1
|
Florio Furno M, Laizé V, Arduino I, Pham GN, Spina F, Mehiri M, Lembo D, Gavaia PJ, Varese GC. Bioprospecting Marine Fungi from the Plastisphere: Osteogenic and Antiviral Activities of Fungal Extracts. Mar Drugs 2025; 23:115. [PMID: 40137301 PMCID: PMC11944246 DOI: 10.3390/md23030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Marine microplastics (MPs) represent a novel ecological niche, populated by fungi with high potential for pharmaceutical discovery. This study explores the bioactivity of fungal strains isolated from MPs in Mediterranean sediments, focusing on their osteogenic and antiviral activities. Crude extracts prepared via solid-state and submerged-state fermentation were tested for their effects on extracellular matrix mineralization in vitro and bone growth in zebrafish larvae, and for their activity against the respiratory syncytial virus (RSV) and herpes simplex virus type 2 (HSV-2). Several extracts exhibited significant mineralogenic and osteogenic activities, with Aspergillus jensenii MUT6581 and Cladosporium halotolerans MUT6558 being the most performing ones. Antiviral assays identified extracts from A. jensenii MUT6581 and Bjerkandera adusta MUT6589 as effective against RSV and HSV-2 at different extents, with no cytotoxic effect. Although chemical profiling of A. jensenii MUT6581 extract led to the isolation of decumbenones A and B, they did not reproduce the observed bioactivities, suggesting the involvement of other active compounds or synergistic effects. These results highlight the plastisphere as a valuable resource for novel bioactive compounds and suggest the need for further fractionation and characterization to identify the molecules responsible for these promising activities.
Collapse
Affiliation(s)
- Matteo Florio Furno
- Department of Life Sciences and Systems Biology, University of Turin, Mycotheca Universitatis Taurinensis (MUT), Viale Mattioli 25, 10125 Turin, Italy; (M.F.F.); (F.S.)
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (V.L.); (P.J.G.)
| | - Irene Arduino
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole, 10, Orbassano, 10043 Turin, Italy; (I.A.); (D.L.)
| | - Giang Nam Pham
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (G.N.P.); (M.M.)
| | - Federica Spina
- Department of Life Sciences and Systems Biology, University of Turin, Mycotheca Universitatis Taurinensis (MUT), Viale Mattioli 25, 10125 Turin, Italy; (M.F.F.); (F.S.)
| | - Mohamed Mehiri
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (G.N.P.); (M.M.)
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole, 10, Orbassano, 10043 Turin, Italy; (I.A.); (D.L.)
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (V.L.); (P.J.G.)
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, Mycotheca Universitatis Taurinensis (MUT), Viale Mattioli 25, 10125 Turin, Italy; (M.F.F.); (F.S.)
| |
Collapse
|
2
|
Hanif N, Miftah JA, Yanti HD, Oluwabusola ET, Zahra VA, Salleh NF, Kundukad B, Tan LT, de Voogd NJ, Rachmania N, Jaspars M, Kjelleberg S, Noviendri D, Murni A, Tanaka J. Integrated Biological and Chemical Investigation of Indonesian Marine Organisms Targeting Anti-Quorum-Sensing, Anti-Biofilm, Anti-Biofouling, and Anti-Biocorrosion Activities. Molecules 2025; 30:1202. [PMID: 40141983 PMCID: PMC11944283 DOI: 10.3390/molecules30061202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Microorganisms play a significant role in biofouling and biocorrosion within the maritime industry. Addressing these challenges requires an innovative and integrated approach utilizing marine natural products with beneficial properties. A comprehensive screening of 173 non-toxic EtOAc and H₂O extracts derived from diverse marine organisms collected in Indonesian waters was conducted using a robust panel of assays. These included antimicrobial tests and classical biosurfactant assays (drop collapse and oil displacement), as well as anti-quorum-sensing (QS) and anti-biofilm assays. These screening efforts identified five active extracts with promising activities. Among these, EtOAc extracts of the marine tunicate Sigilina cf. signifera (0159-22e) and the marine sponge Lamellodysidea herbacea (0194-24c) demonstrated significant anti-biofouling activity against Perna indica and anti-biocorrosion performance (mpy 10.70 ± 0.70 for S. cf. signifera; 7.87 ± 0.86 for L. herbacea; 13.60 ± 1.70 for positive control Tetracorr CI-2915). Further chemical analyses of the active extracts, including LC-HR-MS/MS, MS-based molecular networking, and chemoinformatics, revealed the presence of both known and new bioactive compounds. These included tambjamines and polybrominated diphenyl ethers (PBDEs), which are likely contributors to the observed bioactivities. Subsequent investigations uncovered new anti-QS and anti-biofilm properties in synthetic and natural PBDEs 1-12 previously derived from L. herbacea. Among these, 8 exhibited the most potent anti-QS activity, with an IC50 value of 15 µM, while 4 significantly reduced biofilm formation at a concentration of 1 µM. This study highlights the potential of marine-derived compounds in addressing biofouling and biocorrosion challenges in a sustainable and effective manner.
Collapse
Affiliation(s)
- Novriyandi Hanif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (J.A.M.); (V.A.Z.)
| | - Jihan Azmi Miftah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (J.A.M.); (V.A.Z.)
| | - Henny Dwi Yanti
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia; (H.D.Y.); (A.M.)
| | - Emmanuel Tope Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, UK; (E.T.O.); (M.J.)
| | - Vira Amanda Zahra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia; (J.A.M.); (V.A.Z.)
| | - Nurul Farhana Salleh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.F.S.); (L.T.T.)
| | - Binu Kundukad
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore; (B.K.); (S.K.)
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.F.S.); (L.T.T.)
| | - Nicole J. de Voogd
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands;
- Institute of Biology (IBL), Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Nisa Rachmania
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia;
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, UK; (E.T.O.); (M.J.)
| | - Staffan Kjelleberg
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore 637551, Singapore; (B.K.); (S.K.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2033, Australia
| | - Dedi Noviendri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, BRIN Cibinong-Bogor, Bogor 16911, Indonesia;
| | - Anggia Murni
- Tropical Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia; (H.D.Y.); (A.M.)
