1
|
Peng T, Chen Y, Luan X, Hu W, Wu W, Guo B, Lu C, Wu C, Pan X. Microneedle technology for enhanced topical treatment of skin infections. Bioact Mater 2025; 45:274-300. [PMID: 39659727 PMCID: PMC11629152 DOI: 10.1016/j.bioactmat.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Skin infections caused by microbes such as bacteria, fungi, and viruses often lead to aberrant skin functions and appearance, eventually evolving into a significant risk to human health. Among different drug administration paradigms for skin infections, microneedles (MNs) have demonstrated superiority mainly because of their merits in enhancing drug delivery efficiency and reducing microbial resistance. Also, integrating biosensing functionality to MNs offers point-of-care wearable medical devices for analyzing specific pathogens, disease status, and drug pharmacokinetics, thus providing personalized therapy for skin infections. Herein, we do a timely update on the development of MN technology in skin infection management, with a special focus on how to devise MNs for personalized antimicrobial therapy. Notably, the advantages of state-of-the-art MNs for treating skin infections are pointed out, which include hijacking sequential drug transport barriers to enhance drug delivery efficiency and delivering various therapeutics (e.g., antibiotics, antimicrobial peptides, photosensitizers, metals, sonosensitizers, nanoenzyme, living bacteria, poly ionic liquid, and nanomoter). In addition, the nanoenzyme-based multimodal antimicrobial therapy is highlighted in addressing intractable infectious wounds. Furthermore, the MN-based biosensors used to identify pathogen types, track disease status, and quantify antibiotic concentrations are summarized. The limitations of antimicrobial MNs toward clinical translation are offered regarding large-scale production, quality control, and policy guidance. Finally, the future development of biosensing MNs with easy-to-use and intelligent properties and MN-based wearable drug delivery for home-based therapy are prospected. We hope this review will provide valuable guidance for future development in MN-mediated topical treatment of skin infections.
Collapse
Affiliation(s)
- Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yangyan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wentao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bing Guo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Sun C, Huang J, Guo X, Zhang C, Wei L, Wong KI, Yang Z, Zhao G, Lu M, Yao W. An all-in-one therapeutic platform for the treatment of resistant Helicobacter pylori infection. Biomaterials 2024; 308:122540. [PMID: 38537343 DOI: 10.1016/j.biomaterials.2024.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a major cause of gastric diseases. Currently, bismuth-based quadruple therapy is widely adopted for eradicating H. pylori infection. However, this first-line strategy faces several challenges such as drug resistance, intestinal dysbacteriosis, and patients' poor compliance. To overcome these problems, an all-in-one therapeutic platform (CLA-Bi-ZnO2@Lipo) that composed of liposomes loading clarithromycin (CLA), Bi, and ZnO2 hybrid nanoparticles was developed for eradicating multidrug-resistant (MDR) H. pylori. The in vitro and in vivo results showed that CLA-Bi-ZnO2@Lipo could target the infection-induced inflammatory mucosa through liposome mediated nanoparticle-tissue surface charge interaction and quickly respond to the gastric acid environment to release CLA, Bi3+, Zn2+, and H2O2. By oral administration per day, the acid triggered decomposition of CLA-Bi-ZnO2@Lipo could significantly increase intragastric pH to 6 within 30 min; The released CLA, Zn2+, and H2O2 further exerted synergistical anti-bacterial effects in which a ∼2 order higher efficacy in reducing MDR H. pylori burden was achieved in comparison with standard quadruple therapy (p < 0.05); The released Zn2+ and Bi3+ could also alleviate mucosal inflammation. Most importantly, the CLA-Bi-ZnO2@Lipo exhibited superior biosafety and nearly no side effects on intestinal flora. Overall, this study developed a highly integrated and safe anti-MDR H. pylori agent which had great potential to be used as an alternative treatment for MDR H. pylori eradication.
Collapse
Affiliation(s)
- Chao Sun
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jia Huang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiaoqian Guo
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Chenli Zhang
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Ka Ioi Wong
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Ziyun Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Gang Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Weiyan Yao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
3
|
Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Fu H. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl Microbiol Biotechnol 2024; 108:386. [PMID: 38896257 PMCID: PMC11186951 DOI: 10.1007/s00253-024-13120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024]
Abstract
Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.
Collapse
Affiliation(s)
- Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueli Wang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Zhao P, Hu HZ, Chen XT, Jiang QY, Yu XZ, Cen XL, Lin SQ, Mai SQ, Pang WL, Chen JX, Zhang Q. Mild hyperthermia enhanced synergistic uric acid degradation and multiple ROS elimination for an effective acute gout therapy. J Nanobiotechnology 2024; 22:275. [PMID: 38778401 PMCID: PMC11112921 DOI: 10.1186/s12951-024-02539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Acute gouty is caused by the excessive accumulation of Monosodium Urate (MSU) crystals within various parts of the body, which leads to a deterioration of the local microenvironment. This degradation is marked by elevated levels of uric acid (UA), increased reactive oxygen species (ROS) production, hypoxic conditions, an upsurge in pro-inflammatory mediators, and mitochondrial dysfunction. RESULTS In this study, we developed a multifunctional nanoparticle of polydopamine-platinum (PDA@Pt) to combat acute gout by leveraging mild hyperthermia to synergistically enhance UA degradation and anti-inflammatory effect. Herein, PDA acts as a foundational template that facilitates the growth of a Pt shell on the surface of its nanospheres, leading to the formation of the PDA@Pt nanomedicine. Within this therapeutic agent, the Pt nanoparticle catalyzes the decomposition of UA and actively breaks down endogenous hydrogen peroxide (H2O2) to produce O2, which helps to alleviate hypoxic conditions. Concurrently, the PDA component possesses exceptional capacity for ROS scavenging. Most significantly, Both PDA and Pt shell exhibit absorption in the Near-Infrared-II (NIR-II) region, which not only endow PDA@Pt with superior photothermal conversion efficiency for effective photothermal therapy (PTT) but also substantially enhances the nanomedicine's capacity for UA degradation, O2 production and ROS scavenging enzymatic activities. This photothermally-enhanced approach effectively facilitates the repair of mitochondrial damage and downregulates the NF-κB signaling pathway to inhibit the expression of pro-inflammatory cytokines. CONCLUSIONS The multifunctional nanomedicine PDA@Pt exhibits exceptional efficacy in UA reduction and anti-inflammatory effects, presenting a promising potential therapeutic strategy for the management of acute gout.
