1
|
Yan C, Tang Z, Wang L, Piao Z, Wang H, Zhang Y. Covalently Linking Reduced Graphene Oxide Facilitated Electrodeposition of MoS 2 on Silicon Pyramidal Photocathode To Enhance Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12427-12436. [PMID: 38804701 DOI: 10.1021/acs.langmuir.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In recent years, increasing attention has been paid to photoelectrochemical (PEC) hydrogen production owing to the utilization of sustainable solar energy and its promising performance. Silicon-based composites are generally considered ideal materials for PEC hydrogen production. However, slow reaction kinetics and poor stability are still key factors hindering the development of silicon-based photoelectrocatalysts. Herein, we present an n+-p Si pyramidal photocathode assembly method to load reduced graphene oxide (rGO) onto the surface of the n+-p Si pyramid by covalently linking (Si/rGO). rGO is utilized as a conductive layer to reduce the interfacial charge-transfer resistance. Then, MoS2 can be successfully electrodeposited on the surface of Si/rGO to form the Si/rGO/MoS2 composite, which possesses excellent PEC hydrogen evolution performance with a high and stable photocurrent of -41.6 mA cm-2 and a hydrogen evolution rate of about 18.1 μmol min-1 cm-2 under 0 V (vs RHE). The covalently linking rGO layer effectively enhances the transfer of photogenerated carriers between the Si substrate and MoS2. MoS2 provides abundant hydrogen evolution active sites, which accelerate the surface reaction kinetics, as well as a protective layer for the Si pyramidal array structure. This work provides a low-cost, convenient, and efficient way of preparing silicon-based photocathodes.
Collapse
Affiliation(s)
- Chenyu Yan
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zheng Tang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Linjie Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhe Piao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
2
|
Hu L, Wang J, Wang H, Zhang Y, Han J. Gold-Promoted Electrodeposition of Metal Sulfides on Silicon Nanowire Photocathodes To Enhance Solar-Driven Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15449-15457. [PMID: 36921238 DOI: 10.1021/acsami.2c22423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Constructing composite structures is the key to breaking the dilemma of slow reaction kinetics and easy oxidation on the surface of lightly doped p-type silicon nanowire (SiNW) array photocathodes. Electrodeposition is a convenient and fast technique to prepare composite photocathodes. However, the low conductivity of SiNWs limits the application of the electrodeposition technique in constructing composite structures. Herein, SiNWs were loaded with Au nanoparticles by chemical deposition to decrease the interfacial charge transfer resistance and increase active sites for the electrodeposition. Subsequently, co-catalysts CoS, MoS2, and Ni3S2 with excellent hydrogen evolution activity were successfully composited by electrodeposition on the surface of SiNWs/Au. The obtained core-shell structures exhibited excellent photoelectrochemical hydrogen evolution activity, which was contributed by the plasma property of Au and the abundant hydrogen evolution active sites of the co-catalysts. This work provided a simple and efficient solution for the preparation of lightly doped SiNW-based composite structures by electrodeposition.
Collapse
Affiliation(s)
- Lang Hu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jiamin Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Raman S, A RS, M S. Advances in silicon nanowire applications in energy generation, storage, sensing, and electronics: a review. NANOTECHNOLOGY 2023; 34:182001. [PMID: 36640446 DOI: 10.1088/1361-6528/acb320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Nanowire-based technological advancements thrive in various fields, including energy generation and storage, sensors, and electronics. Among the identified nanowires, silicon nanowires (SiNWs) attract much attention as they possess unique features, including high surface-to-volume ratio, high electron mobility, bio-compatibility, anti-reflection, and elasticity. They were tested in domains of energy generation (thermoelectric, photo-voltaic, photoelectrochemical), storage (lithium-ion battery (LIB) anodes, super capacitors), and sensing (bio-molecules, gas, light, etc). These nano-structures were found to improve the performance of the system in terms of efficiency, stability, sensitivity, selectivity, cost, rapidity, and reliability. This review article scans and summarizes the significant developments that occurred in the last decade concerning the application of SiNWs in the fields of thermoelectric, photovoltaic, and photoelectrochemical power generation, storage of energy using LIB anodes, biosensing, and disease diagnostics, gas and pH sensing, photodetection, physical sensing, and electronics. The functionalization of SiNWs with various nanomaterials and the formation of heterostructures for achieving improved characteristics are discussed. This article will be helpful to researchers in the field of nanotechnology about various possible applications and improvements that can be realized using SiNW.