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan;
| |
Collapse
|
3
|
Coolahan M, Whalen KE. A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean. Commun Biol 2025; 8:179. [PMID: 39905218 PMCID: PMC11794697 DOI: 10.1038/s42003-025-07608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Quorum sensing, first described in marine systems five decades ago, is a well-characterized chemical communication system used to coordinate bacterial gene expression and behavior; however, the impact of quorum sensing on interkingdom interactions has been vastly understudied. In this review, we examine how these molecules mediate communication between bacteria and marine eukaryotes; influencing processes such as development, disease pathogenesis, and microbiome regulation within marine ecosystems. We describe the varied mechanisms eukaryotes have evolved to interfere with bacterial quorum sensing signaling, the crucial role these signals play in host-virus interactions, and how their exchange may be governed by outer membrane vesicles, prevalent in marine systems. Here, we present a dynamic portrayal of the impact of quorum sensing signals beyond bacterial communication, laying the groundwork for future investigations on their roles in shaping marine ecosystem structure and function.
Collapse
Affiliation(s)
- Megan Coolahan
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
4
|
Prófumo A, Avila C, Cutignano A. Chemical Changes Under Heat Stress and Identification of Dendrillolactone, a New Diterpene Derivative with a Rare Rearranged Spongiane Skeleton from the Antarctic Marine Sponge Dendrilla antarctica. Mar Drugs 2024; 23:10. [PMID: 39852512 PMCID: PMC11767012 DOI: 10.3390/md23010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, corals, and many other animals. Among the sponges, the bright yellow Dendrilla antarctica is commonly known for using secondary diterpenoids as a defensive mechanism against local potential predators. From the dichloromethane extract of sponge samples from Deception Island collected in January 2023, we isolated a novel derivative with an unusual β-lactone diterpene skeleton here named dendrillolactone (1), along with seven previously described diterpenes, including deceptionin (2), a gracilane norditerpene (3), cadlinolide C (4), a glaciolane norditerpene (5), membranolide (6), aplysulphurin (7), and tetrahydroaplysulphurine-1 (8). Here, we also report our studies on the changes in the chemical arsenal of this sponge by slow temperature increase in aquaria experiments. Despite being a species capable of inhabiting volcanically active areas, with frequent water temperature fluctuations due to the existing fumaroles, the results show that diterpenes such as deceptionin, cadlinolide C, membranolide, and tetrahydroaplysulphurin-1 seem to be susceptible to the temperature increase, resulting in a trend to higher concentrations. However, temperatures above 4 °C severely affected sponge metabolism, causing its death much earlier than expected. Further research on the roles of these natural products in D. antarctica and their relationship to the sponge's resilience to environmental changes should help to better understand the defensive mechanisms of Antarctic marine benthos in the context of global change.
Collapse
Affiliation(s)
- Andrea Prófumo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy;
| | - Conxita Avila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy;
| |
Collapse
|
5
|
Abdelbasset WK, Bokov DO, Jasim SA, Yasin G, Abbas H, Alkadir OKA, Taifi A, Jalil AT, Aravindhan S. Evaluating the secondary bioactive metabolites in Geodia corticostylifera. BRAZ J BIOL 2024; 84:e260090. [DOI: 10.1590/1519-6984.260090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Ophiactis savignyi could be discovered all over the world in tropical marine environments. People could have aided in the spread of O. savignyi, particularly in the western and eastern populations of Panama's Isthmus. The brittle star Ophiactis savignyi, often known as savigny's brittle star, coexists alongside the sponge Geodia corticostylifera. The focus of this research has been to assess the functional relevance of G. corticostylifera secondary metabolites as antifoulant against mussels, protection against generalist fish, and chemical cues to affiliated brittle stars. Both in flow-through and static seawater laboratory studies, O. savignyi which has previously been connected with sponges, was given both treated and control mimics at the same time. The sponge extract was also tested for its ability to protect fish against predators and fouling. Deterrence test using chemicals indicated that the normal level of the sponge extract may also suppress generalist fish predation in the field as well as the mussel Perna perna’s normal attachment in clinical contexts. According to the findings, G. corticostylifera crude extract has many roles in the aquatic environments, apparently being accountable for this sponge's tighter relationship with O. savignyi, which protects the ophiuroid and inhibits epibionts on itself.
Collapse
Affiliation(s)
- W. K. Abdelbasset
- Prince Sattam bin Abdulaziz University, Saudi Arabia; Cairo University, Egypt
| | - D. O. Bokov
- Sechenov First Moscow State Medical University, Russian Federation; Federal Research Center of Nutrition, Russian Federation
| | | | - G. Yasin
- Bahauddin Zakariya University, Pakistan
| | | | | | - A. Taifi
- Al-Manara College for Medical Sciences, Iraq
| | - A. T. Jalil
- Yanka Kupala State University of Grodno, Belarus; The Islamic University, Iraq
| | - S. Aravindhan
- Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
6
|
Olander A, Raina JB, Lawson CA, Bartels N, Ueland M, Suggett DJ. Distinct emissions of biogenic volatile organic compounds from temperate benthic taxa. Metabolomics 2023; 20:9. [PMID: 38129550 DOI: 10.1007/s11306-023-02070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Biogenic volatile organic compounds (BVOCs) are emitted by all organisms as intermediate or end-products of metabolic processes. Individual BVOCs perform important physiological, ecological and climatic functions, and collectively constitute the volatilome-which can be reflective of organism taxonomy and health. Although BVOC emissions of tropical benthic reef taxa have recently been the focus of multiple studies, emissions derived from their temperate counterparts have never been characterised. OBJECTIVES Characterise the volatilomes of key competitors for benthic space among Australian temperate reefs. METHODS Six fragments/fronds of a temperate coral (Plesiastrea versipora) and a macroalga (Ecklonia radiata) from a Sydney reef site were placed within modified incubation chambers filled with seawater. Organism-produced BVOCs were captured on thermal desorption tubes using a purge-and-trap methodology, and were then analysed using GC × GC - TOFMS and multivariate tests. RESULTS Analysis detected 55 and 63 BVOCs from P. versipora and E. radiata respectively, with 30 of these common between species. Each taxon was characterised by a similar relative composition of chemical classes within their volatilomes. However, 14 and 10 volatiles were distinctly emitted by either E. radiata or P. versipora respectively, including the halogenated compounds iodomethane, tribromomethane, carbon tetrachloride and trichloromonofluoromethane. While macroalgal cover was 3.7 times greater than coral cover at the sampling site, P. versipora produced on average 17 times more BVOCs per cm2 of live tissue, resulting in an estimated contribution to local BVOC emission that was 4.7 times higher than E. radiata. CONCLUSION Shifts in benthic community composition could disproportionately impact local marine chemistry and affect how ecosystems contribute to broader BVOC emissions.