Collapse
Affiliation(s)
- Pei Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Hua-Zhong Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Xiao-Tong Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qi-Yun Jiang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Xue-Zhao Yu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Xiao-Lin Cen
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Shi-Qing Lin
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Sui-Qing Mai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China
| | - Wei-Lin Pang
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Qun Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510663, Guangdong, China.
| |
Collapse
|
5
|
Dong W, Xu L, Chen M, Jiang T, Su L, Ma J, Chen CP, Zhang G. Co-, N-doped carbon dot nanozymes based on an untriggered ROS generation approach for anti-biofilm activities and in vivo anti-bacterial treatment. J Mater Chem B 2024; 12:1052-1063. [PMID: 38167941 DOI: 10.1039/d3tb01794j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacterial infections originating from food, water, and soil are widely recognized as significant global public health concerns. Biofilms are implicated in approximately two-thirds of bacterial infections. In recent times, nanomaterials have emerged as potential agents for combating biofilms and bacteria, with many of them being activated by light and H2O2 to generate reactive oxygen species (ROS). However, this energy-consuming and extrinsic substrate pattern poses many challenges for practical application. Consequently, there is a pressing need to develop methods for the untriggered generation of ROS to effectively address biofilm and bacterial infections. In this study, we investigated the oxidase-like activity of the Co,N-doped carbon dot (CoNCD) nanozyme, which facilitated the oxidation of ambient O2 to generate 1O2 in the absence of light and H2O2 supplementation; this resulted in effective biofilm cleavage and enhanced bactericidal effects. CoNCDs could become a potential candidate for wound healing and treatment of acute peritonitis in vivo, which can be primarily attributed to the spontaneous production of ROS. This study presents a convenient ROS generator that does not necessitate any specific triggering conditions. The nanozyme properties of CoNCDs exhibit significant promise as a potential remedy for diseases, specifically as an anti-biofilm and anti-bacterial agent.
Collapse
Affiliation(s)
- Wenpei Dong
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Lingyun Xu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Mengting Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Tao Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Li Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Jinliang Ma
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Chang-Po Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
6
|
Chen X, Zhang L, Zeng H, Meng W, Liu G, Zhang W, Zhao P, Zhang Q, Chen M, Chen J. Manganese-Based Immunomodulatory Nanocomposite with Catalase-Like Activity and Microwave-Enhanced ROS Elimination Ability for Efficient Rheumatoid Arthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304610. [PMID: 37632302 DOI: 10.1002/smll.202304610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease commonly associated with the accumulation of hyperactive immune cells (HICs), particularly macrophages of pro-inflammatory (M1) phenotype, accompanied by the elevated level of reactive oxygen species (ROS), decreased pH and O2 content in joint synovium. In this work, an immunomodulatory nanosystem (IMN) is developed for RA therapy by modulating and restoring the function of HICs in inflamed tissues. Manganese tetraoxide nanoparticles (Mn3 O4 ) nanoparticles anchored on UiO-66-NH2 are designed, and then the hybrid is coated with Mn-EGCG film, further wrapped with HA to obtain the final nanocomposite of UiO-66-NH2 @Mn3 O4 /Mn-EGCG@HA (termed as UMnEH). When UMnEH diffuses to the inflammatory site of RA synovium, the stimulation of microwave (MW) irradiation and low pH trigger the slow dissociation of Mn-EGCG film. Then the endogenously overexpressed hydrogen peroxide (H2 O2 ) disintegrates the exposed Mn3 O4 NPs to promote ROS scavenging and O2 generation. Assisted by MW irradiation, the elevated O2 content in the RA microenvironment down-regulates the expression of hypoxia-inducible factor-1α (HIF-1α). Coupled with the clearance of ROS, it promotes the re-polarization of M1 phenotype macrophages into anti-inflammatory (M2) phenotype macrophages. Therefore, the multifunctional UMnEH nanoplatform, as the IMN, exhibits a promising potential to modulate and restore the function of HICs and has an exciting prospect in the treatment of RA.
Collapse
Affiliation(s)
- Xiaotong Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lianying Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Haifeng Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guijiang Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Qun Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
7
|
Liu Z, Guo K, Yan L, Zhang K, Wang Y, Ding X, Zhao N, Xu FJ. Janus nanoparticles targeting extracellular polymeric substance achieve flexible elimination of drug-resistant biofilms. Nat Commun 2023; 14:5132. [PMID: 37612285 PMCID: PMC10447547 DOI: 10.1038/s41467-023-40830-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Safe and efficient antibacterial materials are urgently needed to combat drug-resistant bacteria and biofilm-associated infections. The rational design of nanoparticles for flexible elimination of biofilms remains challenging. Herein, we propose the fabrication of Janus-structured nanoparticles targeting extracellular polymeric substance to achieve dispersion or near-infrared (NIR) light-activated photothermal elimination of drug-resistant biofilms, respectively. Asymmetrical Janus-structured dextran-bismuth selenide (Dex-BSe) nanoparticles are fabricated to exploit synergistic effects of both components. Interestingly, Janus Dex-BSe nanoparticles realize enhanced dispersal of biofilms over time. Alternatively, taking advantage of the preferential accumulation of nanoparticles at infection sites, the self-propelled active motion induced by the unique Janus structure enhances photothermal killing effect. The flexible application of Janus Dex-BSe nanoparticles for biofilm removal or NIR-triggered eradication in vivo is demonstrated by Staphylococcus aureus-infected mouse excisional wound model and abscess model, respectively. The developed Janus nanoplatform holds great promise for the efficient elimination of drug-resistant biofilms in diverse antibacterial scenarios.
