F. Halbus
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
- Department of Chemistry, College of Science, University of Babylon, Hilla 51001, Iraq
| | - Zahraa H. Athab
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
- Environmental Research Center, University of Babylon, Hilla 51001, Iraq
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK; (P.H.); (A.F.H.); (Z.H.A.)
- Department of Chemistry, Nazarbayev University, Nursultan 010000, Kazakhstan
| |
Collapse
|
14
|
Weldrick PJ, Hardman MJ, Paunov VN. Superenhanced Removal of Fungal Biofilms by Protease‐Functionalized Amphotericin B Nanocarriers. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Paul J. Weldrick
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Matthew J. Hardman
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| | - Vesselin N. Paunov
- Department of Chemistry and Biochemistry University of Hull Hull HU6 7RX UK
| |
Collapse
|
15
|
Weldrick PJ, Hardman MJ, Paunov VN. Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43902-43919. [PMID: 31718141 DOI: 10.1021/acsami.9b16119] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biofilms are prevalent in chronic wounds and once formed are very hard to remove, which is associated with poor outcomes and high mortality rates. Biofilms are comprised of surface-attached bacteria embedded in an extracellular polymeric substance (EPS) matrix, which confers increased antibiotic resistance and host immune evasion. Therefore, disruption of this matrix is essential to tackle the biofilm-embedded bacteria. Here, we propose a novel nanotechnology to do this, based on protease-functionalized nanogel carriers of antibiotics. Such active antibiotic nanocarriers, surface coated with the protease Alcalase 2.4 L FG, "digest" their way through the biofilm EPS matrix, reach the buried bacteria, and deliver a high dose of antibiotic directly on their cell walls, which overwhelms their defenses. We demonstrated their effectiveness against six wound biofilm-forming bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Klebsiella pneumoniae, Escherichia coli, and Enterococcus faecalis. We confirmed a 6-fold decrease in the biofilm mass and a substantial reduction in bacterial cell density using fluorescence, atomic force, and scanning electron microscopy. Additionally, we showed that co-treatments of ciprofloxacin and Alcalase-coated Carbopol nanogels led to a 3-log reduction in viable biofilm-forming cells when compared to ciprofloxacin treatments alone. Encapsulating an equivalent concentration of ciprofloxacin into the Alcalase-coated nanogel particles boosted their antibacterial effect much further, reducing the bacterial cell viability to below detectable amounts after 6 h of treatment. The Alcalase-coated nanogel particles were noncytotoxic to human adult keratinocyte cells (HaCaT), inducing a very low apoptotic response in these cells. Overall, we demonstrated that the Alcalase-coated nanogels loaded with a cationic antibiotic elicit very strong biofilm-clearing effects against wound-associated biofilm-forming pathogenic bacteria. This nanotechnology approach has the potential to become a very powerful treatment of chronically infected wounds with biofilm-forming bacteria.
Collapse
Affiliation(s)
- Paul J Weldrick
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease , Hull York Medical School , Hull HU6 7RX , U.K
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , U.K
| |
Collapse
|
16
|
PEGylation of shellac-based nanocarriers for enhanced colloidal stability. Colloids Surf B Biointerfaces 2019; 183:110434. [DOI: 10.1016/j.colsurfb.2019.110434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
|
17
|
Halbus AF, Horozov TS, Paunov VN. "Ghost" Silica Nanoparticles of "Host"-Inherited Antibacterial Action. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38519-38530. [PMID: 31609105 DOI: 10.1021/acsami.9b14403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We fabricated surface-rough mesoporous silica nanoparticles ("ghost" SiO2NPs) by using composite mesoporous copper oxide nanoparticles ("host" CuONPs) as templates, which allowed us to mimic their surface morphology. The "host" CuONPs used here as templates, however, had a very high antibacterial effect, with or without functionalization. To evaluate the surface roughness effect on the "ghost" SiO2NPs antibacterial action, we functionalized them with (3-glycidyloxypropyl)trimethoxysilane (GLYMO) to permit additional covalent coupling of 4-hydroxyphenylboronic acid (4-HPBA). The diol groups on the bacterial membrane can form reversible covalent bonds with boronic acid (BA) groups on the "ghost" SiO2NPs surface and bind to the bacteria, resulting in a very strong amplification of their antibacterial activity, which does not depend on electrostatic adhesion. The BA-functionalized "ghost" SiO2NPs showed a very significant antibacterial effect as compared to smooth SiO2NPs of the same surface coating and particle size. We attribute this to the "ghost" SiO2NPs mesoporous surface morphology, which mimics to a certain extent those of the original mesoporous CuONPs used as templates for their preparation. We envisage that the "ghost" SiO2NPs effectively acquire some of the antibacterial properties from the "host" CuONPs, with the same functionality, despite being completely free of copper. The antibacterial effect of the functionalized "ghost" SiO2NPs/GLYMO/4-HPBA on Rhodococcus rhodochrous (R. rhodochrous) and Escherichia coli (E. coli) is much higher than that of the nonfunctionalized "ghost" SiO2NPs or the "ghost" SiO2NPs/GLYMO. The results indicate that the combination of rough surface morphology and strong adhesion of the particle surface to the bacteria can make even benign material such as silica act as a strong antimicrobial agent. Additionally, our BA-functionalized nanoparticles ("ghost" SiO2NPs/GLYMO/4-HPBA) showed no detectable cytotoxic impact against human keratinocytes at particle concentrations, which are effective against bacteria.