Collapse
Affiliation(s)
- Srinivasan Raman
- Centre for Innovation and Product Development (CIPD), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
| | - Ravi Sankar A
- Centre for Innovation and Product Development (CIPD), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
| | - Sindhuja M
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
| |
Collapse
|
4
|
Ray U, Sarkar S, Banerjee D. Silicon Nanowires as an Efficient Material for Hydrogen Evolution through Catalysis: A Review. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Jirimali H, Singh J, Boddula R, Lee JK, Singh V. Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3969. [PMID: 35683277 PMCID: PMC9182223 DOI: 10.3390/ma15113969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
Abstract
Carbon materials are versatile in nature due to their unique and modifiable surface and ease of production. Nanostructured carbon materials are gaining importance due to their high surface area for application in the energy, biotechnology, biomedical, and environmental fields. According to their structures, carbon allotropes are classified as carbon nanodots, carbon nanoparticles, graphene, oxide, carbon nanotubes, and fullerenes. They are synthesized via several methods, including pyrolysis, microwave method, hydrothermal synthesis, and chemical vapor deposition, and the use of renewable and cheaper agricultural feedstocks and reactants is increasing for reducing cost and simplifying production. This review explores the nanostructured carbon detailed investigation of sources and their relevant reports. Many of the renewable sources are covered as focused here, such as sugar cane waste, pineapple, its solid biomass, rise husk, date palm, nicotine tabacum stems, lapsi seed stone, rubber-seed shell, coconut shell, and orange peels. The main focus of this work is on the various methods used to synthesize these carbon materials from agricultural waste materials, and their important applications for energy storage devices, optoelectronics, biosensors, and polymer coatings.
Collapse
Affiliation(s)
- Harishchandra Jirimali
- Tarsadia Institute of Chemical Sciences, Uka Tarsadia University, Maliba Campus, Gopal-Vidya Nagar, Surat 394350, Gujarat, India; (H.J.); (J.S.); (R.B.)
| | - Jyoti Singh
- Tarsadia Institute of Chemical Sciences, Uka Tarsadia University, Maliba Campus, Gopal-Vidya Nagar, Surat 394350, Gujarat, India; (H.J.); (J.S.); (R.B.)
| | - Rajamouli Boddula
- Tarsadia Institute of Chemical Sciences, Uka Tarsadia University, Maliba Campus, Gopal-Vidya Nagar, Surat 394350, Gujarat, India; (H.J.); (J.S.); (R.B.)
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| | - Vijay Singh
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
6
|
Srivastava RP, Khang DY. Structuring of Si into Multiple Scales by Metal-Assisted Chemical Etching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005932. [PMID: 34013605 DOI: 10.1002/adma.202005932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Indexed: 05/27/2023]
Abstract
Structuring Si, ranging from nanoscale to macroscale feature dimensions, is essential for many applications. Metal-assisted chemical etching (MaCE) has been developed as a simple, low-cost, and scalable method to produce structures across widely different dimensions. The process involves various parameters, such as catalyst, substrate doping type and level, crystallography, etchant formulation, and etch additives. Careful optimization of these parameters is the key to the successful fabrication of Si structures. In this review, recent additions to the MaCE process are presented after a brief introduction to the fundamental principles involved in MaCE. In particular, the bulk-scale structuring of Si by MaCE is summarized and critically discussed with application examples. Various approaches for effective mass transport schemes are introduced and discussed. Further, the fine control of etch directionality and uniformity, and the suppression of unwanted side etching are also discussed. Known application examples of Si macrostructures fabricated by MaCE, though limited thus far, are presented. There are significant opportunities for the application of macroscale Si structures in different fields, such as microfluidics, micro-total analysis systems, and microelectromechanical systems, etc. Thus more research is necessary on macroscale MaCE of Si and their applications.