Collapse
Affiliation(s)
- Zhiwen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kangli Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Huang Y, Qi L, Liu Z, Jiang Y, Wang J, Liu L, Li Y, Zhang L, Feng G. Radially Electrospun Fibrous Membrane Incorporated with Copper Peroxide Nanodots Capable of Self-Catalyzed Chemodynamic Therapy for Angiogenesis and Healing Acceleration of Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463246 DOI: 10.1021/acsami.3c06703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Vascular dysfunction severely hinders the healing process of diabetic wounds. Therefore, a radially structured fibrous membrane was fabricated through electrospinning by using a polycaprolactone (PCL) and polyvinylpyrrolidone (PVP) mixed solution containing copper peroxide nanoparticles (CPs) as the chemodynamic therapy (CDT) agents, aiming to simultaneously accelerate tissue regeneration and angiogenesis. The fabricated membrane allowed for the in situ H2O2 generation activated by the acidic diabetic microenvironment and the subsequent Fenton-type reactions to realize 99.4% elimination against Staphylococcus aureus. Besides, the released Cu2+ ions significantly enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in human umbilical vein endothelial cells (HUVECs), and they showed enhanced in vitro angiogenesis. Interestingly, the CP-embedded membrane also guided cell spreading and orientated migration of L929 fibroblasts along the fiber distribution through the radially aligned topology. The in vivo implantation indicated that the raidally structured membrane modified by CPs not only dramatically accelerated wound healing of diabetic Sprague-Dawley (SD) rats in 14 days but also promoted angiogenesis in wound sites. The combination of the in situ CDT with the radially structured morphology of the functional membrane is highly promising in applications to promote diabetic wound healing through anti-infection and revascularization.
Collapse
Affiliation(s)
- Yong Huang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yulin Jiang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Jing Wang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Department of Orthopedics Surgery and Orthopedic Research Institute, Analytical & Testing Center, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
10
|
Xu Y, Yao Y, Deng W, Fang JC, Dupont RL, Zhang M, Čopar S, Tkalec U, Wang X. Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. NANO RESEARCH 2022:1-10. [PMID: 36570861 DOI: 10.1007/s12274-022-5239-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/29/2022] [Accepted: 11/13/2022] [Indexed: 05/22/2023]
Abstract
UNLABELLED Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs). We find that the static wetting behavior and static friction of water droplets on a 4'-octyl-4-biphenylcarbonitrile (8CB) film strongly depend on the LC mesophases, and that a magnetic field caused no measurable change to these properties. However, we find that the droplet dynamics can be affected by a magnetic field as it slides on a nematic 8CB film, but not on isotropic 8CB, and is dependent on both the direction and strength of the magnetic field. By measuring the dynamic friction of a droplet sliding on a nematic 8CB film, we find that a magnetic field alters the internal orientational ordering of the 8CB which in turn affects its viscosity. We support this interpretation with a scaling argument using the LC magnetic coherence length that includes (i) the elastic energy from the long-range orientational ordering of 8CB and (ii) the free energy from the interaction between 8CB and a magnetic field. Overall, these results advance our understanding of droplet mobility on LC films and enable new designs for responsive surfaces that can manipulate the mobility of water droplets. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (further details of the stability of LCIPS against water-induced dewetting, the interfacial tension and contact angle measurement using a goniometer, the estimation of the thickness of LC wrapping layer at air-water interface on droplets, SEM measurements, the average sliding velocity of a water droplet on 5CB, E7, silicone oil, and mineral oil films with and without a magnetic field, representative force diagram (F d versus time) of a 3-µL water droplet moving at a speed of 0.1 mm/s on a nematic 8CB film, F dynamic acting on 3 µL water droplets moving at speeds of 0.1-1 mm/s on an isotropic 8CB film, the calculated magnetic coherence length as a function of the magnitude of the magnetic field applied to the nematic LCIPS, and the apparent advancing and receding contact angles of a moving water droplet on nematic LCIPS as a function of time, and polarized light micrographs (top view) of a nematic 8CB film between two DMOAP-functionalized glass slides before and after applying a horizontal magnetic field) is available in the online version of this article at 10.1007/s12274-022-5318-y.
Collapse
Affiliation(s)
- Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Weichen Deng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Jen-Chun Fang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Robert L Dupont
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Simon Čopar
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Uroš Tkalec
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia
- Department of Condensed Matter Physics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
- Sustainability Institute, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
11
|
Xie S, Huang K, Peng J, Liu Y, Cao W, Zhang D, Li X. Self-Propelling Nanomotors Integrated with Biofilm Microenvironment-Activated NO Release to Accelerate Healing of Bacteria-Infected Diabetic Wounds. Adv Healthc Mater 2022; 11:e2201323. [PMID: 35841607 DOI: 10.1002/adhm.202201323] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Diabetic foot ulcer (DFU) treatment is challenged by persistent bacterial infection and hyperglycemia-caused vascular dysplasia. Herein, self-propelled nanomotors are designed to achieve biofilm microenvironment (BME)-activated multistage release of NO for effective sterilization and subsequent angiogenesis promotion. CaO2 nanoparticles (NPs) are capped with PDA layers, followed by complexation with Fe2+ and surface grafting of cysteine-NO to obtain Janus Ca@PDAFe -CNO NPs. In response to low pH in BME, the decomposition of CaO2 cores generates O2 from one side of Janus NPs to propel biofilm penetration, and the released H2 O2 and Fe2+ produce •OH through Fenton reaction. The concurrent glutathione-triggered release of NO can be converted into reactive nitrogen species, which exhibit significantly higher bactericidal efficacy than those with only generation of •OH or NO. The slow release of NO for an extended time period promotes endothelial cell proliferation and migration. On Staphylococcus aureus-infected skin wounds of diabetic mice, NP treatment eliminates bacterial infections and significantly elevates blood vessel densities, leading to full wound recovery and regeneration of arranged collagen fibers and skin accessories. Thus, the self-propelling and multistage release of NO provide a feasible strategy to combat biofilm infection without using any antibiotics and accelerate angiogenesis and wound healing for DFU treatment.