Collapse
Affiliation(s)
- Ahmed F Halbus
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , United Kingdom
- Department of Chemistry, College of Science , University of Babylon , Hilla 51001 , Iraq
| | - Tommy S Horozov
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , United Kingdom
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry , University of Hull , Hull HU6 7RX , United Kingdom
| |
Collapse
|
18
|
Halbus AF, Horozov TS, Paunov VN. Controlling the Antimicrobial Action of Surface Modified Magnesium Hydroxide Nanoparticles. Biomimetics (Basel) 2019; 4:E41. [PMID: 31242662 PMCID: PMC6631741 DOI: 10.3390/biomimetics4020041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Magnesium hydroxide nanoparticles (Mg(OH)2NPs) have recently attracted significant attention due to their wide applications as environmentally friendly antimicrobial nanomaterials, with potentially low toxicity and low fabrication cost. Here, we describe the synthesis and characterisation of a range of surface modified Mg(OH)2NPs, including particle size distribution, crystallite size, zeta potential, isoelectric point, X-ray diffraction (XRD), dynamic light scattering (DLS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). We explored the antimicrobial activity of the modified Mg(OH)2NPs on the microalgae (C. reinhardtii), yeast (S. cerevisiae) and Escherichia coli (E. coli). The viability of these cells was evaluated for various concentrations and exposure times with Mg(OH)2NPs. It was discovered that the antimicrobial activity of the uncoated Mg(OH)2NPs on the viability of C. reinhardtii occurred at considerably lower particle concentrations than for S. cerevisiae and E. coli. Our results indicate that the antimicrobial activity of polyelectrolyte-coated Mg(OH)2NPs alternates with their surface charge. The anionic nanoparticles (Mg(OH)2NPs/PSS) have much lower antibacterial activity than the cationic ones (Mg(OH)2NPs/PSS/PAH and uncoated Mg(OH)2NPs). These findings could be explained by the lower adhesion of the Mg(OH)2NPs/PSS to the cell wall, because of electrostatic repulsion and the enhanced particle-cell adhesion due to electrostatic attraction in the case of cationic Mg(OH)2NPs. The results can be potentially applied to control the cytotoxicity and the antimicrobial activity of other inorganic nanoparticles.
Collapse
Affiliation(s)
- Ahmed F Halbus
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK.
- Department of Chemistry, College of Science, University of Babylon, Hilla, Iraq.
| | - Tommy S Horozov
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK.
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull, Hull HU67RX, UK.