Collapse
Affiliation(s)
- Axel Olander
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia.
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Caitlin A Lawson
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Natasha Bartels
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Maiken Ueland
- Centre for Forensic Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Mauduit M, Derrien M, Grenier M, Greff S, Molinari S, Chevaldonné P, Simmler C, Pérez T. In Situ Capture and Real-Time Enrichment of Marine Chemical Diversity. ACS CENTRAL SCIENCE 2023; 9:2084-2095. [PMID: 38033807 PMCID: PMC10683479 DOI: 10.1021/acscentsci.3c00661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 12/02/2023]
Abstract
Analyzing the chemical composition of seawater to understand its influence on ecosystem functions is a long-lasting challenge due to the inherent complexity and dynamic nature of marine environments. Describing the intricate chemistry of seawater requires optimal in situ sampling. Here is presented a novel underwater hand-held solid-phase extraction device, I-SMEL (In Situ Marine moleculELogger), which aims to concentrate diluted molecules from large volumes of seawater in a delimited zone targeting keystone benthic species. Marine benthic holobionts, such as sponges, can impact the chemical composition of their surroundings possibly through the production and release of their specialized metabolites, hence termed exometabolites (EMs). I-SMEL was deployed in a sponge-dominated Mediterranean ecosystem at a 15 m depth. Untargeted MS-based metabolomics was performed on enriched EM extracts and showed (1) the chemical diversity of enriched seawater metabolites and (2) reproducible recovery and enrichment of specialized sponge EMs such as aerothionin, demethylfurospongin-4, and longamide B methyl ester. These EMs constitute the chemical identity of each targeted species: Aplysina cavernicola, Spongia officinalis, and Agelas oroides, respectively. I-SMEL concentrated sponge EMs from 10 L of water in a 10 min sampling time. The present proof of concept with I-SMEL opens new research perspectives in marine chemical ecology and sets the stage for further sustainable efforts in natural product chemistry.
Collapse
Affiliation(s)
| | | | | | - Stéphane Greff
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | - Sacha Molinari
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | - Pierre Chevaldonné
- IMBE, UMR CNRS
7263, IRD
237, Aix Marseille Université, Avignon
Université, Station Marine d’Endoume, Chemin de la batterie
des lions, 13007 Marseille, France
| | | | | |
Collapse
|
8
|
Zhong W, Aiosa N, Deutsch JM, Garg N, Agarwal V. Pseudobulbiferamides: Plasmid-Encoded Ureidopeptide Natural Products with Biosynthetic Gene Clusters Shared Among Marine Bacteria of Different Genera. JOURNAL OF NATURAL PRODUCTS 2023; 86:2414-2420. [PMID: 37713418 PMCID: PMC10616845 DOI: 10.1021/acs.jnatprod.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/17/2023]
Abstract
Ureidopeptidic natural products possess a wide variety of favorable pharmacological properties. In addition, they have been shown to mediate core physiological functions in producer bacteria. Here, we report that similar ureidopeptidic natural products with conserved biosynthetic gene clusters are produced by different bacterial genera that coinhabit marine invertebrate microbiomes. We demonstrate that a Microbulbifer strain isolated from a marine sponge can produce two different classes of ureidopeptide natural products encoded by two different biosynthetic gene clusters that are positioned on the bacterial chromosome and on a plasmid. The plasmid encoded ureidopeptide natural products, which we term the pseudobulbiferamides (5-8), resemble the ureidopeptide natural products produced by Pseudovibrio, a different marine bacterial genus that is likewise present in marine sponge commensal microbiomes. Using imaging mass spectrometry, we find that the two classes of Microbulbifer-derived ureidopeptides occupy different physical spaces relative to the bacterial colony, perhaps implying different roles for these two compound classes in Microbulbifer physiology and environmental interactions.
Collapse
Affiliation(s)
- Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Nicole Aiosa
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Jessica M. Deutsch
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Center
for Microbial Dynamics and Infection, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
De Castro-Fernández P, Angulo-Preckler C, García-Aljaro C, Avila C, Cutignano A. A Chemo-Ecological Investigation of Dendrilla antarctica Topsent, 1905: Identification of Deceptionin and the Effects of Heat Stress and Predation Pressure on Its Terpene Profiles. Mar Drugs 2023; 21:499. [PMID: 37755112 PMCID: PMC10532619 DOI: 10.3390/md21090499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Marine sponges usually host a wide array of secondary metabolites that play crucial roles in their biological interactions. The factors that influence the intraspecific variability in the metabolic profile of organisms, their production or ecological function remain generally unknown. Understanding this may help predict changes in biological relationships due to environmental variations as a consequence of climate change. The sponge Dendrilla antarctica is common in shallow rocky bottoms of the Antarctic Peninsula and is known to produce diterpenes that are supposed to have defensive roles. Here we used GC-MS to determine the major diterpenes in two populations of D. antarctica from two islands, Livingston and Deception Island (South Shetland Islands). To assess the potential effect of heat stress, we exposed the sponge in aquaria to a control temperature (similar to local), heat stress (five degrees higher) and extreme heat stress (ten degrees higher). To test for defence induction by predation pressure, we exposed the sponges to the sea star Odontaster validus and the amphipod Cheirimedon femoratus. Seven major diterpenes were isolated and identified from the samples. While six of them were already reported in the literature, we identified one new aplysulphurane derivative that was more abundant in the samples from Deception Island, so we named it deceptionin (7). The samples were separated in the PCA space according to the island of collection, with 9,11-dihydrogracilin A (1) being more abundant in the samples from Livingston, and deceptionin (7) in the samples from Deception. We found a slight effect of heat stress on the diterpene profiles of D. antarctica, with tetrahydroaplysulphurin-1 (6) and the gracilane norditerpene 2 being more abundant in the group exposed to heat stress. Predation pressure did not seem to influence the metabolite production. Further research on the bioactivity of D. antarctica secondary metabolites, and their responses to environmental changes will help better understand the functioning and fate of the Antarctic benthos.