Collapse
Affiliation(s)
- Shuang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Kun Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jiawen Peng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wenxiong Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Dandan Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
12
|
Zhang Y, Hu X, Shang J, Shao W, Jin L, Quan C, Li J. Emerging nanozyme-based multimodal synergistic therapies in combating bacterial infections. Theranostics 2022; 12:5995-6020. [PMID: 35966582 PMCID: PMC9373825 DOI: 10.7150/thno.73681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Pathogenic infections have emerged as major threats to global public health. Multidrug resistance induced by the abuse of antibiotics makes the anti-infection therapies to be a global challenge. Thus, it is urgent to develop novel, efficient and biosafe antibiotic alternatives for future antibacterial therapy. Recently, nanozymes have emerged as promising antibiotic alternatives for combating bacterial infections. More significantly, the multimodal synergistic nanozyme-based antibacterial systems open novel disinfection pathways. In this review, we are mainly focusing on the recent research progress of nanozyme-based multimodal synergistic therapies to eliminate bacterial infections. Their antibacterial mechanism, the synergistic antibacterial systems are systematically summarized and discussed according to the combination of mechanisms and the purpose to improve their antibacterial efficiency, biosafety and specificity. Finanly, the current challenges and prospects of the multimodal synergistic antibacterial systems are proposed.
Collapse
Affiliation(s)
- Yanmei Zhang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Xin Hu
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Shang
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Wenhui Shao
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Liming Jin
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Chunshan Quan
- College of Life Science, Dalian Minzu University, Economical and Technological Development Zone, Dalian, 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Science, P. O. Box 110, Dalian 116023, China
| |
Collapse
|
13
|
Yang G, Wang DY, Liu Y, Huang F, Tian S, Ren Y, Liu J, An Y, van der Mei HC, Busscher HJ, Shi L. In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms. Bioact Mater 2022; 14:321-334. [PMID: 35386819 PMCID: PMC8964971 DOI: 10.1016/j.bioactmat.2022.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Cascade-reaction chemistry can generate reactive-oxygen-species that can be used for the eradication of infectious biofilms. However, suitable and sufficient oxygen sources are not always available near an infection site, while the reactive-oxygen-species generated are short-lived. Therefore, we developed a magnetic cascade-reaction container composed of mesoporous Fe3O4@SiO2 nanoparticles containing glucose-oxidase and l-arginine for generation of reactive-oxygen-species. Glucose-oxidase was conjugated with APTES facilitating coupling to Fe3O4@SiO2 nanoparticles and generation of H2O2 from glucose. l-arginine was loaded into the nanoparticles to generate NO from the H2O2 generated. Using an externally-applied magnetic field, cascade-reaction containers could be homogeneously distributed across the depth of an infectious biofilm. Cascade-reaction containers with coupled glucose-oxidase were effective in killing planktonic, Gram-positive and Gram-negative bacteria. Additional efficacy of the l-arginine based second cascade-reaction was only observed when H2O2 as well as NO were generated in-biofilm. In vivo accumulation of cascade-reaction containers inside abdominal Staphylococcus aureus biofilms upon magnetic targeting was observed real-time in living mice through an implanted, intra-vital window. Moreover, vancomycin-resistant, abdominal S. aureus biofilms could be eradicated consuming solely endogenous glucose, without any glucose addition. Herewith, a new, non-antibiotic-based infection-control strategy has been provided, constituting a welcome addendum to the shrinking clinical armamentarium to control antibiotic-resistant bacterial infections. Fe3O4@SiO2 NPs can be used as magnetically-targetable cascade-reaction containers. Mesoporous Fe3O4@SiO2 NPs with GOx/l-arginine consume glucose to yield H2O2 and NO. Fe3O4@SiO2 cascade-reaction containers are magnetically targetable to biofilm in vivo. In-biofilm generation of ROS is essential for killing biofilm bacteria. Fe3O4@SiO2 NPs with GOx/l-arginine eradicate biofilms using only endogenous glucose.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.,University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.,University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Shuang Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.,University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9700, RB, Groningen, the Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Henk J Busscher
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China.,University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713, AV, Groningen, the Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, PR China
| |
Collapse
|
14
|
Maddheshiya S, Nara S. Recent Trends in Composite Nanozymes and Their Pro-Oxidative Role in Therapeutics. Front Bioeng Biotechnol 2022; 10:880214. [PMID: 35711631 PMCID: PMC9197165 DOI: 10.3389/fbioe.2022.880214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
Nanozymes are inorganic nanostructures whose enzyme mimic activities are increasingly explored in disease treatment, taking inspiration from natural enzymes. The catalytic ability of nanozymes to generate reactive oxygen species can be used for designing effective antimicrobials and antitumor therapeutics. In this context, composite nanozymes are advantageous, particularly because they integrate the properties of various nanomaterials to offer a single multifunctional platform combining photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT). Hence, recent years have witnessed great progress in engineering composite nanozymes for enhanced pro-oxidative activity that can be utilized in therapeutics. Therefore, the present review traverses over the newer strategies to design composite nanozymes as pro-oxidative therapeutics. It provides recent trends in the use of composite nanozymes as antibacterial, antibiofilm, and antitumor agents. This review also analyzes various challenges yet to be overcome by pro-oxidative composite nanozymes before being used in the field.
Collapse
Affiliation(s)
- Shilpa Maddheshiya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
15
|
Cui F, Li T, Wang D, Yi S, Li J, Li X. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128597. [PMID: 35247736 DOI: 10.1016/j.jhazmat.2022.128597] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 05/27/2023]
Abstract
The prevalence of bacterial pathogens among humans has increased rapidly and poses a great threat to health. Two-thirds of bacterial infections are associated with biofilms. Recently, nanomaterials have emerged as anti-biofilm agents due to their enormous potential for combating biofilm-associated infections and infectious disease management. Among these, relatively high biocompatibility and unique physicochemical properties of carbon-based nanomaterials (CBNs) have attracted wide attention. This review presented the current advances in anti-biofilm CBNs. Different kinds of CBNs and their physicochemical characteristics were introduced first. Then, the various potential mechanisms underlying the action of anti-biofilm CBNs during different stages were discussed, including anti-biofouling activity, inhibition of quorum sensing, photothermal/photocatalytic inactivation, oxidative stress, and electrostatic and hydrophobic interactions. In particular, the review focused on the pivotal role played by CBNs as anti-biofilm agents and delivery vehicles. Finally, it described the challenges and outlook for the development of more efficient and bio-safer anti-biofilm CBNs.