Collapse
Affiliation(s)
- Ravi P Srivastava
- Soft Electronic Materials and Devices Laboratory, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Dahl-Young Khang
- Soft Electronic Materials and Devices Laboratory, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
7
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
8
|
|
9
|
Ming T, Turishchev S, Schleusener A, Parinova E, Koyuda D, Chuvenkova O, Schulz M, Dietzek B, Sivakov V. Silicon Suboxides as Driving Force for Efficient Light-Enhanced Hydrogen Generation on Silicon Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007650. [PMID: 33522106 DOI: 10.1002/smll.202007650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Efficient light-stimulated hydrogen generation from top-down produced highly doped n-type silicon nanowires (SiNWs) with silver nanoparticles (AgNPs) in water-containing medium under white light irradiation is reported. It is observed that SiNWs with AgNPs generate at least 2.5 times more hydrogen than SiNWs without AgNPs. The authors' results, based on vibrational, UV-vis, and X-ray spectroscopy studies, strongly suggest that the sidewalls of the SiNWs are covered by silicon suboxides, by up to a thickness of 120 nm, with wide bandgap semiconductor properties that are similar to those of titanium dioxide and remain stable during hydrogen evolution in a water-containing medium for at least 3 h of irradiation. Based on synchrotron studies, it is found that the increase in the silicon bandgap is related to the energetically beneficial position of the valence band in nanostructured silicon, which renders these promising structures for efficient hydrogen generation.
Collapse
Affiliation(s)
- Tingsen Ming
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany
- Friedrich Schiller University Jena, Helmholtzweg 4, Jena, 07743, Germany
| | - Sergey Turishchev
- Joint Laboratory Electronic Structure of Solids, Voronezh State University, Universitetskaya pl.1, Voronezh, 394018, Russia
| | - Alexander Schleusener
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany
- Friedrich Schiller University Jena, Helmholtzweg 4, Jena, 07743, Germany
| | - Elena Parinova
- Joint Laboratory Electronic Structure of Solids, Voronezh State University, Universitetskaya pl.1, Voronezh, 394018, Russia
| | - Dmitry Koyuda
- Joint Laboratory Electronic Structure of Solids, Voronezh State University, Universitetskaya pl.1, Voronezh, 394018, Russia
| | - Olga Chuvenkova
- Joint Laboratory Electronic Structure of Solids, Voronezh State University, Universitetskaya pl.1, Voronezh, 394018, Russia
| | - Martin Schulz
- Friedrich Schiller University Jena, Helmholtzweg 4, Jena, 07743, Germany
| | - Benjamin Dietzek
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany
- Friedrich Schiller University Jena, Helmholtzweg 4, Jena, 07743, Germany
- Center of Energy and Environment Chemistry Jena (CEEC Jena), Philosophenweg 7a, Jena, 07743, Germany
| | - Vladimir Sivakov
- Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, 07745, Germany
| |
Collapse
|
10
|
Johar MA, Kim T, Song HG, Waseem A, Kang JH, Hassan MA, Bagal IV, Cho YH, Ryu SW. Three-dimensional hierarchical semi-polar GaN/InGaN MQW coaxial nanowires on a patterned Si nanowire template. NANOSCALE ADVANCES 2020; 2:1654-1665. [PMID: 36132313 PMCID: PMC9417695 DOI: 10.1039/d0na00115e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 05/30/2023]
Abstract
We have demonstrated for the first time the hybrid development of next-generation 3-D hierarchical GaN/InGaN multiple-quantum-well nanowires on a patterned Si nanowire-template. The patterned Si nanowire-template is fabricated using metal-assisted chemical-etching, and the conformal growth of the GaN/InGaN multiple-quantum-well (MQW) coaxial nanowires is conducted using metal-organic-chemical-vapor-deposition by the two-step growth approach of vapor-liquid-solid for the GaN core and vapor-solid for the GaN/InGaN MQW shells. The growth directions of the GaN nanowires are confirmed by transmission electron microscopy and selected area electron diffraction patterns. The emission of the GaN/InGaN MQW nanowire is tuned from 440 nm to 505 nm by increasing the InGaN quantum-well thickness. The carrier dynamics were evaluated by performing temperature-dependent time-resolved photoluminescence measurement, and the radiative lifetime of photogenerated electron-hole pairs was found to range from 30 to 35 ps. A very high IQE of 56% was measured due to the suppressed quantum-confined Stark effect which was enabled by the semi-polar growth facet of the GaN/InGaN MQWs. The demonstration of the growth of the hybrid 3-D hierarchical GaN/InGaN MQW nanowires provides a seamless platform for a broad range of multifunctional optical and electronic applications.