Collapse
Affiliation(s)
- Paula De Castro-Fernández
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Napoli, Italy;
| | - Carlos Angulo-Preckler
- Red Sea Research Center and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology and Environmental Sciences (BEECA), Faculty of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain;
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Napoli, Italy;
| |
Collapse
|
10
|
Fang ST, Song YP, Miao FP, Yin XL, Ji NY. Myrochromanol analogues and trichothecene derivatives from the shellfish-derived fungus Albifimbriaverrucaria. PHYTOCHEMISTRY 2023; 209:113645. [PMID: 36924814 DOI: 10.1016/j.phytochem.2023.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Eight myrochromanol analogues, including three pairs of epimers at C-2 with the myrochromanol scaffold and two examples of myrochromanol with sugar moiety linked at C-4, together with twelve trichothecene derivatives were isolated from the cultures of a shellfish-derived fungus Albifimbria verrucaria CD1-4. Among them, eight compounds named 2-epi-myrochromanol, ent-myrochromanol B, 4-epi-myrochromanol B, 2-epi-myrochromanol A, myrochromanosides A and B, 6',7'-erythro-(2'E,4'Z)-trichoverrol B, 3R,8S-dihyroxyroridin H were previously undescribed fungal metabolites. Their planar structures and relative configurations were established by 1D and 2D NMR, and HR-MS data analysis, and their absolute configurations were determined using the modified Mosher's method and electronic circular dichrosim calculations. Almost all isolates were evaluated for growth rate inhibition of three marine harmful microalgae Chattonella marina, Heterosigma akashiwo, and Prorocentrum donghaiense, and lethal activity to one marine zooplankton, Artemia salina. Myrochromanosides A and B exhibited obvious inhibitory against three tested microalgae with IC50 values in the range of 9.2-108.9 μM. 8α-Hydroxyroridin H, roridin A and verrucarin A exhibited significant inhibition against P. donghaiense with IC50 values of 6.1, 5.8, and 6.0 μM and toxicity against brine shrimp larvae with LC50 values of 1.4, 2.8, and 0.26 μM, respectively.
Collapse
Affiliation(s)
- Sheng-Tao Fang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Feng-Ping Miao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China.
| |
Collapse
|
11
|
Tan LT. Impact of Marine Chemical Ecology Research on the Discovery and Development of New Pharmaceuticals. Mar Drugs 2023; 21:174. [PMID: 36976223 PMCID: PMC10055925 DOI: 10.3390/md21030174] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Diverse ecologically important metabolites, such as allelochemicals, infochemicals and volatile organic chemicals, are involved in marine organismal interactions. Chemically mediated interactions between intra- and interspecific organisms can have a significant impact on community organization, population structure and ecosystem functioning. Advances in analytical techniques, microscopy and genomics are providing insights on the chemistry and functional roles of the metabolites involved in such interactions. This review highlights the targeted translational value of several marine chemical ecology-driven research studies and their impact on the sustainable discovery of novel therapeutic agents. These chemical ecology-based approaches include activated defense, allelochemicals arising from organismal interactions, spatio-temporal variations of allelochemicals and phylogeny-based approaches. In addition, innovative analytical techniques used in the mapping of surface metabolites as well as in metabolite translocation within marine holobionts are summarized. Chemical information related to the maintenance of the marine symbioses and biosyntheses of specialized compounds can be harnessed for biomedical applications, particularly in microbial fermentation and compound production. Furthermore, the impact of climate change on the chemical ecology of marine organisms-especially on the production, functionality and perception of allelochemicals-and its implications on drug discovery efforts will be presented.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| |
Collapse
|
12
|
Limited Metabolomic Overlap between Commensal Bacteria and Marine Sponge Holobionts Revealed by Large Scale Culturing and Mass Spectrometry-Based Metabolomics: An Undergraduate Laboratory Pedagogical Effort at Georgia Tech. Mar Drugs 2023; 21:md21010053. [PMID: 36662226 PMCID: PMC9862627 DOI: 10.3390/md21010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Sponges are the richest source of bioactive organic small molecules, referred to as natural products, in the marine environment. It is well established that laboratory culturing-resistant symbiotic bacteria residing within the eukaryotic sponge host matrix often synthesize the natural products that are detected in the sponge tissue extracts. However, the contributions of the culturing-amenable commensal bacteria that are also associated with the sponge host to the overall metabolome of the sponge holobiont are not well defined. In this study, we cultured a large library of bacteria from three marine sponges commonly found in the Florida Keys. Metabolomes of isolated bacterial strains and that of the sponge holobiont were compared using mass spectrometry to reveal minimal metabolomic overlap between commensal bacteria and the sponge hosts. We also find that the phylogenetic overlap between cultured commensal bacteria and that of the sponge microbiome is minimal. Despite these observations, the commensal bacteria were found to be a rich resource for novel natural product discovery. Mass spectrometry-based metabolomics provided structural insights into these cryptic natural products. Pedagogic innovation in the form of laboratory curricula development is described which provided undergraduate students with hands-on instruction in microbiology and natural product discovery using metabolomic data mining strategies.
Collapse
|
13
|
Shen SM, Li SW, Su MZ, Yao LG, Appendino G, Guo YW. Structurally Diverse Diterpenoids from the Sanya Bay Nudibranch Hexabranchus sanguineus and Its Sponge-Prey Chelonaplysilla sp. Chemistry 2023; 29:e202203858. [PMID: 36617497 DOI: 10.1002/chem.202203858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Investigation of the South China Sea nudibranch Hexabranchus sanguineus from Sanya Bay afforded, in addition to three known compounds, nine new diterpenoids of the 5,19-cycloclerodane- (sanyanolides A-D), clerodane- (sanyanolide E) and subersin- (sanyanolides F-I) type. Remarkably, six diterpenoids aforementioned from H. sanguineus were also isolated from the sponge Chelonaplysilla sp. from the same water region, suggesting a trophic relationship between H. sanguineus and Chelonaplysilla sp. The structure and absolute configuration of new compounds were established by a combination of spectroscopic data, X-ray diffraction analysis and/or time-dependent density functional theory/electronic circular dichroism calculations. A plausible biogenetic relationship between these diterpenoids, along with the chemo-ecological implications of their co-occurrence in the two organisms investigated, was proposed and discussed. In in vitro bioassays, echinoclerodane A exhibited a potent inhibitory effect (IC50 =2.81 μM) on LPS-induced inflammatory response in RAW 264.7 macrophage cells. In addition, echinoclerodane A and oculatolide showed considerable antibacterial activities with MIC values ranging from 1.0 to 8.0 μg/mL.