Collapse
Affiliation(s)
- Fangchao Cui
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Dangfeng Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shumin Yi
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Xuepeng Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; College of Food Science and Technology, Bohai University, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
16
|
Wang ZQ, Liu ZQ, Zhao CH, Zhang K, Kang ZJ, Qu TR, Zeng FS, Guo PY, Tong ZC, Wang CL, Wang KL, Wang HL, Xu YS, Wang WH, Chu ML, Wang L, Qiao ZY, Wang H, Xu W. An Ultrasound-Induced Self-Clearance Hydrogel for Male Reversible Contraception. ACS NANO 2022; 16:5515-5528. [PMID: 35352555 DOI: 10.1021/acsnano.1c09959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nearly half of pregnancies worldwide are unintended mainly due to failure of contraception, resulting in negative effects on women's health. Male contraception techniques, primarily condoms and vasectomy, play a crucial role in birth control, but cannot be both highly effective and reversible at the same time. Herein, an ultrasound (US)-induced self-clearance hydrogel capable of real-time monitoring is utilized for in situ injection into the vas deferens, enabling effective contraception and noninvasive recanalization whenever needed. The hydrogel is composed of (i) sodium alginate (SA) conjugated with reactive oxygen species (ROS)-cleavable thioketal (SA-tK), (ii) titanium dioxide (TiO2), which can generate a specific level of ROS after US treatment, and (iii) calcium chloride (CaCl2), which triggers the formation of the hydrogel. For contraception, the above mixture agents are one-time injected into the vas deferens, which can transform from liquid to hydrogel within 160 s, thereby significantly physically blocking the vas deferens and inhibiting movability of sperm. When fertility is needed, a noninvasive remedial ultrasound can make TiO2 generate ROS, which cleaves SA-tK to destroy the network of the hydrogel. Owing to the recanalization, the refertility rate is restored to 100%. Meanwhile, diagnostic ultrasound (D-US, 22 MHz) can monitor the occlusion and recanalization process in real-time. In summary, the proposed hydrogel contraception can be a reliable, safe, and reversible male contraceptive strategy that addresses an unmet need for men to control their fertility.
Collapse
Affiliation(s)
- Zi-Qi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zhong-Qing Liu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Chang-Hao Zhao
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Kuo Zhang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zhi-Jian Kang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Tian-Rui Qu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Fan-Shu Zeng
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Peng-Yu Guo
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zhi-Chao Tong
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Chang-Lin Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Ke-Liang Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hong-Lei Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Yin-Sheng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wan-Hui Wang
- Department of Urology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mao-Lin Chu
- Department of Urology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
17
|
Zhu T, Hu X, Ye Z, Li J, Jiang M, Guo Z, Wang J, Chen X. A self-activated cascade nanoreactor based on Pd-Ru/GOx for bacterial infection treatment. J Mater Chem B 2022; 10:7827-7835. [DOI: 10.1039/d2tb01416e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme cascade reaction that integrated nature enzyme and nanozyme has attracted intensive attention in biomedical studies. Nevertheless, it is still an important challenge to design simple, high-performance and safe cascade...
Collapse
|
18
|
Qiu H, Gong H, Bao Y, Jiang H, Tong W. Reactive oxygen species-scavenging hollow MnO 2 nanozymes as carriers to deliver budesonide for synergistic inflammatory bowel disease therapy. Biomater Sci 2021; 10:457-466. [PMID: 34882157 DOI: 10.1039/d1bm01525g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is related to excessive reactive oxygen species (ROS) and high expression of proinflammatory cytokines. An enzymatically active drug carrier that can simultaneously scavenge excessive ROS and deliver anti-inflammatory drugs to inhibit the production of inflammatory cytokines may lead to improved therapeutic effects. Herein, nanoparticles (NPs) that can target activated macrophages, remove ROS and release anti-inflammatory drugs are fabricated by loading budesonide (Bud) into dextran sulfate sodium (DSS)-coated hollow mesoporous manganese dioxide (hMnO2) NPs. This strategy can treat IBD better through the synergistic effect of the ROS-scavenging hMnO2 carriers and anti-inflammatory drug by blocking the amplification effect of inflammation. In addition, compared with free Bud, the drug delivery system can reduce side effects of Bud and improve its treatment outcome at the same dosage. Therefore, this study provides a new method for the design of highly effective synergistic anti-inflammatory nanomedicines.
Collapse
Affiliation(s)
- Huiqiang Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hengtai Gong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuheng Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Hong Jiang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China.
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
19
|
Hydroxyl radical-involved cancer therapy via Fenton reactions. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Qin J, Feng Y, Cheng D, Liu B, Wang Z, Zhao Y, Wei J. Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40302-40314. [PMID: 34412471 DOI: 10.1021/acsami.1c10821] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozyme has been regarded as one of the antibacterial agents to kill bacteria via a Fenton-like reaction in the presence of H2O2. However, it still suffers drawbacks such as insufficient catalytic activity in near-neutral conditions and the requirement of high H2O2 levels, which would minimize the side effects to healthy tissues. Herein, a mesoporous ceria hollow sphere/enzyme nanoreactor is constructed by loading glucose oxidase in the mesoporous ceria hollow sphere nanozyme. Due to the mesoporous framework, large internal voids, and high specific surface area, the obtained nanoreactor can effectively convert the nontoxic glucose into highly toxic hydroxyl radicals via a cascade catalytic reaction. Moreover, the generated glucose acid can decrease the localized pH value, further boosting the peroxidase-like catalytic performance of mesoporous ceria. The generated hydroxyl radicals could damage severely the cell structure of the bacteria and prevent biofilm formation. Moreover, the in vivo experiments demonstrate that the nanoreactor can efficiently eliminate 99.9% of bacteria in the wound tissues and prevent persistent inflammation without damage to normal tissues in mice. This work provides a rational design of a nanoreactor with enhanced catalytic activity, which can covert glucose to hydroxyl radicals and exhibits potential applications in antibacterial therapy.
