1
|
Rauer SB, Stüwe L, Steinbeck L, de Toledo MAS, Fischer G, Wennemaring S, Marschick J, Koschmieder S, Wessling M, Linkhorst J. Cell Adhesion and Local Cytokine Control on Protein-Functionalized PNIPAM-co-AAc Hydrogel Microcarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404183. [PMID: 39535368 PMCID: PMC11735893 DOI: 10.1002/smll.202404183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Achieving adequate cell densities remains a major challenge in establishing economic biotechnological and biomedical processes. A possible remedy is microcarrier-based cultivation in stirred-tank bioreactors (STBR), which offers a high surface-to-volume ratio, appropriate process control, and scalability. However, despite their potential, commercial microcarriers are currently limited to material systems featuring unnatural mechanical properties and low adaptability. Because matrix stiffness and ligand presentation impact phenotypical attributes, differentiation potential, and genetic stability, biotechnological processes can significantly benefit from microcarrier systems tailorable toward cell-type specific requirements. This study introduces hydrogel particles co-polymerized from poly(N-isopropylacrylamide) (PNIPAM) and acrylic acid (AAc) as a platform technology for cell expansion. The resulting microcarriers exhibit an adjustable extracellular matrix-like softness, an adaptable gel charge, and functional carboxyl groups, allowing electrostatic and covalent coupling of cell adhesive and cell fate-modulating proteins. These features enable the attachment and growth of L929 mouse fibroblast cells in static microtiter plates and dynamic STBR cultivations while also providing vital growth factors, such as interleukin-3, to myeloblast-like 32D cells over 20 days of cultivation. The study explores the effects of different educt compositions on cell-particle interactions and reveals that PNIPAM-co-AAc microcarriers can provide both covalently coupled and diffusively released cytokine to adjacent cells.
Collapse
Affiliation(s)
- Sebastian Bernhard Rauer
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Lucas Stüwe
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Lea Steinbeck
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Marcelo Augusto Szymanski de Toledo
- Department of HematologyOncology, Hemostaseology, and Stem Cell TransplantationFaculty of MedicineRWTH Aachen University52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)52074AachenGermany
| | - Gereon Fischer
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Simon Wennemaring
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Jonas Marschick
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
| | - Steffen Koschmieder
- Department of HematologyOncology, Hemostaseology, and Stem Cell TransplantationFaculty of MedicineRWTH Aachen University52074AachenGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)52074AachenGermany
| | - Matthias Wessling
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- DWI ‐ Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - John Linkhorst
- Chemical Process EngineeringRWTH Aachen UniversityForckenbeckstr. 5152074AachenGermany
- Process Engineering of Electrochemical SystemsDepartment of Mechanical EngineeringTechnical University of DarmstadtOtto‐Berndt‐Str. 264287DarmstadtGermany
| |
Collapse
|
2
|
Sun L, Sun DW, Xu L, Tian Y, Zhu Z. Tunable thermoresponsive hydrogels for temperature regulation and warning in fruit and vegetables preservation. Food Chem 2024; 456:139962. [PMID: 38945049 DOI: 10.1016/j.foodchem.2024.139962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Fresh fruit and vegetables usually suffer from quality deterioration when exposed to inappropriate temperatures. Common energy-input temperature regulation is widely applied but there remain challenges of increasing energy consumption. Passive temperature management regulates the heat transfer without energy consumption, showing a sustainable strategy for food preservation. Here, thermoresponsive hydrogels were constructed by incorporating NaCl and sodium dodecyl sulfate (SDS) micelles into a poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAM-co-AM)) network. Due to the excellent mechanical properties and reversible thermochromism at 14 °C and 37 °C, Gel-8 wt%-NaCl could inhibit temperature rise and avoid sunburn damage to peppers under direct sunlight by blocking the input of solar energy and accelerating moisture evaporation. Additionally, hydrogels could act as a feasible sensor by providing real-time visual warnings for inappropriate temperatures during banana storage. Based on the self-adaptive thermoresponsive behaviour, the prepared hydrogels showed effective performance of temperature regulation and quality preservation of fruit and vegetables.