Collapse
Affiliation(s)
- Shou-Mao Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, P. R. China
| | - Song-Wei Li
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, P. R. China
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, 201203, Shanghai, P. R. China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 210023, Nanjing, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 264117, Yantai, Shandong, P. R. China
| |
Collapse
|
14
|
Righi S, Forti L, Simonini R, Ferrari V, Prevedelli D, Mucci A. Novel Natural Compounds and Their Anatomical Distribution in the Stinging Fireworm Hermodice carunculata (Annelida). Mar Drugs 2022; 20:md20090585. [PMID: 36135774 PMCID: PMC9504318 DOI: 10.3390/md20090585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence in the field of bioprospection fosters the necessity of studying poorly investigated poisonous marine invertebrates to expand knowledge on animal venom biology. Among marine annelids, amphinomid fireworms are notorious for their bearded trunk equipped with a powerful stinging capacity. Here, a methodological workflow based on analytical chemistry techniques (compound isolation followed by mass spectrometry and spectroscopy analyses) was applied to gain new insights, leading to the identification and structural elucidation of an array of natural products from Mediterranean specimens of Hermodice carunculata. Eight betaine-derived unprecedented compounds, named “carunculines”, were detected, bearing two terminal ammonium groups tri-and disubstituted at the Cα (A, B) and a series of different alkyl chains (I–VIII). The mixture of chemicals was found in all the body parts of H. carunculata, supporting a mechanism of action triggered by their vehiculation inside the dorsal chaetae, and subsequent injection when chaetae break off on contact. Preliminary investigations to understand adaptive features were also performed, showing a trend in carunculine abundance that fits into the evolutionary history of these worms. These findings shed light on the chemical ecology of amphinomids, giving reasons for the success of H. carunculata in benthic environments and providing promising novel metabolites for biotechnological implications.
Collapse
Affiliation(s)
- Sara Righi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
- Correspondence:
| | - Luca Forti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Roberto Simonini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Valentina Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Daniela Prevedelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Adele Mucci
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
15
|
Lam N, Paterson I. Deep‐sea discovery and detective work: towards solving the hemicalide structural enigma through computational NMR analysis and stereocontrolled synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nelson Lam
- University of Cambridge Chemistry UNITED KINGDOM
| | - Ian Paterson
- Cambridge University Department of Chemistry Lensfield Road CB2 1EW Cambridge UNITED KINGDOM
| |
Collapse
|
16
|
Australindolones, New Aminopyrimidine Substituted Indolone Alkaloids from an Antarctic Tunicate Synoicum sp. Mar Drugs 2022; 20:md20030196. [PMID: 35323495 PMCID: PMC8949045 DOI: 10.3390/md20030196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 02/01/2023] Open
Abstract
Five new alkaloids have been isolated from the lipophilic extract of the Antarctic tunicate Synoicum sp. Deep-sea specimens of Synoicum sp. were collected during a 2011 cruise of the R/V Nathanial B. Palmer to the southern Scotia Arc, Antarctica. Crude extracts from the invertebrates obtained during the cruise were screened in a zebrafish-based phenotypic assay. The Synoicum sp. extract induced embryonic dysmorphology characterized by axis truncation, leading to the isolation of aminopyrimidine substituted indolone (1–4) and indole (5–12) alkaloids. While the primary bioactivity tracked with previously reported meridianins A–G (5–11), further investigation resulted in the isolation and characterization of australindolones A–D (1–4) and the previously unreported meridianin H (12).
Collapse
|
17
|
Coral holobionts and biotechnology: from Blue Economy to coral reef conservation. Curr Opin Biotechnol 2021; 74:110-121. [PMID: 34861476 DOI: 10.1016/j.copbio.2021.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
Corals are of ecological and economic importance, providing habitat for species and contributing to coastal protection, fisheries, and tourism. Their biotechnological potential is also increasingly recognized. Particularly, the production of pharmaceutically interesting compounds by corals and their microbial associates stimulated natural product-based drug discovery. The efficient light distribution by coral skeletons for optimal photosynthesis by algal symbionts has led to 3D-printed bionic corals that may be used to upscale micro-algal cultivation for bioenergy generation. However, corals are under threat from climate change and pollution, and biotechnological approaches to increase their resilience, like 'probiotics' and 'assisted evolution', are being evaluated. In this review, we summarize the recent biotechnological developments related to corals with an emphasis on coral conservation, drug discovery and bioenergy.
Collapse
|
18
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Vad J, Barnhill KA, Kazanidis G, Roberts JM. Human impacts on deep-sea sponge grounds: Applying environmental omics to monitoring. ADVANCES IN MARINE BIOLOGY 2021; 89:53-78. [PMID: 34583815 DOI: 10.1016/bs.amb.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sponges (Phylum Porifera) are the oldest extant Metazoans. In the deep sea, sponges can occur at high densities forming habitats known as sponge grounds. Sponge grounds can extend over large areas of up to hundreds of km2 and are biodiversity hotspots. However, as human activities, including deep-water hydrocarbon extraction, continue to expand into areas harbouring sponge grounds, understanding how anthropogenic impacts affect sponges and the ecosystem services they provide at multiple biological scales (community, individual and (sub)cellular levels) is key for achieving sustainable management. This chapter (1) provides an update to the chapter of Advances in Marine Biology Volume 79 entitled "Potential Impacts of Offshore Oil and Gas Activities on Deep-Sea Sponges and the Habitats They Form" and (2) discusses the use of omics as a future tool for deep-sea ecosystem monitoring. While metagenomics and (meta)transcriptomics studies have contributed to improve our understanding of sponge biology in recent years, metabolomics analysis has mostly been used to identify natural products. The sponge metabolome, therefore, remains vastly unknown despite the fact that the metabolome is a key link between the genotype and phenotype, giving us a unique new insight to how key components of an ecosystem are functioning. As the fraction of the metabolome released into the seawater, the sponge exometabolome has only just started to be characterised in comparative environmental metabolomic studies. Yet, the sponge exometabolome constitute a unique opportunity for the identification of biomarkers of sponge health as compounds can be measured in seawater, bypassing the need for physical samples which can still be difficult to collect in the deep sea. Within sponge grounds, the characterisation of a shared sponge exometabolome could lead to the identification of biomarkers of ecosystem functioning and overall health. Challenges remain in establishing omics approaches in environmental monitoring but constant technological advances and reduction in costs means these techniques will become widely available in the future.