Collapse
Affiliation(s)
- Jing Qin
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Dong Cheng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Ningxia 750021, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
21
|
Liu C, Feng S, Ma L, Sun M, Wei Z, Wang J, Chen Z, Guo Y, Shi J, Wu Q. An Amphiphilic Carbonaceous/Nanosilver Composite-Incorporated Urinary Catheter for Long-Term Combating Bacteria and Biofilms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38029-38039. [PMID: 34357763 DOI: 10.1021/acsami.1c07399] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofilms formed on urinary catheters remain a major headache in the modern healthcare system. Among the various kinds of biocide-releasing urinary catheters that have been developed to prevent biofilm formation, Ag nanoparticles (AgNPs)-coated catheters are of great promising potential. However, the deposition of AgNPs on the surface of catheters suffers from several inherent shortcomings, such as damage to the urethral mucosa, uncontrollable Ag ion kinetics, and unexpected systematic toxicity. Here, AgNPs-decorated amphiphilic carbonaceous particles (ACPs@AgNPs) with commendable dispersity in solvents of different polarities and broad-spectrum antibacterial activity are first prepared. The resulting ACPs@AgNPs exert good compatibility with silicone rubber, which enables the easy fabrication of urinary catheters using a laboratory-made mold. Therefore, ACPs@AgNPs not only endow the urinary catheter with forceful biocidal activity but also improve its mechanical properties and surface wettability. Hence, the designed urinary catheter possesses excellent capacity to resist bacterial adhesion and biofilm formation both in vitro and in an in vivo rabbit model. Specifically, a long-term antibacterial study highlights its sustainable antibacterial activity. Of note, no obvious toxicity or inflammation in rabbits was triggered by the designed urinary catheter in vivo. Overall, the hybrid urinary catheter may serve as a promising biocide-releasing urinary catheter for antibacterial and antibiofilm applications.
Collapse
Affiliation(s)
- Chaoqun Liu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Shan Feng
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Longyu Ma
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Mengyao Sun
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhihong Wei
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Jiaqi Wang
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuheng Guo
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Qiang Wu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| |
Collapse
|
22
|
Responsive Polymeric Nanoparticles for Biofilm-infection Control. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2610-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Li J, Qiu H, Gong H, Tong W. Broad-Spectrum Reactive Oxygen Species Scavenging and Activated Macrophage-Targeting Microparticles Ameliorate Inflammatory Bowel Disease. Biomacromolecules 2021; 22:3107-3118. [PMID: 34160209 DOI: 10.1021/acs.biomac.1c00551] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a refractory chronic inflammatory disease. An excessively high level of reactive oxygen species (ROS) in the colon is one of the characteristics and pathogenic factors of IBD. Therefore, scavenging excessive ROS is a feasible method to treat IBD. Because ROS include many types of species, scavenging a single kind of ROS is not enough to reduce the ROS level and cure IBD effectively. Herein, broad-spectrum ROS scavenging and activated macrophage-targeting microparticles (MPs) are successfully fabricated by coprecipitation of catalase (CAT) and bovine serum albumin into a MnCO3 template followed by deposition of polydopamine (PDA), assembly of targeting molecules on the surface, and finally removal of MnCO3. The CAT content of MPs is about 34.1%. The obtained MPs can effectively scavenge the broad spectrum of ROS and retain 88% of the radical scavenging activity even after the treatment of simulated gastric fluid. The surface-modified dextran sulfate endows MPs with the targeting ability toward activated macrophages, achieving a better therapeutic effect. The MPs with components mostly derived from natural substances exhibit good biocompatibility and can show excellent ROS scavenging ability in cell experiments. In animal experiments, oral administration of a proper dosage of MPs can substantially mitigate colonic inflammation, as evidenced by disease activity index scores reduced by ∼40%, reduced body weight loss, and the production of typical proinflammatory cytokines in the inflammatory colon. This kind of MP can also be utilized for the treatment of other inflammatory diseases.
Collapse
Affiliation(s)
- Jiawei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huiqiang Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hengtai Gong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
24
|
Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Deliv Transl Res 2021; 11:1352-1375. [PMID: 33840082 DOI: 10.1007/s13346-021-00966-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Ocular infection induced by bacteria and fungi is a major cause of visual impairment and blindness. Topical administration of antibiotics remains the first-line treatment, as effective eradication of pathogens is the core of the anti-infection strategy. Whereas, eye drops lack efficiency and have relatively low bioavailability. Intraocular injection may cause concurrent ocular damage and secondary infection. In addition, antibiotic-based management can be limited by the low sensitivity to multidrug-resistant bacteria. Nanomedicine is proposed as a prospective, effective, and noninvasive platform to mediate ocular delivery and combat pathogen or even resistant strains. Nanomedicine can not only carry antimicrobial agents to fight against pathogens but also directly active microbicidal capability, killing pathogens. More importantly, by modification, nanomedicine can achieve enhanced residence time and release time on the cornea, and easy penetration through corneal tissues into anterior and posterior segments of the eye, thus improving the therapeutic effect for ocular infection. In this review, several categories of antimicrobial nanomedicine are systematically discussed, where the efficiency and possibility of further embellishment and improvement to adapt to clinical use are also investigated. All in all, novel antimicrobial nanomedicine provides potent and prospective ways to manage severe and refractory ocular infections.
Collapse
|
25
|
Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf B Biointerfaces 2021; 198:111465. [DOI: 10.1016/j.colsurfb.2020.111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
|
26
|
Xu Z, Zhang C, Wang X, Liu D. Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS APPLIED BIO MATERIALS 2021; 4:3985-3999. [DOI: 10.1021/acsabm.0c01485] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiwen Xu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cai Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Ding J, Yao Y, Li J, Duan Y, Nakkala JR, Feng X, Cao W, Wang Y, Hong L, Shen L, Mao Z, Zhu Y, Gao C. A Reactive Oxygen Species Scavenging and O 2 Generating Injectable Hydrogel for Myocardial Infarction Treatment In vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005038. [PMID: 33169516 DOI: 10.1002/smll.202005038] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The excessive reactive oxygen species (ROS) and hypoxia deteriorate the inflammation-related diseases such as myocardial infarction (MI), and thereby deter the normal tissue repair and recovery and further lead to severe fibrosis and malfunction of tissues and organs. In particular, the MI has become one of the leading causes of death nowadays. In this study, a novel type of injectable hydrogel with dual functions of ROS scavenging and O2 generating is fabricated for MI treatment in vivo. The hydrogel is formed within 3 s from the synthetic ROS-cleavable hyperbranched polymers and methacrylate hyaluronic acid (HA-MA) under UV-irradiation. Addition of biocompatible and applicable catalase in vivo enables the further transition of H2 O2 , a major type of ROS, to O2 and H2 O. Results of rat MI model demonstrate that this hydrogel can significantly remove excessive ROS, inhibit cell apoptosis, increase M2/M1 macrophage ratio, promote angiogenesis, reduce infarcted area, and improve cardiac functions. With the appropriate degradation rate, simple structure and composition without cell seeding, and very excellent MI therapeutic effect, this ROS scavenging and O2 generating hydrogel has a great promise to be applied clinically.