Collapse
Affiliation(s)
- Muhammad Ali Johar
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Taeyun Kim
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Hyun-Gyu Song
- Department of Physics, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Aadil Waseem
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Jin-Ho Kang
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
- Department of Electrical Engineering, Yale University New Haven CT USA
| | - Mostafa Afifi Hassan
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Indrajit V Bagal
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| | - Yong-Hoon Cho
- Department of Physics, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sang-Wan Ryu
- Department of Physics, Chonnam National University Gwangju 61186 Republic of Korea
| |
Collapse
|
11
|
Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902102. [PMID: 32195077 PMCID: PMC7080548 DOI: 10.1002/advs.201902102] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Indexed: 05/09/2023]
Abstract
Hydrogen (H2) has a significant potential to enable the global energy transition from the current fossil-dominant system to a clean, sustainable, and low-carbon energy system. While presently global H2 production is predominated by fossil-fuel feedstocks, for future widespread utilization it is of paramount importance to produce H2 in a decarbonized manner. To this end, photoelectrochemical (PEC) water splitting has been proposed to be a highly desirable approach with minimal negative impact on the environment. Both semiconductor light-absorbers and hydrogen/oxygen evolution reaction (HER/OER) catalysts are essential components of an efficient PEC cell. It is well documented that loading electrocatalysts on semiconductor photoelectrodes plays significant roles in accelerating the HER/OER kinetics, suppressing surface recombination, reducing overpotentials needed to accomplish HER/OER, and extending the operational lifetime of semiconductors. Herein, how electrocatalyst coupling influences the PEC performance of semiconductor photoelectrodes is outlined. The focus is then placed on the major strategies developed so far for semiconductor/electrocatalyst coupling, including a variety of dry processes and wet chemical approaches. This Review provides a comprehensive account of advanced methodologies adopted for semiconductor/electrocatalyst coupling and can serve as a guideline for the design of efficient and stable semiconductor photoelectrodes for use in water splitting.
Collapse
Affiliation(s)
| | - Lichen Bai
- Laboratory of Inorganic Synthesis & CatalysisEcole Polytechnique Federale de LausanneEPFL ISIC LSCI, BCH 3305CH‐1015LausanneSwitzerland
| | - Cuncai Lv
- School of Chemical Science & EngineeringTongji University200092ShanghaiP. R. China
- College of Physics Science & TechnologyHebei University071002BaodingHebeiP. R. China
| | - Zhipeng Huang
- School of Chemical Science & EngineeringTongji University200092ShanghaiP. R. China
| | - Xile Hu
- Laboratory of Inorganic Synthesis & CatalysisEcole Polytechnique Federale de LausanneEPFL ISIC LSCI, BCH 3305CH‐1015LausanneSwitzerland
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL)Avenida Mestre Jose Veiga4715‐330BragaPortugal
| |
Collapse
|
12
|
Lim Y, Lee DK, Kim SM, Park W, Cho SY, Sim U. Low Dimensional Carbon-Based Catalysts for Efficient Photocatalytic and Photo/Electrochemical Water Splitting Reactions. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E114. [PMID: 31881793 PMCID: PMC6982202 DOI: 10.3390/ma13010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023]
Abstract