Collapse
Affiliation(s)
- Johanne Vad
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Kelsey Archer Barnhill
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Georgios Kazanidis
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J Murray Roberts
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Wu Q, Li SW, de Voogd NJ, Wang H, Yao LG, Guo YW, Li XW. Marine alkaloids as the chemical marker for the prey-predator relationship of the sponge Xestospongia sp. and the nudibranch Jorunna funebris. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:375-381. [PMID: 37073294 PMCID: PMC10077215 DOI: 10.1007/s42995-021-00096-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 05/03/2023]
Abstract
The dietary relationship study between marine sponge Xestospongia sp. and its nudibranch predators Jorunna funebris based on the discovery of isoquinolinequinones has long been studied. In this study, chemical investigation of the sponge Xestospongia sp. and nudibranch J. funebris from the South China Sea yielded a new marine alkaloid neopetroside C (1), together with nine known alkaloids (2-10). The chemical structures of all the compounds were elucidated by extensive spectroscopic analysis. Neopetroside C (1) featured a riboside of nicotinic acid with a rare α-N glycosildic linkage and an acyl residue of (Z)-2-methylbut-2-enoic acid attached to C-5'. The plausible chemical ecology relationship between sponge Xestospongia sp. and its nudibranch predator J. funebris was proposed based on the biogenetic relationship of the common marine alkaloids. The observation of two structural fragments, (Z)-2-methylbut-2-enoyloxy and trigonelline groups in both sponge and nudibranch, indicated that nudibranch might uptake chemicals from sponge and then modify and transform them into chemical weapons to defend against predators. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00096-w.
Collapse
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Nicole J. de Voogd
- National Museum of Natural History, PO Box 9517, 2300 RA Leiden, Netherlands
- Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA Leiden, Netherlands
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Li-Gong Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
21
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Scrosati RA. Nonconsumptive Predator Effects on Prey Demography: Recent Advances Using Intertidal Invertebrates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.626869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predators influence prey demography through consumption, but the mere presence of predators may trigger behavioural changes in prey that, if persistent or intense, may also influence prey demography. A tractable system to study such nonconsumptive effects (NCEs) of predators involves intertidal invertebrates. This mini review summarises recent research using barnacles and mussels as prey and dogwhelks as predators. The field manipulation of dogwhelk density revealed that pelagic barnacle larvae avoid benthic settlement near dogwhelks, which limits barnacle recruitment, a relevant outcome because recruitment is the only source of population replenishment for barnacles, as they are sessile. This avoidance behaviour is likely triggered by waterborne dogwhelk cues and may have evolved to limit future predation risk. Increasing densities of barnacle recruits and adults can prevent such NCEs from occurring, seemingly because benthic barnacles attract conspecific larvae through chemical cues. Barnacle recruit density increased with the abundance of coastal phytoplankton (food for barnacle larvae and recruits), so barnacle food supply seems to indirectly limit dogwhelk NCEs. By inhibiting barnacle feeding, dogwhelk cues also limited barnacle growth and reproductive output. Wave action weakens dogwhelk NCEs likely through hydrodynamic influences. Dogwhelk cues also limit mussel recruitment, as mussel larvae also exhibit predator avoidance behaviour. The NCEs on recruitment are weaker for mussels than for barnacles, possibly because mussel larvae can detach themselves after initial settlement, an ability that barnacle larvae lack. Overall, these field experiments provide evidence of predator NCEs on prey demography for coastal marine systems.
Collapse
|
23
|
Garrido A, Atencio LA, Bethancourt R, Bethancourt A, Guzmán H, Gutiérrez M, Durant-Archibold AA. Antibacterial Activity of Volatile Organic Compounds Produced by the Octocoral-Associated Bacteria Bacillus sp. BO53 and Pseudoalteromonas sp. GA327. Antibiotics (Basel) 2020; 9:antibiotics9120923. [PMID: 33353062 PMCID: PMC7766662 DOI: 10.3390/antibiotics9120923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
The present research aimed to evaluate the antibacterial activity of volatile organic compounds (VOCs) produced by octocoral-associated bacteria Bacillus sp. BO53 and Pseudoalteromonas sp. GA327. The volatilome bioactivity of both bacteria species was evaluated against human pathogenic antibiotic-resistant bacteria, methicillin-resistant Staphylococcus aureus, Acinetobacter baumanni, and Pseudomonas aeruginosa. In this regard, the in vitro tests showed that Bacillus sp. BO53 VOCs inhibited the growth of P. aeruginosa and reduced the growth of S. aureus and A. baumanni. Furthermore, Pseudoalteromonas sp. GA327 strongly inhibited the growth of A. baumanni, and P. aeruginosa. VOCs were analyzed by headspace solid-phase microextraction (HS-SPME) joined to gas chromatography-mass spectrometry (GC-MS) methodology. Nineteen VOCs were identified, where 5-acetyl-2-methylpyridine, 2-butanone, and 2-nonanone were the major compounds identified on Bacillus sp. BO53 VOCs; while 1-pentanol, 2-butanone, and butyl formate were the primary volatile compounds detected in Pseudoalteromonas sp. GA327. We proposed that the observed bioactivity is mainly due to the efficient inhibitory biochemical mechanisms of alcohols and ketones upon antibiotic-resistant bacteria. This is the first report which describes the antibacterial activity of VOCs emitted by octocoral-associated bacteria.