Collapse
Affiliation(s)
- Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiawei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jayachandra Reddy Nakkala
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingchao Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
28
|
Liang M, Wang Y, Ma K, Yu S, Chen Y, Deng Z, Liu Y, Wang F. Engineering Inorganic Nanoflares with Elaborate Enzymatic Specificity and Efficiency for Versatile Biofilm Eradication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002348. [PMID: 32939990 DOI: 10.1002/smll.202002348] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Nanozyme has emerged as a versatile nanocatalyst yet is constrained with limited catalytic efficiency and specificity for various biomedical applications. Herein, by elaborately integrating the recognition/transduction carbon dots (CDs) with platinum nanoparticles (PtNPs), an exquisite CDs@PtNPs (CPP) nanoflare is engineered as an efficient and substrate-specific peroxidase-mimicking nanozyme for high-performance biosensing and antibacterial applications. The intelligent CPP-catalyzed hydrogen peroxide (H2 O2 )-generated reactive oxygen species realize the sensitive diagnosis-guided enhanced disinfection of pathogens. Significantly, the CPP nanozyme shows the prominent biofilm eradication and wound healing in vivo by virtue of endogenous H2 O2 in acidic infection tissues, which can substantially preclude the annoying antibiotics resistance. A fundamental understanding on the present CPP nanoflare would not only facilitate the advancement of various prospective biocatalysts, but also establish a multifunctional means for versatile biosensing and smart diagnostic applications.
Collapse
Affiliation(s)
- Meijuan Liang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430072, P. R. China
| | - Kang Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shanshan Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yingying Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhao Deng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430072, P. R. China
| | - Yi Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
29
|
Yang D, Chen Z, Gao Z, Tammina SK, Yang Y. Nanozymes used for antimicrobials and their applications. Colloids Surf B Biointerfaces 2020; 195:111252. [PMID: 32679446 DOI: 10.1016/j.colsurfb.2020.111252] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
Bacterial infection-related diseases have been growing year-by-year rapidly and raising health problems globally. The exploitation of novel, high efficiency, and bacteria-binding antibacterial agents are extremely need. As far as now, the most extensive treatment is restricted to antibiotics, which may be overused and misused, leading to increased multidrug resistance. Antibiotics abuse, as well as antibiotic-resistance of bacteria, is a global challenge in the current situation. It is highly recommended and necessary to develop novel bactericide to kill the bacteria effectively without causing further resistance development and biosafety issues. Nanozymes, inorganic nanostructures with intrinsic enzymatic activities, have attracted more and more interest from the researchers owing to their exceptional advantages. Compared to natural enzymes, nanozymes can destroy many Gram-positive, Gram-negative bacteria, which builds an important bridge between biology and nanotechnology. As the potent nanoantibiotics, nanozymes have exciting broad-spectrum antimicrobial properties and negligible biotoxicities. And we summarized and highlighted the recent advances on nanozymes including its antibacterial mechanism and applications. Finally, challenges and limitations for the further improvement of the antibacterial activity are covered to provide future directions for the use of engineered nanozymes with enhanced antibacterial function.
Collapse
Affiliation(s)
- Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Zizhao Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Zhe Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Sai Kumar Tammina
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
| |
Collapse
|
30
|
Liu C, Wei Z, Huo Z, Fu S, Li S, Yang Y, Shi J, Wu Q. Constructing a Contact-Active Antimicrobial Surface Based on Quarternized Amphiphilic Carbonaceous Particles against Biofilms. ACS APPLIED BIO MATERIALS 2020; 3:5048-5055. [DOI: 10.1021/acsabm.0c00551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chaoqun Liu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhihong Wei
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhiyuan Huo
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Shuang Fu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Shanshan Li
- Kaifeng Health School (Medical Department of Kaifeng University), Kaifeng 475004, China
| | - Yingying Yang
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Qiang Wu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| |
Collapse
|
31
|
Li Y, Yang G, Ren Y, Shi L, Ma R, van der Mei HC, Busscher HJ. Applications and Perspectives of Cascade Reactions in Bacterial Infection Control. Front Chem 2020; 7:861. [PMID: 31970146 PMCID: PMC6960124 DOI: 10.3389/fchem.2019.00861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Cascade reactions integrate two or more reactions, of which each subsequent reaction can only start when the previous reaction step is completed. Employing natural substrates in the human body such as glucose and oxygen, cascade reactions can generate reactive oxygen species (ROS) to kill tumor cells, but cascade reactions may also have potential as a direly needed, novel bacterial infection-control strategy. ROS can disintegrate the EPS matrix of infectious biofilm, disrupt bacterial cell membranes, and damage intra-cellular DNA. Application of cascade reactions producing ROS as a new infection-control strategy is still in its infancy. The main advantages for infection-control cascade reactions include the fact that they are non-antibiotic based and induction of ROS resistance is unlikely. However, the amount of ROS generated is generally low and antimicrobial efficacies reported are still far <3-4 log units necessary for clinical efficacy. Increasing the amounts of ROS generated by adding more substrate bears the risk of collateral damage to tissue surrounding an infection site. Collateral tissue damage upon increasing substrate concentrations may be prevented by locally increasing substrate concentrations, for instance, using smart nanocarriers. Smart, pH-responsive nanocarriers can self-target and accumulate in infectious biofilms from the blood circulation to confine ROS production inside the biofilm to yield long-term presence of ROS, despite the short lifetime (nanoseconds) of individual ROS molecules. Increasing bacterial killing efficacies using cascade reaction components containing nanocarriers constitutes a first, major challenge in the development of infection-control cascade reactions. Nevertheless, their use in combination with clinical antibiotic treatment may already yield synergistic effects, but this remains to be established for cascade reactions. Furthermore, specific patient groups possessing elevated levels of endogenous substrate (for instance, diabetic or cancer patients) may benefit from the use of cascade reaction components containing nanocarriers.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.,Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.,Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J Busscher
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.,Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive Nanotherapeutics by Metal Peroxide Based Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2000494. [PMID: 33437566 PMCID: PMC7788501 DOI: 10.1002/advs.202000494] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/23/2020] [Indexed: 05/29/2023]
Abstract
The advances of nanobiotechnology and nanomedicine enable the triggering of in situ chemical reactions in disease microenvironment for achieving disease-specific nanotherapeutics with both intriguing therapeutic efficacy and mitigated side effects. Metal peroxide based nanoparticles, as one of the important but generally ignored categories of metal-involved nanosystems, can function as the solid precursors to produce oxygen (O2) and hydrogen peroxide (H2O2) through simple chemical reactions, both of which are the important chemical species for enhancing the therapeutic outcome of versatile modalities, accompanied with the unique bioactivity of metal ion based components. This progress report summarizes and discusses the most representative paradigms of metal peroxides in chemoreactive nanomedicine, including copper peroxide (CuO2), calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), barium peroxide (BaO2), and titanium peroxide (TiOx) nanosystems. Their reactions and corresponding products have been broadly explored in versatile disease treatments, including catalytic nanotherapeutics, photodynamic therapy, radiation therapy, antibacterial infection, tissue regeneration, and some synergistically therapeutic applications. This progress report particularly focuses on the underlying reaction mechanisms on enhancing the therapeutic efficacy of these modalities, accompanied with the discussion on their biological effects and biosafety. The existing gap between fundamental research and clinical translation of these metal peroxide based nanotherapeutic technologies is finally discussed in depth.