Collapse
Affiliation(s)
- Libin Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Liang Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - You Tian
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhiwei Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
3
|
Wang K, Zhang L, Jiang X. Freezing-resistant poly(N-isopropylacrylamide)-based hydrogel for thermochromic smart window with solar and thermal radiation regulation. J Colloid Interface Sci 2023; 652:663-672. [PMID: 37482487 DOI: 10.1016/j.jcis.2023.07.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Adaptive regulation of solar and thermal radiation by windows in diverse (hot and cold) climates is essential to reduce building energy consumption. However, conventional hydrogel-based thermochromic smart windows lack thermal radiation regulation, and have difficulty to combine high solar regulation with excellent freezing resistance. It is challenging to integrate the above performance into one hydrogel-based thermochromic window. Here, we firstly prepared poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide)/ethylene glycol (PNDE) hydrogels with tunable and excellent freezing resistance (below -100 °C) by adding the anti-freezing agent ethylene glycol, and assembled PNDE hydrogels, polyvinylidene fluoride and polymethyl methacrylate-silver nanowires panels into a freezing-resistant smart window with solar and thermal radiation regulation (STR). PNDE hydrogels had an excellent thermochromic performance with luminous transmittance (Tlum) of 89.3 %, solar regulation performance (ΔTsol) of 80.7 % and tunable phase change temperature (τc, 22-44 °C). The assembled STR window showed high Tlum of 68.2 %, high ΔTsol of 62.6 %, suitable τc of ∼30 °C and freezing resistance to low temperature of -27 °C. Moreover, the different thermal emissivity (0.94 and 0.68) of the two sides of the STR window gave it the ability of radiative cooling in hot climates and warm-keeping in cold climates. Compared to the conventional thermochromic windows, the STR window promotes heat dissipation in hot conditions while reduces heat loss in cold conditions and is applicable to diverse climates, which is a promising energy-saving device for reducing building energy consumption.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lei Zhang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362114, China.
| |
Collapse
|
4
|
Patel D, Tripathi N, Ray D, Aswal VK, Kuperkar K, Bahadur P. Self-assembly generation triggered in highly hydrophilic Pluronics® by sugars/ polyols. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
5
|
Shmool TA, Constantinou A, Jirkas A, Zhao C, Georgiou TK, Hallett J. Next Generation Strategy for Tuning the Thermoresponsive Properties of Micellar and Hydrogel Drug Delivery Vehicles Using Ionic Liquids. Polym Chem 2022. [DOI: 10.1039/d2py00053a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amongst the greatest challenges in developing injectable controlled thermoresponsive micellar and hydrogel drug delivery vehicles include tuning the cloud point (CP) and reducing the gelation temperature (Tgel), below 37 °C,...
Collapse
|
6
|
Rosi BP, Tavagnacco L, Comez L, Sassi P, Ricci M, Buratti E, Bertoldo M, Petrillo C, Zaccarelli E, Chiessi E, Corezzi S. Thermoresponsivity of poly(N-isopropylacrylamide) microgels in water-trehalose solution and its relation to protein behavior. J Colloid Interface Sci 2021; 604:705-718. [PMID: 34280768 DOI: 10.1016/j.jcis.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022]
Abstract
HYPOTHESES Additives are commonly used to tune macromolecular conformational transitions. Among additives, trehalose is an excellent bioprotectant and among responsive polymers, PNIPAM is the most studied material. Nevertheless, their interaction mechanism so far has only been hinted without direct investigation, and, crucially, never elucidated in comparison to proteins. Detailed insights would help understand to what extent PNIPAM microgels can effectively be used as synthetic biomimetic materials, to reproduce and study, at the colloidal scale, isolated protein behavior and its sensitivity to interactions with specific cosolvents or cosolutes. EXPERIMENTS The effect of trehalose on the swelling behavior of PNIPAM microgels was monitored by dynamic light scattering; Raman spectroscopy and molecular dynamics simulations were used to explore changes of solvation and dynamics across the swelling-deswelling transition at the molecular scale. FINDINGS Strongly hydrated trehalose molecules develop water-mediated interactions with PNIPAM microgels, thereby preserving polymer hydration below and above the transition while drastically inhibiting local motions of the polymer and of its hydration shell. Our study, for the first time, demonstrates that slowdown of dynamics and preferential exclusion are the principal mechanisms governing trehalose effect on PNIPAM microgels, at odds with preferential adsorption of alcohols, but in full analogy with the behavior observed in trehalose-protein systems.