| |
Collapse
|
19
|
Halbus AF, Horozov TS, Paunov VN. Self-grafting copper oxide nanoparticles show a strong enhancement of their anti-algal and anti-yeast action. NANOSCALE ADVANCES 2019; 1:2323-2336. [PMID: 36131971 PMCID: PMC9417314 DOI: 10.1039/c9na00099b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/27/2019] [Indexed: 06/10/2023]
Abstract
We have developed and tested copper oxide nanoparticles (CuONPs) grafted with (3-glycidyloxypropyl)trimethoxysilane (GLYMO) and coupled with 4-hydroxyphenylboronic acid (4-HPBA), which provides a very strong boost of their action as anti-algal and anti-yeast agents. The boronic acid terminal groups on the surface of the CuONPs/GLYMO/4-HPBA can form reversible covalent bonds with the diol groups of glycoproteins and carbohydrates expressed on the cell surface where they bind and accumulate, which is not based on electrostatic adhesion. Results showed that, the impact of the 4-HPBA grafted CuONPs on microalgae (C. reinhardtii) and yeast (S. cerevisiae) is several hundred percent higher than that of bare CuONPs and CuONPs/GLYMO at the same particle concentration. SEM and TEM imaging revealed that 4-HPBA-functionalized CuONPs nanoparticles can accumulate more on the cell walls than non-functionalized CuONPs. We found a marked increase of the 4-HPBA functionalized CuONPs action on these microorganisms at shorter incubation times compared with the bare CuONPs at the same conditions. We also showed that the anti-algal action of CuONPs/GLYMO/4-HPBA can be controlled by the concentration of glucose in the media and that the effect is reversible as glucose competes with the diol residues on the algal cell walls for the HPBA groups on the CuONPs. Our experiments with human cell lines incubated with CuONPs/GLYMO/4-HPBA indicated a lack of measurable loss of cell viability at particle concentrations which are effective as anti-algal agents. CuONPs/GLYMO/4-HPBA can be used to drastically reduce the overall CuO concentration in anti-algal and anti-yeast formulations while strongly increasing their efficiency.
Collapse
Affiliation(s)
- Ahmed F Halbus
- Department of Chemistry and Biochemistry, University of Hull Hull HU67RX UK +44 (0)1482 465660
- Department of Chemistry, College of Science, University of Babylon Hilla Iraq
| | - Tommy S Horozov
- Department of Chemistry and Biochemistry, University of Hull Hull HU67RX UK +44 (0)1482 465660
| | - Vesselin N Paunov
- Department of Chemistry and Biochemistry, University of Hull Hull HU67RX UK +44 (0)1482 465660
| |
Collapse
|
20
|
Weldrick PJ, Iveson S, Hardman MJ, Paunov VN. Breathing new life into old antibiotics: overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality. NANOSCALE 2019; 11:10472-10485. [PMID: 31112150 DOI: 10.1039/c8nr10022e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multidrug-resistant pathogens are prevalent in chronic wounds. There is an urgent need to develop novel antimicrobials and formulation strategies that can overcome antibiotic resistance and provide a safe alternative to traditional antibiotics. This work aimed to develop a novel nanocarrier for two cationic antibiotics, tetracycline hydrochloride and lincomycin hydrochloride which can potentially overcome antibiotic resistance. In this study, we report the use of surface functionalised polyacrylic copolymer nanogels as carriers for cationic antibiotics. These nanogels can encapsulate small cationic antimicrobial molecules and act as a drug delivery system. They were further functionalised with a biocompatible cationic polyelectrolyte, bPEI, to increase their affinity towards the negatively charged bacterial cell walls. These bPEI-coated nanocarrier-encapsulated antibiotics were assessed against a range of wound isolated pathogens, which had been shown through antimicrobial susceptibility testing (AST) to be resistant to tetracycline and lincomycin. Our data reveal that bPEI-coated nanogels with encapsulated tetracycline or lincomycin displayed increased antimicrobial performance against selected wound-derived bacteria, including strains highly resistant to the free antibiotic in solution. Additionally, our nanocarrier-based antibiotics showed no detectable cytotoxic effect against human keratinocytes. We attribute the increase in the antimicrobial activity of the cationically functionalised antibiotic-loaded nanogel carriers to specific electrostatic adhesion to the microbial cell wall delivering a higher local antibiotic concentration, confirmed by scanning electron microscopy. Such a nanotechnology based approach may enhance the effectiveness of a wide variety of existing antibiotics, offering a potentially new mechanism to overcome antibiotic resistance.
Collapse
Affiliation(s)
- Paul J Weldrick
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK.
| | | | | | | |
Collapse
|
21
|
Al-Obaidy SSM, Halbus AF, Greenway GM, Paunov VN. Boosting the antimicrobial action of vancomycin formulated in shellac nanoparticles of dual-surface functionality. J Mater Chem B 2019. [DOI: 10.1039/c8tb03102a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We demonstrate a strong enhancement of the antimicrobial action of vancomycin encapsulated in shellac nanocarriers with cationic surface functionality which concentrate on the microbial cell membranes.
Collapse
Affiliation(s)
- Saba S. M. Al-Obaidy
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
- Department of Chemistry
| | - Ahmed F. Halbus
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
- Department of Chemistry
| | | | | |
Collapse
|