Collapse
Affiliation(s)
- Anette Garrido
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0843-01103, Panama; (A.G.); (L.A.A.)
| | - Librada A. Atencio
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0843-01103, Panama; (A.G.); (L.A.A.)
| | - Rita Bethancourt
- Department of Microbiology and Parasitology, College of Natural, Exact Sciences, and Technology, Universidad de Panama, Panama City 0824-03366, Panama; (R.B.); (A.B.)
| | - Ariadna Bethancourt
- Department of Microbiology and Parasitology, College of Natural, Exact Sciences, and Technology, Universidad de Panama, Panama City 0824-03366, Panama; (R.B.); (A.B.)
| | - Héctor Guzmán
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama;
| | - Marcelino Gutiérrez
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0843-01103, Panama; (A.G.); (L.A.A.)
- Correspondence: (M.G.); (A.A.D.-A.)
| | - Armando A. Durant-Archibold
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0843-01103, Panama; (A.G.); (L.A.A.)
- Department of Biochemistry, College of Natural, Exact Sciences, and Technology, University of Panama, Panama City 0824-03366, Panama
- Correspondence: (M.G.); (A.A.D.-A.)
| |
Collapse
|
24
|
Taton A, Ecker A, Diaz B, Moss NA, Anderson B, Reher R, Leão TF, Simkovsky R, Dorrestein PC, Gerwick L, Gerwick WH, Golden JW. Heterologous Expression of Cryptomaldamide in a Cyanobacterial Host. ACS Synth Biol 2020; 9:3364-3376. [PMID: 33180461 DOI: 10.1021/acssynbio.0c00431] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous marine cyanobacteria make a variety of bioactive molecules that are produced by polyketide synthases, nonribosomal peptide synthetases, and hybrid pathways that are encoded by large biosynthetic gene clusters. These cyanobacterial natural products represent potential drug leads; however, thorough pharmacological investigations have been impeded by the limited quantity of compound that is typically available from the native organisms. Additionally, investigations of the biosynthetic gene clusters and enzymatic pathways have been difficult due to the inability to conduct genetic manipulations in the native producers. Here we report a set of genetic tools for the heterologous expression of biosynthetic gene clusters in the cyanobacteria Synechococcus elongatus PCC 7942 and Anabaena (Nostoc) PCC 7120. To facilitate the transfer of gene clusters in both strains, we engineered a strain of Anabaena that contains S. elongatus homologous sequences for chromosomal recombination at a neutral site and devised a CRISPR-based strategy to efficiently obtain segregated double recombinant clones of Anabaena. These genetic tools were used to express the large 28.7 kb cryptomaldamide biosynthetic gene cluster from the marine cyanobacterium Moorena (Moorea) producens JHB in both model strains. S. elongatus did not produce cryptomaldamide; however, high-titer production of cryptomaldamide was obtained in Anabaena. The methods developed in this study will facilitate the heterologous expression of biosynthetic gene clusters isolated from marine cyanobacteria and complex metagenomic samples.
Collapse
|
25
|
Dai Y, Li K, She J, Zeng Y, Wang H, Liao S, Lin X, Yang B, Wang J, Tao H, Dai H, Zhou X, Liu Y. Lipopeptide Epimers and a Phthalide Glycerol Ether with AChE Inhibitory Activities from the Marine-Derived Fungus Cochliobolus Lunatus SCSIO41401. Mar Drugs 2020; 18:md18110547. [PMID: 33143384 PMCID: PMC7693918 DOI: 10.3390/md18110547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
A pair of novel lipopeptide epimers, sinulariapeptides A (1) and B (2), and a new phthalide glycerol ether (3) were isolated from the marine algal-associated fungus Cochliobolus lunatus SCSIO41401, together with three known chromanone derivates (4–6). The structures of the new compounds, including the absolute configurations, were determined by comprehensive spectroscopic methods, experimental and calculated electronic circular dichroism (ECD), and Mo2 (OAc)4-induced ECD methods. The new compounds 1–3 showed moderate inhibitory activity against acetylcholinesterase (AChE), with IC50 values of 1.3–2.5 μM, and an in silico molecular docking study was also performed.
Collapse
Affiliation(s)
- Yu Dai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
| | - Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
| | - Yanbo Zeng
- Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (Y.Z.); (H.W.); (H.D.)
| | - Hao Wang
- Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (Y.Z.); (H.W.); (H.D.)
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Haofu Dai
- Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China; (Y.Z.); (H.W.); (H.D.)
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Correspondence: (X.Z.); (Y.L.)
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.D.); (K.L.); (J.S.); (S.L.); (X.L.); (B.Y.); (J.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (X.Z.); (Y.L.)
| |
Collapse
|
26
|
Wu Q, Li SW, Xu H, Wang H, Hu P, Zhang H, Luo C, Chen KX, Nay B, Guo YW, Li XW. Complex Polypropionates from a South China Sea Photosynthetic Mollusk: Isolation and Biomimetic Synthesis Highlighting Novel Rearrangements. Angew Chem Int Ed Engl 2020; 59:12105-12112. [PMID: 32277730 DOI: 10.1002/anie.202003643] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 11/09/2022]
Abstract
Placobranchus ocellatus is well known to produce diverse and complex γ-pyrone polypropionates. In this study, the chemical investigation of P. ocellatus from the South China Sea led to the discovery and identification of ocellatusones A-D, a series of racemic non-γ-pyrone polyketides with novel skeletons, characterized by a bicyclo[3.2.1]octane (1, 2), a bicyclo[3.3.1]nonane (3) or a mesitylene-substituted dimethylfuran-3(2H)-one core (4). Extensive spectroscopic analysis, quantum chemical computation, chemical synthesis, and/or X-ray diffraction analysis were used to determine the structure and absolute configuration of the new compounds, including each enantiomer of racemic compounds 1-4 after chiral HPLC resolution. An array of new and diversity-generating rearrangements is proposed to explain the biosynthesis of these unusual compounds based on careful structural analysis and comparison with six known co-occurring γ-pyrones (5-10). Furthermore, the successful biomimetic semisynthesis of ocellatusone A (1) confirmed the proposed rearrangement through an unprecedented acid induced cascade reaction.