Collapse
Affiliation(s)
- Benedetta Petra Rosi
- Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy
| | - Letizia Tavagnacco
- CNR-ISC, Sapienza Università di Roma, I-00185 Roma, Italy; Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Lucia Comez
- CNR-IOM, Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy
| | - Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, I-06123 Perugia, Italy
| | - Maria Ricci
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, I-06123 Perugia, Italy
| | - Elena Buratti
- CNR-ISC, Sapienza Università di Roma, I-00185 Roma, Italy; Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Monica Bertoldo
- Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Università di Ferrara, I-44121 Ferrara, Italy; CNR-ISOF, Area della Ricerca, I-40129 Bologna, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy
| | - Emanuela Zaccarelli
- CNR-ISC, Sapienza Università di Roma, I-00185 Roma, Italy; Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", I-00133 Roma, Italy.
| | - Silvia Corezzi
- Dipartimento di Fisica e Geologia, Università di Perugia, I-06123 Perugia, Italy.
| |
Collapse
|
7
|
Ye Z, Su H, Lian C, Hu J, Shang Y, Liu H. Molecular understanding of the LCST phase behaviour of P(MEO 2MA-b-OEGMA) block copolymers. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2020.1869735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhicheng Ye
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Haiping Su
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jiajie Hu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yazhuo Shang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
8
|
Narang P, Venkatesu P. Efficacy of several additives to modulate the phase behavior of biomedical polymers: A comprehensive and comparative outlook. Adv Colloid Interface Sci 2019; 274:102042. [PMID: 31677492 DOI: 10.1016/j.cis.2019.102042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 01/26/2023]
Abstract
Several new classes of polymeric materials are being introduced with unique properties. Thermoresponsive polymers (TRPs) are one of the most fascinating and emerging class of biomaterials in biomedical research. The design of TRPs with good response to temperature and its ability to exhibit coil to globular transition behavior near to physiological temperature made them more promising materials in the field of biomaterials and biomedicines. Instead of numerous studies on TRPs, the mechanistic interplay among several additives and TRPs is still not understood clearly and completely. The lack of complete understanding of biomolecular interactions of various additives with TRPs is limiting their applications in interdisciplinary science as well as pharmaceutical industry. There is a great need to provide a collective and comprehensive information of various additives and their behavior on widely accepted biopolymers, TRPs such as poly(N-isopropylacrylamide) (PNIPAM), poly(vinyl methyl ether) (PVME), poly(N-vinylcaprolactum) (PVCL) and poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) in aqueous solution. Obviously, as the literature on the influence of various additives on TRPs is very vast, therefore we focus our review only on these four selected TRPs. Additives such as polyols, methylamines, surfactants and denaturants basically made the significant changes in water structure associated to polymer via their entropy variation which is the direct influence of their directly or indirectly binding abilities. Eventually, this review addresses a brief overview of the most recent literature of applications based phase behavior of four selected TRPs in response to external stimuli. The work enhances the knowledge for use of TRPs in the advanced development of drug delivery system and in many more pharmaceutical applications. These kinds of studies provide powerful impact in exploring the utility range of polymeric materials in various field of science.
Collapse
Affiliation(s)
- Payal Narang
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|