Collapse
Affiliation(s)
- Hui Hu
- Medmaterial Research CenterJiangsu University Affiliated People's HospitalZhenjiang212002P. R. China
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| | - Luodan Yu
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiaoqin Qian
- Medmaterial Research CenterJiangsu University Affiliated People's HospitalZhenjiang212002P. R. China
| | - Yu Chen
- School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Baoding Chen
- Department of Medical UltrasoundThe Affiliated Hospital of Jiangsu UniversityZhenjiang212001P. R. China
| | - Yuehua Li
- Institute of Diagnostic and Interventional RadiologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233P. R. China
| |
Collapse
|
33
|
Smart calcium peroxide with self-sufficience for biomedicine. SCIENCE CHINA. LIFE SCIENCES 2020; 63:152-156. [PMID: 31792779 DOI: 10.1007/s11427-019-1578-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023]
|
34
|
|
35
|
Xiong X, Huang Y, Lin C, Liu XY, Lin Y. Recent advances in nanoparticulate biomimetic catalysts for combating bacteria and biofilms. NANOSCALE 2019; 11:22206-22215. [PMID: 31482920 DOI: 10.1039/c9nr05054j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Due to the abuse of antibiotics and the tendency of bacteria to form protective biofilms, the design and development of new efficient agents that can eliminate bacteria and biofilms are still highly desired but remain a great challenge; on the other hand, natural enzymes with unique catalytic characteristics can cause an irreversible damage to the bacteria without inducing drug-resistance in the bacteria. However, the intrinsic drawbacks, such as insufficient stability and high purification cost, of enzymes significantly limit their antimicrobial applications. Therefore, significant research efforts have been devoted towards the development of quality-equivalent or even superior enzyme substitutes with low cost and high stability. In this regard, nanomaterials with extraordinary enzyme-mimetic catalytic activities (termed as nanozymes) are considered as suitable candidates. To date, nanozymes have been proved to be promising materials for combating bacteria and biofilms under mild conditions. In this review, we have summarized the recent progress of nanozymes in this highly active field. The antibacterial mechanisms of nanozymes and the roles of their sizes, morphologies, compositions, surface modifications and microenvironment on their overall performance have been discussed. Moreover, the current challenges and prospects in this research area have been discussed. We believe that nanozymes with unique features and functions can provide a wealth of opportunities via their clinical and industrial applications.
Collapse
Affiliation(s)
- Xueqing Xiong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Jiujiang Research Institute, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
36
|
Liu Y, Lin A, Liu J, Chen X, Zhu X, Gong Y, Yuan G, Chen L, Liu J. Enzyme-Responsive Mesoporous Ruthenium for Combined Chemo-Photothermal Therapy of Drug-Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26590-26606. [PMID: 31264823 DOI: 10.1021/acsami.9b07866] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rapid mutation of drug-resistant bacteria and the serious lag of development of new antibiotics necessitate research on novel antibacterial agents. Nanomaterials with unique size effect and antibacterial mechanism could serve as an alternative for antibiotics, since they showed low possibility to develop drug-resistant bacteria. Here, an enzyme-responsive nanosystem, AA@Ru@HA-MoS2, with a synergistic chemo-photothermal therapy function is proposed to treat bacterial infections. Mesoporous ruthenium nanoparticles (Ru NPs) were used as nanocarriers, loading prodrug ascorbic acid (AA) and encapsulated by hyaluronic acid (HA). Then, molybdenum disulfide (MoS2) precoated with ciprofloxacin was used as a catalyst with targeting effect binding to the outer surface. When the nanosystem gathered at the infection site, Hyal secreted by bacteria could degrade the HA capping and trigger the release of AA and then generated hydroxyl radicals (•OH) in situ by the catalysis of MoS2. In addition, taking advantage of the good photothermal property of Ru NPs, combined chemo-photothermal antibacterial therapy could be achieved. The nanosystem exhibited potent bactericidal activity against drug-resistant Gram-positive and Gram-negative bacteria. Furthermore, it could break down the biofilm, inhibit the contained bacteria, and prevent the formation of a new biofilm. The in vivo bacterium-infected model also proved accelerated wound healing. The study showed a high potential of AA@Ru@HA-MoS2 as a novel enzyme-responsive nanosystem for combating drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Yanan Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy , Guangdong Medical University , Zhanjiang 524023 , China
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Ange Lin
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jiawei Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xu Chen
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xufeng Zhu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Youcong Gong
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Guanglong Yuan
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy , Guangdong Medical University , Zhanjiang 524023 , China
| | - Jie Liu
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| |
Collapse
|