Collapse
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Song-Wei Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Heng Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Hao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Kai-Xian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Bastien Nay
- Laboratoire de Synthèse Organique, Ecole Polytechnique, ENSTA, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| |
Collapse
|
27
|
Wu Q, Li S, Xu H, Wang H, Hu P, Zhang H, Luo C, Chen K, Nay B, Guo Y, Li X. Complex Polypropionates from a South China Sea Photosynthetic Mollusk: Isolation and Biomimetic Synthesis Highlighting Novel Rearrangements. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qihao Wu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Song‐Wei Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Nanjing University of Chinese Medicine 138 Xianlin Road Nanjing 210023 China
| | - Heng Xu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
| | - Hong Wang
- College of Pharmaceutical Science and Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 China
| | - Pei Hu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
| | - Hao Zhang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
| | - Cheng Luo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| | - Kai‐Xian Chen
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| | - Bastien Nay
- Laboratoire de Synthèse Organique Ecole Polytechnique, ENSTA CNRS, Institut Polytechnique de Paris 91128 Palaiseau Cedex France
| | - Yue‐Wei Guo
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| | - Xu‐Wen Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park Shanghai 201203 China
- Open Studio for Druggability Research of Marine Natural Products Pilot National Laboratory for Marine Science and Technology 1 Wenhai Road, Aoshanwei, Jimo Qingdao 266237 China
| |
Collapse
|
28
|
Reiter S, Cahn JKB, Wiebach V, Ueoka R, Piel J. Characterization of an Orphan Type III Polyketide Synthase Conserved in Uncultivated "Entotheonella" Sponge Symbionts. Chembiochem 2019; 21:564-571. [PMID: 31430416 PMCID: PMC7064976 DOI: 10.1002/cbic.201900352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Uncultivated bacterial symbionts from the candidate genus "Entotheonella" have been shown to produce diverse natural products previously attributed to their sponge hosts. In addition to these known compounds, "Entotheonella" genomes contain rich sets of biosynthetic gene clusters that lack identified natural products. Among these is a small type III polyketide synthase (PKS) cluster, one of only three clusters present in all known "Entotheonella" genomes. This conserved "Entotheonella" PKS (cep) cluster encodes the type III PKS CepA and the putative methyltransferase CepB. Herein, the characterization of CepA as an enzyme involved in phenolic lipid biosynthesis is reported. In vitro analysis showed a specificity for alkyl starter substrates and the production of tri- and tetraketide pyrones and tetraketide resorcinols. The conserved distribution of the cep cluster suggests an important role for the phenolic lipid polyketides produced in "Entotheonella" variants.
Collapse
Affiliation(s)
- Silke Reiter
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jackson K B Cahn
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Vincent Wiebach
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Reiko Ueoka
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jörn Piel
- Department of Microbiology, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
29
|
Paul VJ, Freeman CJ, Agarwal V. Chemical Ecology of Marine Sponges: New Opportunities through "-Omics". Integr Comp Biol 2019; 59:765-776. [PMID: 30942859 PMCID: PMC6797912 DOI: 10.1093/icb/icz014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The chemical ecology and chemical defenses of sponges have been investigated for decades; consequently, sponges are among the best understood marine organisms in terms of their chemical ecology, from the level of molecules to ecosystems. Thousands of natural products have been isolated and characterized from sponges, and although relatively few of these compounds have been studied for their ecological functions, some are known to serve as chemical defenses against predators, microorganisms, fouling organisms, and other competitors. Sponges are hosts to an exceptional diversity of microorganisms, with almost 40 microbial phyla found in these associations to date. Microbial community composition and abundance are highly variable across host taxa, with a continuum from diverse assemblages of many microbial taxa to those that are dominated by a single microbial group. Microbial communities expand the nutritional repertoire of their hosts by providing access to inorganic and dissolved sources of nutrients. Not only does this continuum of microorganism-sponge associations lead to divergent nutritional characteristics in sponges, these associated microorganisms and symbionts have long been suspected, and are now known, to biosynthesize some of the natural products found in sponges. Modern "omics" tools provide ways to study these sponge-microbe associations that would have been difficult even a decade ago. Metabolomics facilitate comparisons of sponge compounds produced within and among taxa, and metagenomics and metatranscriptomics provide tools to understand the biology of host-microbe associations and the biosynthesis of ecologically relevant natural products. These combinations of ecological, microbiological, metabolomic and genomics tools, and techniques provide unprecedented opportunities to advance sponge biology and chemical ecology across many marine ecosystems.
Collapse
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
| | - Christopher J Freeman
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
30
|
Abstract
Many natural products have been used as drugs for the treatment of diverse indications. Although most U.S. pharmaceutical companies have reduced or eliminated their in-house natural-product research over the years, new approaches for compound screening and chemical synthesis are resurrecting interest in exploring the therapeutic value of natural products. The aim of this commentary is to review emerging strategies and techniques that have made natural products a viable strategic choice for inclusion in drug discovery programs. Published 2019. U.S. Government.
Collapse
Affiliation(s)
- John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
31
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
32
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17. [PMID: 31405226 DOI: 10.3390/md1708046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 05/20/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
33
|
Sang VT, Dat TTH, Vinh LB, Cuong LCV, Oanh PTT, Ha H, Kim YH, Anh HLT, Yang SY. Coral and Coral-Associated Microorganisms: A Prolific Source of Potential Bioactive Natural Products. Mar Drugs 2019; 17:E468. [PMID: 31405226 PMCID: PMC6723858 DOI: 10.3390/md17080468] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Marine invertebrates and their associated microorganisms are rich sources of bioactive compounds. Among them, coral and its associated microorganisms are promising providers of marine bioactive compounds. The present review provides an overview of bioactive compounds that are produced by corals and coral-associated microorganisms, covering the literature from 2010 to March 2019. Accordingly, 245 natural products that possess a wide range of potent bioactivities, such as anti-inflammatory, cytotoxic, antimicrobial, antivirus, and antifouling activities, among others, are described in this review.
Collapse
Affiliation(s)
- Vo Thanh Sang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 5, Ho Chi Minh City 748000, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Le Ba Vinh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hoang Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam.
- Graduated University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122300, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|