A universal increase in energy consumption and the dependency on fossil fuels have resulted in increasing severity of global warming, thus necessitating the search of new and environment-friendly energy sources. Hydrogen is as one of the energy sources that can resolve the abovementioned problems. Water splitting promotes ecofriendly hydrogen production without the formation of any greenhouse gas. The most common process for hydrogen production is electrolysis, wherein water molecules are separated into hydrogen and oxygen through electrochemical reactions. Solar-energy-induced chemical reactions, including photocatalysis and photoelectrochemistry, have gained considerable attention because of the simplicity of their procedures and use of solar radiation as the energy source. To improve performance of water splitting reactions, the use of catalysts has been widely investigated. For example, the novel-metal catalysts possessing extremely high catalytic properties for various reactions have been considered. However, due to the rarity and high costs of the novel-metal materials, the catalysts were considered unsuitable for universal use. Although other transition-metal-based materials have also been investigated, carbon-based materials, which are obtained from one of the most common elements on Earth, have potential as low-cost, nontoxic, high-performance catalysts for both photo and electrochemical reactions. Because abundancy, simplicity of synthesis routes, and excellent performance are the important factors for catalysts, easy optimization and many variations are possible in carbon-materials, making them more attractive. In particular, low-dimensional carbon materials, such as graphene and graphitic carbon nitride, exhibit excellent performance because of their unique electrical, mechanical, and catalytic properties. In this mini-review, we will discuss the performance of low-dimensional carbon-based materials for water splitting reactions.
Collapse
Affiliation(s)
- Yoongu Lim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Korea; (Y.L.); (D.-K.L.)
| | - Dong-Kyu Lee
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Korea; (Y.L.); (D.-K.L.)
| | - Seong Min Kim
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Woosung Park
- Division of Mechanical Systems Engineering, Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
| | - Sung Yong Cho
- Department of Environment and Energy Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Uk Sim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju 61186, Korea; (Y.L.); (D.-K.L.)
| |
Collapse
|
13
|
Alam K, Sim Y, Yu JH, Gnanaprakasam J, Choi H, Chae Y, Sim U, Cho H. In-Situ Deposition of Graphene Oxide Catalyst for Efficient Photoelectrochemical Hydrogen Evolution Reaction Using Atmospheric Plasma. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E12. [PMID: 31861397 PMCID: PMC6981421 DOI: 10.3390/ma13010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/25/2022]
Abstract
The vacuum deposition method requires high energy and temperature. Hydrophobic reduced graphene oxide (rGO) can be obtained by plasma-enhanced chemical vapor deposition under atmospheric pressure, which shows the hydrophobic surface property. Further, to compare the effect of hydrophobic and the hydrophilic nature of catalysts in the photoelectrochemical cell (PEC), the prepared rGO was additionally treated with plasma that attaches oxygen functional groups effectively to obtain hydrophilic graphene oxide (GO). The hydrogen evolution reaction (HER) electrocatalytic activity of the hydrophobic rGO and hydrophilic GO deposited on the p-type Si wafer was analyzed. Herein, we have proposed a facile way to directly deposit the surface property engineered GO.
Collapse
Affiliation(s)
- Khurshed Alam
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea; (K.A.); (Y.S.); (J.G.); (H.C.); (Y.C.)
| | - Yelyn Sim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea; (K.A.); (Y.S.); (J.G.); (H.C.); (Y.C.)
| | - Ji-Hun Yu
- Center for 3D Printing Materials Research, Korea Institute of Materials Science, Changwon 41508, Korea;
| | - Janani Gnanaprakasam
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea; (K.A.); (Y.S.); (J.G.); (H.C.); (Y.C.)
| | - Hyeonuk Choi
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea; (K.A.); (Y.S.); (J.G.); (H.C.); (Y.C.)
| | - Yujin Chae
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea; (K.A.); (Y.S.); (J.G.); (H.C.); (Y.C.)
| | - Uk Sim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea; (K.A.); (Y.S.); (J.G.); (H.C.); (Y.C.)
| | - Hoonsung Cho
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Korea; (K.A.); (Y.S.); (J.G.); (H.C.); (Y.C.)
| |
Collapse
|